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Martensite’s Logistic Paradigm
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This work introduces a deterministic approach to the martensite transformation curve. Martensite is a 
nucleation-controlled transformation that has two characteristics: autocatalysis and auto-accommodation. 
Only a small number of martensite units initially form owing to primary nucleation. These new units 
may cause the transformation of other units by autocatalysis. We call this kind of transformation chained 
autocatalysis. Moreover, as the transformation progresses, the auto-accommodation influences the 
arrangement of new units. This work assumes that the transformation-saturation relates to the exhaustion 
of the chained autocatalysis, which underlines the microstructure. To compare, we considered the 
KJMA’s extended-transformation concept that implies assuming exhaustion by impingement. Data 
from isothermal martensite transformations and anisothermal martensite transformations are used to 
validate the model. Those data comprised different grain sizes and carbon contents. The model is based 
upon Verhulst’s logistic concept. We propose that the model’s high fitting-capability stems from its 
deterministic aspect combined with martensite’s self-similarity. Additionally, we suggest that chained 
autocatalysis controls the rate of martensite transformation. Therefore, the relaxation of transformation 
strains by plasticity assisted by mutual accommodation determines the transformation’s martensite 
volume in the absence of post-propagation coarsening/coalescence.

Keywords: Martensitic transformations, microstructure, logistic equation, analytical methods, 
Avrami’s equation.

1. Introduction
The transformation curve, that is, the volume fraction 

transformed, VV , against time, t , is a tool in research and 
process development and industrial operations. Modeling 
the transformation curve is an issue that has been studied 
for decades. In the late thirties and early forties of the last 
century, Kolmogorov, Johnson-Mehl, and Avrami1-5, KJMA, 
published seminal papers on this subject. KJMA used a 
geometrical model to obtain transformation curves. KJMA 
supposed that the growing regions were spherical, that their 
growth rate was a constant, that the nuclei were uniform 
randomly located in space, and that the nucleation took 
place in two ways: site-saturation and constant nucleation-
rate. Their most important contribution was how to consider 
impingement6. As Liu et al.7 put it, “KJMA’s model consists 
of nucleation, growth, and impingement.” KJMA model was 
generalized in different directions. One direction was to 
obtain more KJMA-like expressions using mathematically 
exact methods when nucleation and growth took place in a 
way distinct from KJMA’s. Recently, Rios and Villa8 used 
mathematical methods for this purpose. The disadvantage 
of such an approach is that a limited number of situations 
admit an exact expression. Another possibility, suggested 

by Avrami herself, is to employ the well-known “Avrami’s 
equation,” which is an expression containing two adjustable 
parameters: k  and n

( )1 exp n
VV kt= − −  (1)

Focusing the transformations in steels, the present authors 
have proposed an alternative to Avrami’s equation9-11
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In the equation above, x is an “advance” variable, which 
in previous works9-11 was equal to temperature, magnetic 
field, mechanical deformation, and time. The xi is the first 
datum in a dataset. ViV  is the integration constant resulting 
from the process of obtaining Equation 2. We denote this as 

ViV . This constant is a small volume fraction transformed 
when the martensite transformation starts. In this work, one 
uses ViV  as a fitting parameter. x* and Kϕ  are also fitting 
parameters. Throughout the text, one discusses the meaning of 
these parameters. This equation showed excellent agreement 
when fitted to transformations ranging from martensite to 
pearlite10,11.*e-mail: andrealves@metalmat.ufrj.br
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However, another way to approach formal kinetics 
is possible. Abramov´s idea12 of using Verhulst’s logistic 
equation13 as the basis to describe transformation kinetics 
represents a significant shift of paradigm. For the derivation 
of the transformation curve, the kinetic ideas are expressed 
directly by mathematics instead of mediated by the 
transformation’s geometry, as did KJMA. The purpose of 
using such an approach for modeling transformations is not 
new. In 1938, Austin and Rickett14 took the logistic equation 
as their starting point to obtain the so-called “Austin-Rickett 
equation”:

1
nV

V

V
kt

V
=

−  (3)

In 1938 not all KJMA’s papers had already been published. 
The so-called Austin-Rickett equation is seldom applied 
today, superseded by KJMA’s developments.

The description/rationalization of the fundamental 
aspects of martensite transformations15-20 constructed the 
present understanding of martensite. That is, the martensite 
is a diffusionless and nucleation-controlled transformation. 
This understanding has been a particular venue to develop 
steels with optimized characteristics to suit the engineering 
demand. Martensite bears a lattice-correspondence with the 
austenite matrix. It also possesses a notable shape-change 
whose relaxation influences the geometric aspects of its 
constricted microstructure. Moreover, martensite-units do 
not coarsen or coalesce after propagation.

Consequently, the austenite grains confine the transformation 
because impingement on high-angle boundaries disassembles the 
reaction mechanism. However, martensite impingement on the 
grain-boundaries raises a stress field that can stimulate further 
intragrain and intergrain transformations to optimize transformation 
strains’ accommodation. Thus, the first units can induce the 
formation of other units through autocatalysis. We call this kind 
of transformation chained autocatalysis. Chained autocatalysis 
occurs after the initial heterogeneous nucleation events in a scarce 
number of randomly scattered austenite grains20.

2. Verhulst’s Logistic Equation
The nucleation-controlled aspect of the martensite 

transformation is compatible with the original Verhulst 
equation13. Verhulst analyzed the sustainability of population-
growth based on his “logistic equation”

( ) ( ) ( )
1

MAX

dN t N t
r N t

dt N

 
= ⋅ ⋅  −  

 


 
(4)

where ( )N t  means the population,  means the time, r  
stands for the population-intrinsic growth-rate and MAXN  
stands for the maximum population, which can be maintained 
by available resources. Thus, Equation 4 is consistent with 
martensite’s autocatalytic kinetic. Equation 4 also agrees 
with the view that the transformation process may be studied 
in terms of propagation-events since the transformation 
is nucleation-controlled, and the martensite units do not 
grow/coalesce after propagation. Furthermore, Equation 4 
implies that the transformation-saturation is determined by 
nucleation-exhaustion instead of the matrix’s volumetric 
exhaustion. Indeed, experimental results show that saturation 

may occur for a volume fraction transformed 1VV << 21,22. 
Therefore assuming that post-incubation autocatalysis 
controls the transformation, we substituted ( ) /= ϕ ∆r t , where 
( )ϕ ∆  is a time-independent transformation-intrinsic factor 

referred to the external process variable, D, e.g., driving 
force, temperature, or an applied field. This substitution is 
equivalent to admitting the pertinence of self-similarity23. 
Besides, both the morphology and the auto-accommodated 
of the martensite units suggest self-similarity. See Figure 1 
in ref24. Thus, we recast Equation 4 to describe the martensite 
transformation curves,

( )
( ) ( ) ( )

( )
( )

* *
1
 ξ ξ ξ

= ϕ ∆ ⋅ ⋅  −  ξ − ξ ξ − ξ  

V V V

VMAX

dN N N
Nd   

(5)

where x is the experimental “advance” variable and the 
subscript “ V ” indicates per unit volume of material,  is the 
incubation delay. Since we cannot calculate  or ( )ϕ ∆  from 
first principles, they are treated here as fitting parameters.

Then, acknowledging that transformation curves are 
usually described in terms of the fraction transformed, 

VV , we recall ( ) ( ) ( )/ v VNV VN V=ξ ξ ξ where ( )v VN ξ  is 
the mean volume of the martensite units. We calculate 

1/ v VMAXNVMAXN = . Introducing these relationships into 
Equation 5 includes the influence of the relaxation of the 
transformation strains, which affects the growth of the 
martensite units, into the logistic model. The ( )ϕ ∆  refers 
to this crucial process,

( )
( ) ( )( ) ( )
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*
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. Equation 6 can be 

integrated by separation, however an exact expression 
for ( )( )ξVA V  is not available. Thus, we considered two 
approximations. The invariance of the mean martensite 
units proposed by Magee25 and the KJMA’s approach 
assumes transformation in extended space1-5. In the first case 

( )( ) ( )1ξ = − ξV VA V V , so that the integration of Equation 6 
yields a formal analog of the “Austin-Rickett equation,”
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where ξi  refers to the value of x at the beginning of the 
transformation detected in the experimental dataset. We 
suppose ( ) 1ξ <<V iV , what is reasonable in the absence of an 
initial transformation-burst. To use KJMA’s impingement-
correction, we set ( )( ) 1ξ =VA V  and substitute the extended-
volume fraction transformed, ( )ξVEV , for ( )ξVEV  into 
Equation 6, where subscript “ E ” signals “extended.” The 
integration of Equation 6 in extended space yields

( ) ( )
( )*

*
*

ϕ ∆ ξ − ξ ξ = ξ
 ξ − ξ 

VE VE
i

V V
  

(8)
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( )( )1 exp(= − − ξV VEV V , one also obtains

( ) ( )
( )*

*
*1 exp

ϕ ∆   ξ − ξ ξ = − − ξ  ξ − ξ   

V V
i

V V
  

(9)

that is analog to Equation 2.
Summing up, we have obtained two logistic equations where 

autocatalytic nucleation advances the transformation, but the 
volume fraction transformed depends on the relaxation of the 
transformation strains. Noteworthy the parameter ( )ϕ ∆  refers 
to the relaxation of the transformation strains which influences 
the growth of the martensite units, whereas the transformation 
exhaustion described by ( )( )ξVA V  depends on the arrangement 
of the martensite in the austenite grains and the spread of the 
transformation over the austenite grains26.

3. Experimental Data
As in the previous work, we imported databases from 

papers found in peer-reviewed scientific journals to validate 

the proposed equations. To fit the analytical expression to the 
experimental values, one calculated the sum-of-squares, ΣSQ, 
between experimental and calculated values of ( )ξVV . The 
ΣSQ gives a “global” idea of the fitting quality. One may also 
define the relative distance, δ , between the experimental 
data and the analytical solution predictions

( )
( ) ( )

( )
  

%  x1 00VEXP VA

VEXP

V x V x

V x
δ

−
=   (10)

where ( )VEXPV x  means volume fraction imported from 
experimental data and the ( )VAV x  means the volume fraction 
predicted by the analytical equations. As already established, 
experimental procedures may be subject to errors. One can 
consider a reasonable error of 5% for metallurgical experiments. 
Regarding the error of 5%, Tables 1-5 show the percentage of 
the number of points below the error of 5%. This number can 
help to give a quantitative basis for the fitting besides ΣSQ and 
visual inspection.

4. Isothermal Transformation

Table 1. Fitting Parameters - FeNiMn - Isothermal Martensite.

Equation 11 Logistic Equation 12 KJMA

T , K ( )ϕ T ViV τ , s ΣSQ δ  < 5% ( )ϕ T ViV τ , s ΣSQ  < 5%
77 2.8 2.3x10-3 2.8x102 6.6x10-4 79.8% 1.7 8.1x10-9 6.9x102 4.6x10-3 58.3%
133 1.7 6.4x10-4 2.4x102 1.5x10-2 71.4% 0.9 6.8x10-5 2.6x102 4.1x10-2 53.6%
143 1.5 5.5x10-3 1.7x102 1.5x10-2 75.0% 0.7 2.7x10-4 1.7x102 6.8x10-2 61.9%
163 1.3 1.1x10-3 7.5x101 4.9x10-2 72.6% 0.5 5.8x10-3 7.6x101 1.0x10-1 65.5%
173 1.5 3.3x10-4 7.5x101 4.7x10-2 72.8% 0.7 3.6x10-4 7.7x101 1.0x10-1 66.7%
193 2.5 2.1x10-3 1.9x102 8.5x10-4 35.7% 2.6 1.5x10-12 1.9x103 2.6x10-3 19.6%
203 2.6 4.9x10-3 3.4x102 3.3x10-5 54.1% 2.8 2.5x10-12 3.4x103 3.2x10-5 54.1%

Table 2. Fitting Parameters - FeCrNi maraging steel - Isothermal Martensite.

Equation 11 Logistic Equation 12 KJMA

Field (kOe) ( )ϕ T ViV τ , s ΣSQ δ  < 5% ( )ϕ T ViV τ , s ΣSQ δ  < 5%
0 3.5 2.0x10-8 1.2x104 9.5x10-5 75.0 2.8 4.0x10-7 1.2x104 5.5x10-5 100.0
20 2.7 3.2x10-5 9.3x102 5.7x10-5 95.5 1.9 1.6x10-5 1.3x103 2.7x10-4 72.7
40 2.1 1.3x10-3 7.6x102 1.0x10-4 100.0 1.4 4.7x10-4 1.2x103 2.2x10-4 72.2
60 2.1 2.5x10-6 2.8x102 2.4x10-4 75.0 1.6 1.1x10-4 2.7x102 5.2x10-5 100.0
90 1.7 2.5x10-4 3.3x102 6.7x10-4 60.9 1.4 1.3x10-3 3.2x102 7.2x10-5 95.7

Table 3. Fitting Parameters - FeMnSiMo - Athermal Martensite.

Equation 14 Logistic Equation 15 KJMA

D, mm iT , K G
−
ϕ ViV *T , K ΣSQ δ  < 5% G

−
ϕ ViV *T , K ΣSQ δ  < 5%

0.185 628 4.0 2.3x10-3 646.6 3.5x10-2 83.3% 1.4 2.8x10-4 628.1 4.9x10-2 69.7%
0.067 628 3.1 4.5x10-4 643.5 8.9x10-3 87.7% 1.3 7.1x10-4 623.1 8.1x10-2 58.5%
0.025 638 3.6 4.5x10-5 643.5 1.8x10-2 79.4% 1.3 5.3x10-4 613.1 1.1x10-1 39.7%
0.015 608 2.7 2.2x10-3 613.2 2.4x10-2 88.7% 1.0 7.0x10-4 607.8 1.2x10-1 59.7%
0.006 608 3.3 6.3x10-4 613.2 1.2x10-2 83.6% 1.4 4.5x10-5 607.8 1.7x10-1 47.5%

Then, using KJMA’s well-known equation, 

δ
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For isothermal martensite transformation, one replaces 
time for the advancing variable in the equations of the 
previous section, so Equation 7 becomes

( )
( )

( )

1

ϕ − τ
=   − − τ 

T
V

Vi
V i

V t tV
V t t

  (11)

and Equation 9 becomes

( )
( )

1 exp
ϕ  − τ = − −    − τ   

T

V Vi
i

tV t V
t   

(12)

where τ  is the incubation time, it  is the first transformation-
time datum of the dataset, and T  means the temperature. The 
isothermal-martensite database, Fe-23.2wt%Ni, 2.8wt%Mn, 
0.009wt%C, grain intercept 0.048 mm, was initially described 
in ref22. The isothermal-martensite database, Fe-12wt%Cr, 
9wt%Ni maraging steel, was presented in ref27. Since the 
imported data did not allow a precise determination of 
the incubation time, we assumed τ = λ ⋅ it , and fitted λ  
until the sum-of-squares, ΣSQ, between experimental and 
calculated values of VV , became invariant. The values of 
the fitting parameters in Equations 11 and 12: τ , ViV , and 

( ) ϕ T  along with the respective values of ΣSQ, are shown 
in Tables 1 and 2. Figure 1 shows the FeNiMn database as-
fitted. Figure 2 shows the maraging curves as-fitted.

The values of ΣSQ point out that Equation 11 performed 
slightly better than Equation 12. Visual inspection is consistent 
with ΣSQ values. That is, both expressions provided a good 
fit despite their different formal-approaches to transformation-
saturation. The behavior of the parameter δ  confirms this.

Concentrating on the FeNiMn alloy, Table 1 and Figures 
3 and 4, at the high transformation temperatures, ( )ϕ T  refers 
to a thermally activated process. By contrast, at the lower 
temperatures, 163K - 77K, the anti-thermal variation in ( )ϕ T  
points to the mechanical autocatalysis, which feeds back 
strain energy28. Phenomenologically, we propose,

( ) 0 exp
 ∆

ϕ = ϕ −  
 B B

Ga EaT
k T k T   (13)

where 0ϕ  is a proportionality factor, Ea , and ∆Ga  are 
apparent energies, T  is the reaction temperature and Bk  is 
the Boltzmann constant. The charts in Figure 3 yield Ea  ≈ 
5 kJ/mol - 13 kJ/mol, which is compatible with dislocation 
processes, and ∆Ga  ≈ 0.9 - 1.3 kJ/mol, which has the same 
magnitude as the elastic free-energy (0.9 kJ/mol) of an oblate 
spheroid with a typical 0.05 aspect-ratio in a constrained 
matrix29. The FeNiMn isothermal martensite undergoes a 
substructure change at low transformation temperatures22. Thus, 
we propose that the variation in ( )ϕ T  refers to changes in the 
relaxation of transformation strains30. The variation in the ViV  
corroborate the variation in ( )ϕ T . However, the variations 
in 1/ τ  show the opposite trends, see Figure 4. Such specific 
behavior point to differences in the martensite propagation. 
Martensite propagation at incubation depends on the probability 
that austenite defects sustain coordinated atomic groups to 
cross the nucleation path31,32. By contrast, the nucleation’s post-
incubation is determined by a previously formed martensite 
unit (autocatalysis feedback)28,33. At high-temperature thermal 
agitation hamper atomic groups’ stability, creating an entropic 
barrier for converting such groups into nuclei. Thence the 
chemical driving force controls the incubation. Instead, at 
low temperatures (higher driving forces), a thermal barrier 
controls the martensite incubation/nucleation. In this regard, 
it is noteworthy that the apparent activation energy obtained 
from the incubation time, ~ 6 kJ/mol, compare with the ~ 5 
kJ/mol obtained from the parameter ( )ϕ T , which refers to 
the accommodation of the shape strain at high transformation 
temperatures. This comparison says that dislocation processes 
are present in both processes (relaxations of lattice-misfit and 
the shape strain). At this time, the analysis of the temperature 
variation in the parameter ViV  was not conclusive.

Lastly, mind that impingement of martensite on the austenite 
grain boundary generates a stress-field capable of fostering 
martensite propagation into the next grain26,34. However, such 
an “intergrain-spread” is hindered if the austenite plasticity 
halts the radial propagation of a martensite unit35. Such a 
possibility is comparable to “soft-impingement.”

Table 5. Fitting Parameters - Carbon Steels - Athermal Martensite.

Equation 14 Logistic Equation 15 KJMA

wt%C iT , K G
−
ϕ ViV *T , K ΣSQ δ  < 5% G

−
ϕ ViV *T , K ΣSQ δ  < 5%

0.46 586 1.8 1.7x10-3 587.5 3.0x10-2 65.1% 1.0 8.7x10-4 586.3 8.5x10-2 49.2%
0.66 535 2.3 1.6x10-2 546.0 1.6x10-2 69.7% 1.2 2.9x10-3 535.9 4.0x10-2 53.0%
0.80 502 2.2 1.6x10-2 513.9 6.3x10-3 84.2% 1.2 7.9x10-3 503.8 2.3x10-2 52.6%

Table 4. Fitting Parameters - FeCrNi - Athermal Martensite.

Equation 14 Logistic Equation 15 KJMA

wt%C iT , K G
−
ϕ ViV *T , K ΣSQ δ  < 5% G

−
ϕ ViV *T , K ΣSQ δ  < 5%

0.002 290 3.7 1.2x10-1 339.7 7.0x10-4 88.9 1.3 8.6x10-2 299.2 8.1x10-4 93.3
0.020 265 4.0 3.7x10-2 304.7 3.6x10-4 96.9 1.5 6.4x10-3 267.8 8.8x10-4 96.9
0.050 254 5.5 1.2x10-2 304.1 2.3x10-4 88.9 2.4 8.0x10-3 265.4 4.1x10-4 77.8
0.100 193 6.1 4.6x10-2 242.6 1.1x10-4 90.0 2.8 6.6x10-2 218.4 3.2x10-5 90.0
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5. Martensite “Athermal” Transformation
To describe the transformation curve of time-independent, 

driving-force induced (“athermal”) martensite, one replaces 
temperature for the advancing variable in Equations 11 and 
12 that gives:

( )
( )

*

*1

−
ϕ − =

 − − 

G
V

Vi
V i

V T T TV
V T T T  

 (14)

and

( )
*

*1 exp
ϕ 

  − = − −  −   
 

G

V Vi
i

T TV T V
T T

  

(15)

where *T  is the upper temperature for martensite nucleation, 
and iT  is the highest experimental temperature in a data set. 

The variables,  ViV , *T  and  ϕG  are fitting parameters. We 

Figure 1. FeNiMn isothermal transformation for different temperatures. (a) 77 K; (b) 133 K; (c) 143 K; (d) 163 K; (e) 173 K; (f) 193 K; 
(g) 203 K. Data extracted from ref22. Graphs were constructed and fitted with Equations 11 and 12.
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quantities seem to be inverted when compared with
 
 − τ
  − τ i

t
t . 

The reason for this is that time increases and temperature 
decreases. Thus, the terms are inverted so that the subtractions 
remain positive.

Ref36 describes a database typical of Fe-0.2wt%C, 
3.5wt%Mn, 1.5wt%Si, 0.5wt%Mo with different grains sizes 
(0.006 mm - 0.185 mm). Ref37 provides data on Fe-18wt%Cr, 
8wt%Ni, with varying contents of carbon.

In FeMnSiMo, the transformation took place in a 
dilatometer. In addition to allowing the models’ validation, 
the database permits to characterize the austenite grain size’s 
influence on the transformation curve. Bearing scatter in *T , 
we expressed * = λ ⋅ iT T , and fitted λ  until the sum-of-squares, 
ΣSQ, between experimental and calculated values of VV  
became invariant, see Figure 5. Table 3 lists the values of 
the obtained parameters of Equations 14 and 15. Inspection 
of the values of ΣSQ indicates that Equation 14 provides the 
best fittings with a minor variation in ΣSQ. By contrast, the 
values of ΣSQ, which characterize the fittings with Equation 
15, increase with increasing the austenite grain-size.

A similar procedure was used to fit the Fe-18wt%Cr, 
8wt%Ni data. The results are shown in Figure 6 and Table 4. 
The fit is excellent.

Concentrating on the FeMnSiMo, Figures 7 and 8 show 
the values of G

−ϕ  and *T  graphed after Hall-Petch, complying 
with the experimental variable (austenite grain size). The 

iT  estimates the martensite start temperature, SM . Observe 
that both fittings yielded decreasing values of G

−ϕ  and *T  
with decreasing the austenite grain size down to 0.015 mm, 
then upshifts. The decreasing in G

−ϕ  suggests the influence 
of the austenite strength on the martensite propagation, 
possibly related to the mobility of the martensite-austenite 
interfaces or dislocation processes38. The reported36 coarser 
aspect ratio of the martensite units formed in the material 
with 0.006 mm grain size is coherent with a heightened 
variant-selection (auto-accommodation), also acknowledged 
in ref39. The decreasing values of *T  imply higher stability 
in the fine-grained austenite. Thence, the variations in 

−
ϕG  

and *T  are in qualitative agreement with the conclusions 
in ref36. The high values of ΣSQ, typical of the fittings of 
the dataset with Equation 15, are due to the severe effect 
of crystallographic-variance in fine-grain austenite. This 
crystallographic-variance affects the microstructure’s local-
randomicity, which is a requirement for utilizing the KJMA’s 
methodology1-5. Again, the behavior of the parameter δ  
indicated a better agreement between Equations 14 and 15, 
which assumes exhaustion by nucleation and by impingement, 
respectively.

Lastly, we consider the influence of the carbon in the 
martensite, transformed by continuous cooling. Typical plain 
carbon-steels with similar austenite grain-sizes were considered: 
Fe46C(0.46wt%C, 0.71wt%Mn, 0.26wt%Si, 0.1wt%Ni, 
0.2wt%Cr), Fe66C(0.66wt%C, 0.69wt%Mn, 0.30wt%Si, 
0.1wt%Ni, 0.2wt%Cr), and Fe80C(0.80wt%C, 0.61wt%Mn, 
0.41wt%Si, 0.2wt%Ni, 0.3wt%Cr). These databases were 
imported from ref40. The fittings with Equations 14 and 15 are 

Figure 4. Arrhenius chart - Temperature variation in the incubation-
time graphed as 1/ τ  obtained with Equations 11 and 12 for the 
FeNiMn.

Figure 3. Arrhenius chart - Temperature variation in the parameter 
( )ϕ T  obtained with Equations 11 and 12 for the FeNiMn.

Figure 2. FeCrNi maraging steel isothermal transformation for 
different intensities of magnetic fields. Data extracted from ref27. 
Graphs were constructed and fitted with Equations 11 and 12.

use the subscript “ G ” in G
−
ϕ  to emphasize that the driving 

force is the external variable in the non-thermally activated 

transformation. It is worthy of note that in the 
*

*
i

T T
T T

 − 
 − 

 the 
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Figure 5. Comparison of fittings for the FeMnSiMo with different grains sizes, transformed by continuous cooling. (a) 0.006 mm; (b) 0.015 
mm; (c) 0.025 mm; (d) 0.067 mm; (e) 0.185 mm. Data extracted from ref36. Graphs were constructed and fitted with Equations 14 and 15.

Figure 6. FeCrNi stainless steels athermal transformation during 
continuous cooling. Data extracted from Ref37. Graphs were 
constructed and fitted with Equations 14 and 15.

Figure 7. Values of G
−
ϕ  graphed after Hall-Petch for the FeMnSiMo.
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Figure 8. Values of *T  graphed after Hall-Petch for the FeMnSiMo.

Figure 9. Martensite transformation curves of typical plain carbon-steels with similar austenite grain-sizes for different concentration of 
C. (a) Fe46C; (b) Fe66C; (c) Fe80C. Data extracted from ref40. Graphs were constructed and fitted with Equations 14 and 15.

shown in Figure 9, and the values of the respective model-
parameters are listed in Table 5. Again, visual inspections 
of the charts and the variations in ΣSQ indicate that the 
Equation 14 provided better fittings, especially concerning 
the transformation-charts’ progressive induction. These 
fittings were consistent with the behavior of the parameter .δ   
We ascribe the variation in *T  to the influence of the carbon 
on the austenite stability. The variation in G

−
ϕ  is related to the 

influence of carbon content on the transformation microstructure 
since increasing carbon enhances the partitioning of the 
austenite grains into finer packets and blocks41.

Like the isothermal transformation curves above analyzed, 
the different modes of considering the transformation-
saturation provided proper fittings of the data. Nonetheless, 
the values of the fitting parameters are model-dependent, 
as might be expected.

6. Discussion
The classical Verhulst’s logistic equation, Equation (4), 

proposed to describe constrained population growth, provides 
a venue to express transformation curves12. Specifically, note 

that Equation 6 has two independent terms, ( )
( )*

*

ξ − ξ
ϕ ∆ ⋅

ξ − ξ

d
 

that refers to the advance of the microstructure, and 
( )

( ) ( )( )
ξ

ξ ⋅ ξ
V

V V

dV

V A V
 that refers to the accommodation of 

the transformation in the austenite grains. The integrated 
Equations 11 and 14 and Equations 12 and 15 only differ 
in the specification of the exhaustion factor, ( )( ) ξVA V . By 
adjusting their fitting parameters, suitable descriptions of 
the transformation curves are possible.

The similar variations in the parameters ( )ϕ T  and τ  
obtained with Equations 11 and 12 are coherent with the 
pertinence of self-similarity in the martensite transformation. 
Notably, the variations in the parameters obtained from the 
FeMnSiMo database typical of martensite transformation by 
cooling (“athermal”) exhibit similarity and are in qualitative 
agreement with the results reported in the referenced 
paper36. Thence, the experimentalists may choose the more 
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appropriate expression to analyze their data and describe 
the transformation under consideration12. Nonetheless, the 
meaning of the physical parameters obtained from formal 
models depends on the models’ premises. We assert that 
autocatalysis and transformation-saturation by nucleation-
exhaustion are realistic premises to model martensite 
transformation curves as provided by Equations 11 and 14.

It is worth discussing the fitting parameters displayed 
in Tables 1-5.

First, we would like to offer some background on the use of 
phenomenological equations and fitting parameters to describe 
a specific kinetic curve. In the present case, to fit a ( )VV t  
curve. The first possible approach to describe experimental 
measurements by an analytical expression is to employ an 
arbitrary function to fit the experimental curve. This fit may be 
useful if one has an analytical theory that takes a continuous 
function as its input, for example, Ref42. On another extreme, 
one may fit an expression derived from fundamental theories. 
Generally, these are not easy to come by. An intermediary 
approach is to use the so-called formal kinetics. These provide 
exact expressions when one specifies the nucleation and growth 
rates. The pioneering work is, of course, KJMA theory1-5. More 
recently, Rios and Villa8,43-45 derived several new expressions. 
Still, the number of exact solutions is limited.

Yet another possibility is to use functions that have 
some physical or mathematical basis. Such as Avrami’s, see 
Equation 1. Or Austin-Rickett, see Equation 3. Here we used 

a generalization of both Avrami and Austin-Rickett equations, 
containing an extra parameter related to the beginning of 
the transformation.

From the equation employed here, one expects: I) that 
they give a good fit; II) that we can extract some information 
from the fitting parameters. Notice that the functional form 
is different for Equations 14 and 15. Therefore it comes as 
no surprise that the absolute value of the fitting parameters 
differs. Nonetheless, Tables 6, 7, and 8 show that they do 
not differ by the same magnitude. In the case of Table 6, the 
differences between the fitting parameters were calculated as 
follows: (Equation 12 parameter – Equation 11 parameter)/
(mean value of Equation 11 and Equation 12 parameters). 
The same reasoning was adopted for Tables 7 and 8, but 
with Equations 11 and 12 replaced by Equations 14 and 15.

The parameters that mark the beginning of the transformation, 
such as initial transformation temperature and incubation 
time, are physical parameters. Tables 7 and 8 demonstrates 
that the values of *T  lie quite close when Equations 14 and 
15 determine them. Table 6 shows the values of τ , obtained 
from Equations 11 and 12, behave similarly but with an 
apparent discrepancy at the highest and lowest temperatures. 
The absolute values of the other parameters have a significantly 
higher difference. This behavior is unavoidable as the proper 
functions are different. This result suggests that the function 

Table 6. Difference between the fitting parameters shown in Table 1 obtained by Equation 11 and Equation 12 for the FeNiMn - Isothermal 
Martensite.

T , K ( )T  Difference ViV  Difference τ  Difference
77 48.9% 200.0% -85.6%
133 61.5% 161.3% -5.0%
143 72.7% 181.4% -2.1%
163 88.9% -133.9% -2.0%
173 72.7% -9.0% -2.0%
193 -3.9% 200.0% -163.6%
203 -7.4% 200.0% -163.7%

Table 7. Difference between the fitting parameters shown in Table 3 obtained by Equation 14 and Equation 15 for the FeMnSiMo - 
Athermal Martensite.

D, mm , K G
−
ϕ  Difference ViV  Difference *T  Difference

0.185 628 96.3% 156.6% 2.9%
0.067 628 81.8% -44.8% 3.2%
0.025 638 93.9% -168.7% 4.8%
0.015 608 91.9% 103.4% 0.9%
0.006 608 80.8% 173.3% 0.9%

Table 8. Difference between the fitting parameters shown in Table 5 obtained by Equation 14 and Equation 15 for the Carbon Steels - 
Athermal Martensite.

wt%C , K G
−
ϕ  Difference ViV  Difference *T  Difference

0.46 586 57.1% 64.6% 0.2%
0.66 535 62.9% 138.6% 1.9%
0.80 502 58.8% 67.8% 2.0%

ϕ

Ti

Ti
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form of Equations 11, 12, 14 and 15 strongly influence 
parameters, such as, ViV  and ