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The Features of Localized Plasticity Autowaves in Solids

Lev Borisovich Zueva*, Svetlana Aleksandrovna Barannikovaa,c , Olga Aleksandrovna Maslovaa,b,c

Received: October 28, 2018; Revised: May 08, 2019; Accepted: May 21, 2019

The localized plastic deformation and the law-like regularities underlying its development in 
solids are considered. The characteristic features of localized plasticity are analyzed for a wide 
range of materials. Thus a correlation is established between the products of scales and of process 
rates obtained for the elastic and plastic deformation. It is a favorable ground for hypothesizing 
causal links between the elastic and plastic deformation by introducing an elastic-plastic invariant, 
which is the master equation of the autowave plasticity model being developed. Localized plasticity 
phenomena are proposed to be addressed in the frame of autowave and quasi-particle approach.
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1. Introduction
During recent decades we have focused on the macro-

scale development of plastic flow. The results are presented 
in papers 1-3 and in the monograph 4. We have gradually come 
to accept that the plastic flow behavior has a characteristic 
attribute: the deforming medium would spontaneously 
separate into actively deforming layers alternating with 
inactive non-deformed layers (Fig. 1). As a result, an intricate 
arrangement of localized plas ticity patterns would emerge 
and vary in space and with time. The patterns have been 
correlated with the flow stages on the stress-strain curves, 
σ(ε), plotted for the test samples. The available experimental 
evidence suggests that the patterns in question have space 
scales ~10-2 m and characteristic times ~102…103 s. The latter 
two values are virtually unaffected by the kind of material 
and only slight ly so, by the loading conditions.

The stratification of the plastically deforming medium 
(localization of deformation) is equivalent to the structure 
formation in the same; hence, this is actually related to the 
medium’s self-orga niza tion 5,6. Our understanding of this fact 
offers a clearer view of the nature of plasticity. Thus the author 
is responsible for much of the work on the patterns in question 
and for identifying them as 'localized plastic flow autowaves'7. 
The autowave generation is known to involve a decrease 
in the entropy of the deforming medium 8, which counts 
in favor of the self-organization concept. The autowave 
length, λ, and the time period, T, have been determined 
experimentally for similar processes; the values obtained are 
generally in the range 0.5·10-2 ≤λ≤2·10-2m and 102≤T≤103 
s. At about the same time, the theory of solitary plastic 
waves was put forward for an explanation of plastic flow 9. 

Here reference should be made to the conceptual representation 
of other workers 11,12, concerning the nature of periodic 
processes involved in the plastic deformation. Today the 
autowave model is substantiated by abundant theoretical 
and experimental evidence 12-17. It is therefore claimed herein 
that the auto wave approach has presently received support 
among scientists.
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Figure 1. Plastic flow localization in the deformed single γ-Fe crystal 
(a) macrophotograph and (b) series of localized plasticity patterns 
observed for different times (dark and light bands correspond to 
active and passive material volumes, respectively)
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2. Methods and Materials

The experimental studies of autowave processes of plastic 
flow were done with the aid of double-exposure speckle photogra 
phy (Fig. 2 a); due to the stepwise stressing, the method was 
adapted to high plastic deformation 4. The application of the 
method enables reconstruction of the displacement vector 
field for the flat sample, i.e.|r(x,y)|>>χ (here χ is the inter 
pla nar spacing). Using specially developed software, plastic 
distortion tensor components were calculated for different 
times and different points on the sample surface (Fig. 2 b). 
To obtain a generalizable set of data, the experiments were 
done for a variety of materials having dissimilar nature, 
which also differed in structure as well as in physical and 
mechanical properties. The range of studied materials included 
pure metals and alloys, alkali halide crystals and some rocks 
3,4. The metals and alloys had FCC, BCC, HCP or tetragonal 
lattice; these were in single-crystal or polycrystalline state, 
polycrystalline metals and alloys differing in grain size. 

We will discuss herein the general regularities of localized 
plasticity observed for all studied materials.

Autowave processes are likely to originate in the 
so-called active medium with energy sources distributed 
throughout its volume 6,18,19. The elastic stress fields 
in the vicinity of stress concentrators play the role of 
energy sources; hence, the deforming medium meets 
the condition for autowave generation. An analysis of 
plastic flow should be based on space-time nonlinear 
kinetics relations derived for strains and stresses suitable 
for descriptions of response to loading of a nonlinear 
deforming medium. The derivation of such relations is 
considered herein. Moreover, a new universal approach 
to the phenomenon of solids plasticity is introduced in 
the form of logical implication. The aim of the given 
paper is an attempt at revealing the major regularities of 
the plastic flow by generalization of the diverse database, 
which would enable elaboration of a persuasive theory 
of this multivariate phenomenon.

