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1. Introduction
The development of electromagnetic (EM) wave absorbers 

has been a recent focus towards solving the serious EM pollution 
arising from the fast-growing generation and applications 
of electronic devices1-5. Among various potential candidates 
for EM wave absorbers, the one in the form of magnetic 
nanoparticles core/ dielectric shell-structured nanocapsules, 
such as Ni/ZnO, FeNi3/SiO2, Ni/PANI, Ni/C, and Ni/Ni2O3 
nanocapsules, has been of particular interest in recent years 
owing to its tailorable properties in conjunction with smaller 
sizes and weights6-10. An essence of determining the EM wave 
absorbing properties of the nanocapsules is to obtain a balance 
between the permeability of the magnetic nanoparticle cores 
with the permittivity of the dielectric shells11. However, the 
generally low permeability (~ 1) intrinsic in the magnetic 
nanoparticle cores at gigahertz frequencies, has constrained 
the strong absorption in some limited frequency range with 
large variations with absorber thickness.

More recently, improved high-frequency permeabilities 
have been observed in magnetic nanomaterials with different 
morphologies, including polyhedral Fe nanocomposites11, 
FeNi3 nanorods12, dumbbell-like Fe3O4-Au nanoparticles5, 
hierarchical branch- and flower-like Ni microcrystals13 
and Fe nanoflakes14. The improvement in high-frequency 
permeabilities has been attributed to an increased in their 
magnetic shape anisotropy. In fact, Ni is an important soft 
magnetic metal with a large saturation magnetization (MS), 

a high permeability, a high anti-oxidation ability, and low 
energy losses. In this paper, we report the synthesis of 
three-dimensional (3D) butterfly-like Ni architectures by 
a surfactant-assisted hydrothermal method as well as the 
microstructure, magnetic, dielectric, and EM wave absorbing 
properties of the architecture.

2. Experimental Procedure
All chemicals used were of analytical grade and 

were used as received. In a typical synthesis, NiCl2 6H2O 
(0.476 g, 2 mmol), sodium dodecyl benzenesulfonate (SDBS) 
(0.232 g, 1 mmol) and NaOH (1.6 g, 40 mmol) were dissolved 
in deionized water (40 mL) under constant stirring, resulting 
in a precursor green suspension. To prepare the proposed 3D 
butterfly-like Ni architectures, the precursor green suspension 
was transferred into a 50-mL Teflon-lined stainless steel 
autoclave. The autoclave was sealed and heated at 100 °C 
for 15 h and then cooled to room temperature naturally. 
The products obtained after the hydrothermal treatment 
were centrifuged, washed with distilled water and ethanol 
several times and finally dried in vacuum at 60 °C for 4 h.

The composition and phase purity of the as-prepared 
products were examined by an X-ray diffractometer 
(XRD, Brucker D8 Advance, Germany) at 40 kV voltage 
and 50 mA current and with CuKα radiation (λ=1.5418 Å). 
The morphologies of the products were captured using a 
scanning electron microscope (SEM, JEOL-6300F, Japan) at 
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an acceleration voltage of 20 kV and a transmission electron 
microscope (TEM, JEOL-2010F, Japan) at an acceleration 
voltage of 200 kV. The magnetization curves were measured 
using a vibration sample magnetometer (VSM 7407, China).

Paraffin-bonded Ni architecture composites were prepared 
by uniformly mixing 40 wt.% Ni architectures in the paraffin 
matrix and by pressing the mixture into cylinder‑shaped 
compacts. More details can be found elsewhere6,11,12. 
The  prepared compacts were cut into toroidal samples 
with 7.00 mm outer diameter and 3.04 mm inner diameter. 
The EM parameters of the toroidal samples were evaluated 
in the frequency range of 2-18 GHz, using a vector network 
analyzer (Agilent N5244A, USA) in conjunction with a 
coaxial method in transverse EM mode. The vector network 
analyzer was calibrated for the full two-port measurement 
of reflection and transmission at each port. The complex 
permittivity ( ' ''r jε ε ε= − ) and complex permeability 
( ' ''r jµ µ µ= − ) were calculated from S-parameters tested by 
the vector network analyzer using the simulation program 
of Reflection/Transmission Nicolson-Ross model11.

3. Results and Discussion
The XRD pattern in Figure 1 shows the phase components 

of the as-prepared products. All XRD peaks can be indexed 
to the single-phase face-centered cubic Ni and are consistent 
with the standard card JCPDS No. 04-0850 (space group 3Fm m; 
a=3.523 Å). No reflections for oxides are found, which can be 
ascribed to the anti-oxidation nature of Ni. The average grain 
size of Ni is estimated to be 24.8 nm by using the reflection 
peak of (111) and Debye-Scherrer’s relation. The inset of 
Figure 1 shows the hysteresis loop of the products at 295 K. 
The MS of the products reaches 66.2 emu/g, which is bigger 
than that of Ni/C nanocapsules9, but, is smaller than that of 
bulk nickel because of the size effect9.

Figure 2 shows the typical morphology of the products with 
different magnifications. The SEM image in Figure 2a implies 
that the products are butterfly-like architectures with a length 
of about 20 μm and a width of 4-6 μm. The magnified SEM 
image in Figure 2b shows that the butterfly-like architectures 

are composed of tens of order‑attached nanorods, each with 
averaged length of about 20 μm and the averaged diameter of 
about 200 nm. It is also observed that the nanorods are attached 
together in the middle part of an individual butterfly‑like 
architecture and become curly and separated at the two ends 
with a symmetric character. The TEM image of the products 
in Figure 2c further confirms our observation in Figure 2a 
that the Ni architectures are self-assembled by nanorods. 
A typical HRTEM image of one nanorod in Figure 2d, clearly 
indicates that the d-spacing of 0.2 nm corresponds to the 
lattice fringe {111} of Ni. In addition, few amorphous oxides 
are seen on the surface of nanorods as a result of the high 
surface energy from small size effect11. The formation if the 
architectures possibly consists of four steps: (1) Formation 
of Ni crystal nuclei. (2) Ni nuclei grow into Ni nanoribbons. 
(3) The Ni nanoribbons self‑assemble into Ni nanorods 
through an oriented attachment mechanism. (4) Ni nanorods 
attach orderly and assemble into butterfly‑like architecture.

The rε  and rµ  of the paraffin-based composites are 
fundamental physical quantities in determining the microwave 
absorbing properties15. Figure 3a shows the frequency (f) 
dependence of rε  for the paraffin-bonded Ni architecture 
composites. Both the real part ( 'ε ) and imaginary part 
( ''ε ) display a similar decreasing trend with increasing 
frequency from 2 to 18 GHz. The results may be caused by 
an increased lagging in the dipole polarization response with 
respect to the electric field change at higher frequencies16. 
The maximum/minimum values can be found below/above 
the resonance frequency in the 'ε  curve6. Accordingly, one 
peak is observed in the ''ε  curve near the resonance frequency. 
The resonance frequency of ε  in the current frequency range 
is 14.8 GHz. From the plot of 'ε  versus ''ε , the Cole-Cole 
semicircle, as shown in Figure 3c. the composites present 
a clear segment of one semicircle at high frequencies and 
a linear curve at relatively low frequencies. The presence 
of one semicircle at high frequencies suggests that there is 
a Debye dielectric relaxation process due to the dielectric 
relaxation of the interfacial relaxation between the oxide shells 
and the Ni nanorods16. The dielectric relaxation is significant 
for the enhancement of the microwave absorption in the Ni 
architectures. Besides the dielectric relaxation process, other 
dielectric mechanisms such as resistance loss and defects 
may contribute to the permittivity dispersion, leading to the 
linear curve at relatively lower frequencies17,18. Following 
the effective-medium theory of three-phase inclusions19, 
the permittivity of the composites seems to originate from 
the special geometric structures of the Ni architecture 
inclusions, the intrinsic permittivity of each component in 
the composites (Ni, oxides, and paraffin), and the dispersion 
(volume fraction) of the composites.

From Figure 3b, the real part ( 'µ ) of rµ  decreases from 
1.42 to 1.04 with increasing frequency in frequency range 
of 2-5.6 and becomes almost independent of frequency for 
frequencies up to 18 GHz. Meanwhile, the imaginary part ( ''µ ) 
of rµ  has a resonance peak at 4.0 GHz with a broad resonance 
band covering 3-11 GHz. The resonance frequency at 4.0 GHz 
is due to the large anisotropy energy of Ni architectures6,9. 
The anisotropy energy of particles of small sizes, especially 
in the nanometer scale, may be remarkably increased due to 
the size effect-induced shape/surface anisotropy6,9. The broad 

Figure 1. XRD pattern of the products. The inset shows hysteresis 
loop of products at 295 K.
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resonance band may be interpreted as a consequence of size 
and morphology of the Ni architectures. Due to the fact that 
their lengths and widths are larger than a magnetic wall, the 
Ni architectures are made up of several magnetic domains 
so that the broad resonance band may be interpreted as a 
consequence of their magnetic polydomain configuration. 
The frequency band broadening is also related to the shape 
and morphology of the nanostructures because of the effect 
of the demagnetization fields15.

As a typical magnetic material, the magnetic loss of Ni 
architectures is mostly associated with magnetic hysteresis, 
domain wall resonance, eddy current loss, natural resonance, 
and exchange resonance for particles smaller than 100 nm[20,21]. 
Magnetic hysteresis stemming from irreversible magnetization 

occurs only in a highly applied field, whereas domain wall 
resonance derived from multi-domain materials occurs only 
in the sub-GHz frequency range. Exchange resonance should 
be excluded in the present system since the size of the Ni 
architectures is larger than 100 nm. If the magnetic loss only 
stems from the eddy current loss, the values of 2 1''( ') fµ µ − −  
should be constant when the frequency is changed. As shown 
in Figure 3d, the values of 2 1''( ') fµ µ − −  of the Ni architectures 
change remarkably with increasing frequency. Therefore, 
the magnetic loss in the present system is mainly caused 
by the natural resonance.

According to the transmission line theory, when a wave 
is normally incident to an absorber with a backed metal 
plate, the reflection loss (RL) curves at a given absorber 

Figure 2. (a) SEM image and (b) high magnified SEM image of the products; (c) TEM image and (d) HRTEM image of the products.
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thickness can be calculated from the complex permeability 
and permittivity by means of the following expressions3,5-12:

0/ / tanh(( 2 / ) )

20lg ( 1) / ( 1)
in r r r rZ Z Z j t

RL Z Z

µ ε π λ µ ε= =

= − +
 	 (1)

where Z is the normalized input impedance related to the 
impedance in free space; λ is the wavelength in free space; 
and t is the thickness of the absorber.

The 3D plot of the RL of the paraffin-bonded Ni 
architectures composites against thickness (1-5 mm) and 
frequency (2-18 GHz) is presented in Figure 4. It is clear 
that an optimal RL of -38.9 dB, corresponding to 99.97% 
absorption, is observed at 12.8 GHz for a thickness of 
2.1  mm. By increasing the thickness, the RL maximum 
shifts to a lower frequency. When the thickness is thicker 

Figure 3. Frequency dependence of (a) the relative complex permittivity and (b) the relative complex permeability, (c) Cole-Cole plot, 
and (d) frequency dependence of C0 (C0=

2 1''( ') fµ µ − − ).

than the critical value, two peaks appear simultaneously. RL 
values exceeding -20 dB are obtained in the 8.0-17.8 GHz 
range with the thickness varying between 1.5 and 3.2 mm. 
This frequency range covers the absorption frequency range 
of the traditional sintered ferrites22. The good microwave 
absorbing properties of Ni architectures can be ascribed to 
the excellent synergetic effect of the dielectric relaxation 
loss and the magnetic resonance loss.

A quarter-wavelength cancellation model has been 
successfully used to explain the relationship between RL peak 
frequency and absorber thickness for carbonyl-iron particles, 
Ni@Ni2O3 core-shell particles and FeNi3/C nanowires10,12,23. 
According to the model, the minimum RL can be gained 
at given frequencies if the absorber thickness (tM) satisfies:

/ (4 ) (n = 1,3,5.....)m m r rt nc f  ε µ= 	  (2)
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Figure 5. (a) Dependence of RL on frequency at various thicknesses 
for the Ni-paraffin composites; and (b) Dependence of λ/4 and 3λ/4 
thickness on frequency for the Ni-paraffin composites.

where fM is the peak frequency of RL, rε  and rµ  are the 
complex permittivity and permeability at fM, respectively, 
and c is the velocity of light.

Refering to Equation 2, the RL peak frequency is 
inversely proportional to the thickness, and two RL peaks 
appear at a sufficiently large thickness. The One at a lower 
frequency is relative to the λ/4 condition, while the other 
one at a higher frequency comes from the 3λ/4 condition. 
A comparison between the tM

CAL calculated by Equation 2 
(n equals 1 and 3) and the tM

SIM simulated by Equation 1 for 
the paraffin-bonded Ni architecture composites is shown 
in Figure 5. The good agreement between tM

CAL and tM
SIM 

implies that the microwave absorption mechanism of the 
paraffin‑bonded Ni architecture composites can be explained 
by the quarter-wavelength cancellation model10.

4. Conclusions
3D butterfly-like Ni architectures have been fabricated by 

a surfactant-assisted hydrothermal method. The as‑prepared 
Ni architectures have been characterized by XRD, SEM, 
and TEM techniques and found to have a length of about 
20 μm, a width of 4 - 6 μm, and be assembled by tens of 
Ni nanorods with a diameter of about 200 nm. The  MS 
of Ni architectures at 295 K has shown 66.2 emu/g and 
ferromagnetism. The EM properties of paraffin-bonded Ni 
architecture composites had been investigated. An absorber 
with a thickness of 2.1 mm has found to exhibit an optimal RL 
value of -38.9 dB at 12.8 GHz. RL values exceeding -20 dB 
have been obtained in the 8.0-17.8 GHz range by choosing a 
thickness of 1.5-3.2 mm. The dielectric relaxation loss in the 
Ni architectures has been attributed to the interfacial relaxation 
between the oxide shells and the Ni nanorods as well as the 
size distribution and morphology of the Ni architectures, 
while the magnetic loss in the present system has been 
found to originate from the natural resonance. The thickness 
dependence on RL peak frequency has been described by a 
quarter-wavelength cancellation model. The present work 
suggests a great potential of using our 3D butterfly-like Ni 
architectures in microwave absorbing materials.
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