Figure 2. Localized plasticity in metals (a) - ALMEC-tv measuring system installed on an Instron-1185 testing machine; (b) - distribution 
of active and passive zones of strain localization; (c) - plastic flow curve and X -t diagram
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3. The autowave nature of plastic 
deformation and the elastic-plastic 
invariant

To gain an insight into the nature of localized plastic 
deformation, the regular features of its development have to 
be assessed on the base of qualitative data. The regularities 
exhibited by the localized plastic flow behavior have 
been determined with the maximal accuracy for the easy 
glide and linear work hardening stages. In these cases, the 
localization patterns comprise a set of localized plasticity 
nuclei having space and time periods, i.e. autowave length, 
λ, and characteristic time, T, respectively (Fig. 2 C); hence, 
the autowave propagation rate, 10-5≤Vaw=dλ/dT≤ 10-4 m/s.

Next Fig. 3 a-c shows the experimentally obtained data 
characterizing the localized plastic flow autowaves.

3.1 Distinctive features of localized plasticity 
autowaves

It is found that the autowave rate depends on a 
dimensionless characteristic of the plastic flow process, 
i.e. θ=E-1·dσ/dε (here E is the elastic modulus). This 
dependence has the form

	         / ,V Vaw 0
1+i iN= + - 	          (1)

where V0 and Ξ are constants, which differ for the easy glide 
and linear work hardening stages. (Fig. 3 a).

Figure 3. Distinctive features of localized plasticity autowaves (а) work hardening coefficient dependence of autowave rate; (b) dispersion relation; 
(c) grain size dependence of autowave length
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It should be emphasized that the autowaves observed for 
the latter two stages are described by the following quadratic 
dispersion relation (Fig. 3 b),

	         ,k k k0 0
2!~ ~ a= -Q QV V 	            (2)

where ω=2π/T is frequency; k=2π/λ is wave number and 
ω0, k0 and α are constants. The mi nus and plus signs 
correspond to the easy glide and linear work hardening stages, 
respectively. By substituting ω=ω0·ῶ and / /k k k0 0! a ~= u  
into Eq. (2), it is easily reduced to the form k1 2!~ =u u  
(here ῶ and ku  are dimensionless frequency and wave 
number, respectively).

The grain size dependence of autowave length, λ(δ), 
is obtained experimentally for the linear work hardening 
stage in aluminum (Fig. 3 c). It is described by the logistic 
function 19 as

	 /
,

expC a
a a

10
1

1 2
m d m

d
= +

+ -
Q QV V        (3)

where λ0, a1 and a2 are empirical constants and C is an 
integration constant. Function (3) is the solution of the 
differential equation d a a d1 2

2 $m m m d= -Q V   19. Experimental 
data analysis suggests that the autowave length depends 
weakly on the grain size. Thus an increase in the value δ 
from 10-5 to 10-2 m would cause the value λ to increase from 
~6∙10-3 m to ~1.6∙10-2m.

3.2 Introduction of elastic-plastic invariant

At first glance it would seem that Eqs. (1), (2) and 
(3) are not interrelated; however, we are going to take a 
good look at these relationships to find out what relation 
binds them. With this aim in view, quantitative data 
processing of deformation patterns was performed for 
studied materials. It has been found that the auto wave 
characteristics, λ and Vaw, taken together with the spacing, 
X, and the transverse elastic wave rate, Vt, make up the 
following ratio (see Table 1)

	   . .V
V

V
V const Z

t

aw

t

aw

$
$

/|
m

|
m = = t          (4)

The calculated data suggest that the average quantity 
Zt  = 2/3±1/4. Equation (4) is called 'elastic-plastic invariant' 

by virtue of the fact that it relates the characteristics of elastic 
waves, X and Vt, to the characteristics of localized plastic 
flow autowaves, λ and Vaw. The elastic waves are involved in 
the elastic stress redistribution by the deformation, while the 
localized plasticity autowaves are in point of fact deformation 
pattern evolution. Hence, Eq. (4) relates the above two types 
of processes. This reasoning may play a strategic role in 
envisaging new conceptual representations of the nature of 
localized plastic deformation. As is shown in Fig. 4, invariant 
(4) possesses universality: it is valid for the autowaves pro pa 
gating at the easy glide and linear stages of work hardening 
as well as for the motion of individual dislocations 20.

Table 1. Database for introducing elastic-plastic invariant (4).

Terms of invariant ×107 m2∙s-1
Metals

Cu Zn Al Zr Ti V Nb γ-Fe α-Fe Ni Co Sn

λ·Vaw 3.6 3.7 7.6 2.9 3.5 2.8 1.8 2.1 2.3 2.1 3.0 2.8

χ∙Vt 4.8 5.2 7.5 5.5 6.6 6.1 5.2 6.9 6.7 6.5 6.0 5.3

 

Terms of invariant ×107 m2∙s-1
Alkali halide crystals Rocks

KCl     NaCl LiF Marble Sandstone

λ·Vaw 3.0 3.1 4.3 1.75 0.6

χ·Vt 7.0 7.5 8.8 3.7 1.5

Figure 4. The meaning of the elastic-plastic invariant • elastic 
deformation stage; ■ linear work hardening tage; ▲easy glide 
stage; ♦ individual dislocation motion

In view of /V X Et D
2 2 2. .~ t  (here ωD is the De 

bye frequency; ρ, material density; E≈X-1∙d2W/du2, elastic 
modulus; u<<X, displacement and W(u), lattice po tential 
function 21), invariant (4) is rearranged as

  .
/ /

,V Z
V

Z
d W du

Z
d W du

aw
D

t

D

2 2 2

1

2 2

. . .m ~ ~ | t p
t t t

Q V   (5)

where the value ζ1=(ωDX)ρ=Vtρ is the medium's specific 
acoustic resistance 22.
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3.3 Consequences of the elastic-plastic invariant

Eqs. (1) - (3) can be derived from Eq. (4), which suggests 
that the elastic-plastic invariant plays an important role in 
the development of autowave concept of localized plasticity. 

First, Eq. (4) is differentiated with respect to deformation, ε, as

d
dV V d

d Z d
dV Z V d

daw
aw

t
t$ $ $m f f

m
| f f

|
+ = +t t        (6)

By writing the above expression with respect to Vaw, 
we obtain

V d
d

Z d
dV Z V d

d
d

dV
aw

t
t

aw
1

$ $ $f
m

| f f
|

m f
= + -

-

t tS TX Y   (7)

The value X is unaffected by the deformation; hence, 
Ẑ∙Vt∙dX/dε=0. Consequently,

	       V Z
d
dV

d
dV

aw
t aw$ $ $|
m

m
m

= -t 	        (8)

A common transformation of Eq. (8) yields

  V Z
d
dV

d
dV Vaw

t aw
0$ $ $ \.|

m
|

m |
m

i
N= - +t     (9)

which coincides with Eq. (1). The coincidence is due to the 
fact that dVaw/dλ<0; besides, the work hardening coefficient, 
θ, is given by the ratio of two structural parameters having 
the dimension of length, i.e. λ and X<<λ23-25; hence, θ~X/λ.

Let Eq. (4) be written as

		  ,V k2aw $
m r
H H= = 	        (10)

where ΘẐ=XVt. In view of Vaw=dλ/dT=dω/dk, we obtain 
dω=(Θ/2π)∙k∙dk.. Thus we obtain

 

	          . .d k dk2
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0
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0

~ r
H=

~

~ -

## 	        (11)

Hence, dispersion law of quadratic form is given as

	          .k k40 0
2~ ~ r

H= + -Q V 	        (12)

Thus, Eq. (12) is equivalent to Eq. (2), if Θ/4πΞα.
Now we write Eq. (4) of the form

		  Z V
V

aw

t$ $m |= t 		         (13)

By taking into account the dependence of rates Vt and Vaw 
on the grain size, δ5, differentiation of Eq. (13) is performed 
with respect to δ as
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Transformation of Eq. (14) yields the following 
differential equation

,d Z d
dV

V V
d

dV
V d

1 1t
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2$ $ $ $m \

d d
d= -t T Y        (15)

which can also be written as

	          . ,d a a d1 2
2m m m d= -Q V 	        (16)

where lna V d
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since V Z V 1
aw t $|

m
= t . Evidently, the solution of Eq. (16) 

coincides with Eq. (3).
Consider also the other consequences of the invariant. 

Let Eq. (4) be written as

		  / / ,Z V Vaw t| m = tQ V 	        (17)

where the plastic deformation ε≈λ/X>>1. By applying the 
operator ∂/∂t=Dε∙∂

2/∂x2 to the right and left parts of Eq. (17), 
consequently, we obtain 

    
t ZD V V V V
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aw
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The ultrasound propagation rate depends weakly on 
the plastic deformation, ε26; hence, Vt≈ const. In this case, 
we obtain

	 ,t ZD V V Dt
aw
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2 1
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2
2f

\ \
f=- +f f
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t        (19)

which is equivalent to the following differential equation 
for the deformation rate

	             , ,f Df f v f= + f mo Q V 	        (20)

where the coefficient Dε has the dimension L2∙T-1. Equation 
(20) has the form of the reaction-dif fu si on equation for 
a concentration, ,Dg { g g= + mQ V  which is obtained when 
the nonlinear function, φ(ζ), is entered into the right part of 
Fick’s second law for diffusion Dg g= mo  27. Equation (20) 
falls into the category of nonlinear relations employed for 
describing autowave processes, which occur in different 
kinds of open systems, provided that adequate variables 
are chosen for solving the problem 28,29. In what follows, 
Eq. (20) is discussed in detail.

3.4 Plastic deformation viewed as autowave 
generation process

By elaborating the autowave concept, we must consider 
the dependence of autowave patterns on the work hardening 
law acting at a given plastic flow stage. To make out individual 
flow stages on the curve σ(ε), the Lüdwick equation 30 is used

		  ,K0v f v f= + mQ V 	        (21)
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where K is a hardening modulus; σ0=const and 0≤n≤1 is a 
hardening exponent which varies discretely. To verify whether 
Eq. (21) is operative, the Kocks-Mecking method 31 was used 
for recognizing plastic flow stage. The results obtained in both 
cases were found to fit neatly. The in dividual work hardening 
stages can be distinguished on the flow curve subject to the 
condition that n n n nK1 1 11

0$ .f v v= - --Q QV V" $  const. 
A total of four flow stages have been distinguished, i.e. easy 
glide/yield plateau, linear work hardening stage, parabolic 
work hardening stage and pre-failure stage. Likewise, the 
possible macro-locali zation patterns are limited in number: 
a total of four types of localized plasticity patterns are found 
to emerge in the deforming sample. Table 2 presents the 
localization patterns matched against the autowave modes. 
Evidently, a one-to-one correspondence exists between 
the autowave modes and the respective plastic flow stages 
(Table 2 and Fig. 5). In view of the above, the sample tested 
in constant-rate tension can be regarded as a universal 
generator of autowaves 32 that requires no maintenance of 
temperature or reagent concentration as is the case with, 
e.g. chemical reactors 6,19.

The autowave plastic deformation exhibits regular features, 
which are consequences of Eq. (4); all the empirical coefficients 
in Eqs. (1) - (3) have been assigned a physical meaning. In 
the frame of this concept the micro-scale level is related to 
the macro-scale features of localized plastic deformation by 
Eq. (4), which should be regarded as 'master equation' of 
the plasticity theory being developed.

4. The two-component model of plastic flow

4.1 Nonlinear equations for localized plastic flow

In general, the processes involved in self-organization 
are conventionally regarded as an interplay of an activator 
and a damper 6,28. An understanding of how the both factors 
relate to the localized plastic flow could illuminate the 
roles they play. It is therefore assumed that the plastic 
deformation, ε, is an activator and the elastic stresses, σ, 
a damper.

It would be reasonable to describe the kinetics of the 
activator using Eq. (20), which was inferred as a consequence 
of invariant (4). In turn, the stress relaxation kinetics can be 
described using the Euler equation for viscous liquid flux 
33, which has the form 

	            ,t pv xi
k ik2

2
2
2=- % 	        (22)

where p pv v pv vik i k vis ik i kik
d v v= + - = -%  is 

momentum flux density tensor; δik, unit tensor; p, pressure; 
νi and νk, flux velocity components. The stress tensor σik=-
pδik+σvis is the sum of elastic and viscous stresses, respectively, 
i.e. σel=-pδik and σvis. In the case of plastically deforming 
medium, σ=σel+σvis, i.e. el visv v v= + $o o o . It is reported in 31,34 
that , /g Mp b B Mp bV Vel m m disl disl

2/ +v v f v=- =-o Q QV V  
(here M is elastic modulus for the sys tem 'sample - testing 
machine'; ρm is mobile dislocation density and Vdisl is 
dislocation motion rate).

Due to the inhomogeneous inter nal elastic strain field, 
viscous stresses, σvis, will form in the deforming medium. 
The viscous stresses are re la ted to the variations in the 
elastic wave rate which are linear with respect to stresses, 
i.e. Vt=Vt0+κσ26. Here Vt0 is the transverse elastic wave 
rate in the absence of stres ses and κ=const. Assuming 
that σvis=B∂Vt/∂x (here B is medium’s dynamic viscosity), 
we can write ∂σvis/∂t=Vt∂/∂x (B∂Vt/∂x)= BVt∂

2Vt/∂x2. 

Table 2. Plastic flow stages matched against autowave modes.

Work hardening stage The exponent n in Eq. (21) Autowave mode

Yield plateau or easy glide stage ~0 Switching autowave

Linear work hardening stage 1 Phase autowave

Parabolic work hardening stage ½ Stationary dissipative structure

Pre-failure stage < ½ Collapse of autowave

Figure 5. Wave and autowave processes involved in deformation

We conclude this Section by saying that the above analysis 
provides a unified explanation for the autowave nature of 
plasticity; hence, substantial revision of traditional notions in 
this field is required. Now that the work hardening process is 
regarded as evolution of the autowave modes, deformation 
kinetics analysis must involve different principles so as to 
formulate a new viewpoint of the nature of multi-stage plastic flow. 
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Hence, the relaxation rate is given for viscous stres ses as 
∂σvis/∂t = BVt∂

2Vt/∂x2 = BκVt∂
2σ/∂x2. Apparently,

	 / , / ,t g D x2 22 2 2 2v f v v= + vQ V        (23)

where Dσ=BκVt is a transport coefficient having the dimension 
L2∙T-1. Thus, Eq. (23) can be used to describe the damper kinetics 
in the deforming medium by virtue of the fact that Dσ≡Ddamp. 
The right part of Eq. (23) is the sum of relaxation rates of 
elastic and viscous stresses, vo e=g(ε,σ) and vo vis=Dσ∙∂

2σ/∂x2, 
respectively. The nonlinear function g(ε,σ) accounts for the 
elastic stress redistribution among neighboring material 
micro-volumes ahead of the moving plastic deformation 
front and the diffusion-like term Dσ∙∂

2σ/∂x2 is responsible 
for elastic stress redistribution among material volumes via 
macro-scale stochastic processes.

The above line of mathematical reasoning can be made 
more accessible by suggesting that the flow rates fo  and vo  
incorporate both the 'hydrodynamic' and 'diffusion' com 
ponents. The hydrodynamic components are given by the 
nonlinear functions ( , )~f Vdislf v  and ( , )~g Vdislv f  from 
Eqs. (20) and (23), correspondingly. These have to do with 
the steady moti on of deformation fronts along the sample, 
with the local stress concentrators occurring on the fronts 
being activated one by one. The diffusion components are 
given by the terms Dε ∂

2 ε/∂x2 and Dσ ∂
2 σ/∂x2 from Eqs. (20) 

and (23). These are responsible for the deformation initiated 
in material volumes at macroscopic distance ~λ from the 
active deformation front.

Thus, the resultant system of equations

,
,

g D
f D

b
a

24
24

v f v v

f f v f

= +
= +

v

f

m

m

o

o Q
Q

Q
Q

V
V V

VG

may be used for autowave mode analysis, provided that the 
nonlinear functions ( , )f f v  and ( , )g v f  in explicit form 
are available. Equations (20), (23), a system of Eq. (24a, b) 
and the reasoning involved in the derivation thereof served 
the basis for the development of two component model of 
plasticity. Two versions of the same model are discussed below.

4.2 The two-component model. The autowave 
version

Note that the coefficients Dε and Dσ from the system 
of Eqs. (24a) and (24b) have dimensions L2∙T-1, which 
coincide with those of the products λ∙Vaw and X∙Vt from 
invariant (4). Hence,

		        V Daw$ /m f 		        (25a)

and
		        V Dt$ $/| v 		         (25b)

The above suggests that invariant (4) is equivalent 
to the ratio Dε/Dσ=2/3<1, i.e. Dσ ≡ Ddamp > Dε ≡ Dactiv. 
The condition Ddamp>Dactiv is a prerequisite for auto 
wave ge ne ration in the active medium 6. The autowave 
structure formation should be regarded as a basic attribute 
of the self-organizing active medium 6. In a general case, 
the likelihood that self-organization processes will be 
initiated in the active medium depends on whether the 
medium itself is capable of separating spontaneously 
into information and dynamic subsystems 35. The main 
features of plastic flow might be explained by assuming 
that the information subsystem is related to acoustic 
emission pulses generated by dislocation shears and the 
dynamic subsystem, to shears proper 36. The evolution of 
two subsystems is described by Eqs. (20) and (23).

Based on the assumptions above, a two-component 
model of plastic flow is proposed which operates in 
accordance with the scheme presented in Fig. 6. Due to 
the stress concentrator decay (1), stress relaxation will 
occur which causes generation of acoustic emission pulses. 
The stress relaxation results in the liberation of energy 
which is absorbed by the remaining stress concentrators 
which act as energy-sink (2). This phenomenon is known 
as acoustic-plas tic effect 37. As new stress relaxation acts 
are initiated, shear processes will continue to occur in 
the dynamic subsystem, generating thereby a series of 
acoustic pulses. Thus the basic idea of the model being 
developed is that the acoustic emission and the acoustic-
plastic effect are in no way interdependent. This issue has 
been neglected thus far. In support of this interpretation 
one can argue that the elastic-plastic invariant is given 
by Eq. (5), which contains the term ξ1=Vt  ρ for medium's 
acoustic resistance.

Figure 6. A schematic of the generation of localized plasticity fronts 
 dislocation shears (stress concentrators);  

shears due to decay of stress concentrators;  elastic 
pulse trajectory
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To verify the model’s validity, the expectation times, τ* 
and τ**, are estimated for the thermally activated relaxation 
acts 38. In the event that the external stress alone is operating,

	          ;expt k T
U

D
B

1 0
~

cv
=

-) - T Y 	        (26)

in the event that both the external stress and the acoustic 
pulse are operating,

     
exp

exp

k T
U U

k T
U E

**
D

B

ac

D
B

ac

1 0

1 0
$

T
cx ~

cv

~
c v f

- -
=

- +

-

- Q V#

#

&

&
       (27)

In Eqs. (26) and (27) the activation enthalpy, U0 - γ σ ≈ 
0.5 eV38. Due the action of acoustic pulse having amplitude, 
εac≈ 2∙10-6, reduction in the activation enthalpy is ΔUac ≈ γεacE 
≈ 0.1 eV and kBT≈ 1/40 eV. Under the above conditions, τ* 
≈5∙10-5 s and τ** ≈9∙10-7 s << τ*. The estima te, rough as it 
is, evidently speaks for the proposed model. It is thus proved 
that the events occurring in the acoustic (information) and 
dislocation (dynamic) subsystems are interrelated.

The effect of transverse ultrasound wave splitting in 
the field of elastic stresses can be used to estimate the 
autowave length 39. Assume that a transverse ultrasound 
pulse is emitted by an elementary shear. The maximal 
power in the acoustic emission spectrum corresponds to 
the frequency, ωa ≈ 106 Hz 37. Due to the pulse splitting 
occurring in an elastically stressed area, two orthogonal 
polarized waves will form; these have lengths ς1=ν1/ωa and 
ς2=ν2/ωa and propagation rates ν1≠ν2. A difference in the 
wavelengths is given in 39 as

     v v
pV2a a t

2 1
2 1 2 1 $dw w w ~ ~

v v= - = - = -        (28)

An estimate of the same values can be obtained by 
assuming that a difference in principal normal stresses, 
σ2-σ1≈ 108 Pa; material density, ρ≈ 5∙103 kg/m3 and sound 
rate, Vt≈3∙103 m/s. Using this line of reasoning, we obtain 
that δς≈ 10-4m. This rough estimate suggests that the 
maximal energy of the elastic wave is accumulated at 
distance ~ς2/δς≈ 10-2m ~λ from the pul se origin. This is 
a plausible explanation for the fact that the new localized 
plasticity front emerges at distance ~λ from the existing 
deformation front.

4.3 The two-component model. The quasi-particle 
version

The above numerical analysis demonstrates that the 
products λ∙Vaw∙ρ∙X3 obtained for fourteen metals are close 

to the quantum Planck constant h = 6.626∙10-34 J∙s 40. On the 
strength of da ta presented in Table 3, we write

	           ,V i h,aw i i i1
3$ $ $m t | = 	        (29)

where 1≤i≤14. The average value 〈h〉 (6.95±0.48)∙10-34 J∙s; 
hence, the ratio 〈h〉/h=1.05±0.07≈1. Without doubt, this 
intriguing result requires statistical verification. To decide 
whether the values 〈h〉 and h are equal or different, they were 
compared with the help of Student's tt-criterion 41, which 
was calculated from the formula

	      ,t
h h
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	        (30)

where n1 14 is the number of estimates of hi from Eq. (32) 
and n2=1. This suggests that high-accuracy measurements 
were performed in the absence of dispersion. The estimate 
of ove rall dispersion, vt 2, can be made for the quantities 
〈h〉 and h41 as
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The calculation of the tt-criterion demonstrates that the 
values 〈h〉 and h really belong to the sampling from one and 
the same general population with the probability higher than 
95%. Thus, Eq. (29) actually determines the Planck constant. 
This leads us to believe that quantum mechanics prin ciples 
are also suitable for investigations performed in the frame 
of plastic deformation physics.

This finding led us to believe that a hypothetical a quasi-
particle might be introduced for addressing the localized 
plasticity autowave. This procedure is conventionally 
applied in solids physics 42. By omitting the index 'i' from 
Eq. (29), we obtain 

	    / ,m h Vef aw
3$t | t mX= = = 	       (32)

which is easily identified with the well-known de Broglie 
equation, which gives the effective mass of a quasi-
particle moving with velocity Vaw as mef ≈ ρX343. Thus, 
a quasi-particle is postulated which corresponds to the 
localized plasticity autowave; its effective mass is given as 
ma-l=h/λVaw. The hypothetical quazi-particle has been called 
'autolocalizon'44,45. Using Eq. (32), the average mass of 
the autolocalizon was calculated for fourteen me tals; the 

Table 3. Planck constant values, h, and autolocalizon masses, ma-l, calculated for studied metals.

Metals Mg Al Ti Zr Nb Cu Zn In Sn V γ-Fe α-Fe Ni Co

h·1034, J∙s 4.9 6.2 6.9 6.1 5.1 11.9 9.3 10.1 7.5 3.5 6.3 6.3 6.1 7.1

ma-l, 
a.m.u. 4.0 0.5 1.1 2.0 2.3 1.8 1.1 1.5 1.3 1.4 1.8 1.8 1.9 1.3
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value obtained, 〈ma-l〉= 1.7±0.2 a.m.u. An attempt of similar 
kind is worthy of notice. Thus the authors in 46 introduced 
a quasi-particle, so-called 'crackon', which was identified 
with the tip of growing brittle crack. It was also attempted to 
introduce so-called 'frustron', which might be appropriate for 
descriptions of the initial stage of lattice defect generation 47.

A striking analogy can be drawn between the auto 
localizons and the 'rotons'. The latter quasi-particles were 
introduced in the theory of liquid He4 super fluidity 48. 
The auto localizon and the ro ton have a dispersion law of 
quadratic form; the effective mass of roton, mrot≈0.64 a.m.u. 
48, is close to that of auto localizon. In view of the above, the 
given approach could be elaborated in more detail.

Let Eq. (29) be written as

		  / ,V haw
3m t |= 		        (33)

where both terms have the dimension of dynamic viscosity, 
i.e. M∙L-1∙T-1≡Pa∙s. Using Eq. (33), calculations were 
performed for all studied metals; the resultant value, 
λVaw ρ=h/X3≈5∙10-4 Pa∙s. The latter value is close to the 
coefficient of dislocation drag, В, obtained for quasi-viscous 
dislocation motion rate Vdisl≈(bσ)/B 34. It is thus concluded 
that elastic-plastic invariant (4) might be employed in the 
frame of alternative approach. In view of the equality

	     / / ,V h p h maw a
3

1$m |= = -Q V 	        (34)

we may write, analogously, 

		      / ,V h mt ph| = 		        (35)

where mph is taken to be phonon mass. Now invariant (4) 
may be written as

		  ,Z
V
h

V
h

aw t
$
m |=t 	        (36)

which reduces to the balance of masses as 2ma-l=3mph, i.e. 
three phonons would produce a pair of autolocalizons. This 
suggestion undoubtedly requires verification. It might be 
well to point out that si milar complex processes occurring 
in the phonon gas were described earlier 49,50.

In the frame of quasi-particle approach the deforming 
medium might be viewed as a mixture of phonons and 
autolocalizons. It is thus suggested that the random walk 
of the Brownian particle is 48

		  ,S Br
K T t

a

B

1
. r -

	        (37)

where the time, τ=2π/ω≈103 s; the dynamic viscosity of 
the phonon gas, B≈5∙10-4 Pa∙s (see above) and kBT 1/40 eV 
for T=300 K. Hence, the effective size of autolocalizon, 
r 10a l

3 10. . .|X-
-  m and the quasi-particle walk, 

S≈10-2 m≈λ, which agrees with both the experimental 

value and that calculated from Eq. (28). By rewriting 
Eq. (37) as

		   ,t
S

Br
k T

a

B
2

1
. r -

		       (38)

we obtain S2/τ ≈ Dε ≈ 1.3∙10-7 m2/s. The above suggests that 
the processes involved in the plastic flow can be addressed 
effectively in the frame of quasi-particle and auto wave 
approaches.

5. Localized plasticity autowaves and dislocation 
theory

5.1 The autowave deformation and the Taylor-
Orowan equation

The problem this approach seeks to resolve is this: little 
is known about its relation to the dislocation theory which 
serves as the basis for the overwhelming majority of traditional 
models in plasticity physics 23-25,51,52. Therefore, it is absolutely 
necessary to relate of the autowave equations derived herein 
to the dislocation mechanisms of plasticity. Note that the 
idea about quantization of dislocation deformation is in no 
way objectionable, since the Burgers vector, b=a1+a2+a3, is 
usually considered as 'a quantum of shear deformation' and its 
components, ai, are topological quantum numbers 50,53. Now 
consider the function ,f D$f v f= fl lQ V  in Eq. (20). For a 
homogeneous distribution of dislocations with average spacing 
d, ε'≈d-1∙ (b/d)≈b∙d-2≈bρm (here b/d is shear per dislocation and 
d-2≈ρm is mobile dislocation density). Given Dε≈L∙Vdisl (here 
L≈αx is dislocation path and Vdisl=const, dislocation rate), 
we obtain D'ε=αVdisl. Hence, Eq. (20) reduces to the equality

	           ,b V Dm dislf a t f= + f mo 	        (39)

where the first term from the right side coincides with the 
Taylor-Orowan equation for dislocation deformation, i.e. 
fo =bρmVdisl, which might be considered now as a special 
case of Eq. (39). However, Eq. (39) is applicable to more 
general cases, e.g. media having high dislocation density, 
provided the diffusion-like term Dεε" is added to the right 
side of the Taylor-Orowan equation. To clarify this purely 
formal procedure, we shall give some explanation of the 
condition to be met. Given fo =const by constant-rate tensile 
loading, the required level of dislocation flux, ρmVdisl, has 
to be maintained. If the condition is not met, owing to, e.g. 
a decrease in mobile dislocation density, the medium will 
initiate deformation processes in front of the plasticity nucleus 
remote from the nuclei already in existence - otherwise 
sample fracture will occur. This representation provides a 
new way of tackling nonlinear problems connected with 
the nature and evolution of dislocation substructures 24,25,52.

5.2 Localized plasticity autowaves and work 
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hardening coefficient

A number of well-established models link work 
hardening processes to the long- or short-range interaction of 
dislocations 51,52. In what follows, the autowave mechanism 
has to be related to the work hardening phenomena in terms 
of plasticity physics. Assume that the work hardening 
coefficient is given as θ≈W/Q23 (here W≈Eb2ρs is the energy 
stored by plastic defor ma tion; ρs, immobile dislocation 
density; Q≈σbLdρm, energy dissipated by mobile dislocati 
ons having density, ρm, and path, Ld). Now it can be written

	     ,bL
Eb

L
b

md m

s

e d

s
2

$. .i v t
t

f t
t 	        (40)

where εe=σ/E; Ld = Λ∙(ε-ε*)-1; Λ depends on the kind of 
material 24 аnd ε* is the strain for the onset of linear work 
hardening stage. It follows from Eqs. (1) and (40) that
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f f
t
t
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	        (41)

With growing density of immobile defects, ρs, the 
value Vaw will grow less. With increasing amo unt of energy 
dissipated to he at, the deforming medium would warm up, 
which greatly increases the likelihood of thermally activated 
plastic deformation and of autowave rate growth.

Now let dVaw∼Ld; hence, we obtain 24,25

		     / ,zb 3 /.i 	        (42)

where z is the number of dislocations in a planar pileup. 
It follows from the above that dVaw∼Ld∼Λ∼θ-2. The data 
obtained for a range of materials suggest that ε-ε*≈const24; 
however, the value θ is found to vary for different materials, 
i.e. dθ ≠ 0. Then we can write

	       .dV zb daw
1 2. f f i i- ) - -Q V 	        (43)

Integration of Eq. (43) yields Vaw∼θ-1. Finally, a special 
case of Eq. (1) is written as

		   / ,V V Jaw 0 i= +) ) 	        (44)

where θ*=dσ/dε is a dimension characteristic of the plastic 
flow process (see above). The values calculated for alloyed 
single γ-Fe crystals are as follows: .V 2 1 10*

0
5$. -  m/s and 

J≈3.4∙104 Pa∙m/s. Let J≈σVm (here σ is flow stress and Vm 
is mobile grip rate). Since Pa∙m/s=W∙m-2, the quantity J 
acquires the mea ning of flux power from the loading machine 
through the sample. Given σ≤103 MPa and Vm=3.3∙10-6 m/s, 
we obtain J≤3.3∙104 W∙m-2 54-56.

Thus the work hardening process is addressed above in 
the frame of conventional dislocation model by assuming 
that a changeover in the work hardening stages is due to 
variation in the distribution of stress concentrators 51. Hence, 

the same factor might be responsible for the generation of 
new autowave modes in the active medium.

6. Conclusions

Solids plasticity is addressed above in the frame of 
autowave concept. The given approach might fall far 
short of a completely theoretical prediction. In point of 
fact, it might be regarded as an attempt at envision of the 
complexities of the plastic flow process, which would enable 
formulation of contemporary views of this phenomenon. 
Hopefully, more rigorous techniques would be developed 
for tackling the problem of plasticity. Thus far we have the 
pleasure of bringing to your notice the following conclusions.

1.	 The localization behavior of plastic deformation 
has been studied for all the plastic flow stages. 
Localized plasticity patterns are found to emerge 
in the deforming medium. A total of four pat tern 
kinds have been recognized in studied materials. 
It is found that the kind of pattern observed for 
the given flow stage strictly corresponds to the 
work hardening mechanism involved in the 
deformation.

2.	 The kinetics of plastic deformation and stresses is 
described using autowave equations derived on the 
base of continuum media mechanics.

3.	 On the base of experimental data elastic-plastic 
deformation invariant is obtained, which is a master 
equation for plasticity mechanics. In the frame of 
autowave model the invariant serves to relate the 
characteristics of localized plasticity autowaves 
to those of elastic waves. The distinctive features 
of localized plasticity autowaves are described by 
the consequences from the invariant.

4.	 A two-component model of localized plasticity 
is proposed which is based on the assumption 
that shear processes interact with acoustic pulses. 
The autowave model is complemented by the 
quasi-particle model; the both versions are of 
equivalent status.

5.	 A relationships are established between the autowave 
representations and certain conventional dislocation 
models, which precludes any controversy between 
the proposed auto wave approach and the existing 
work hardening theories.
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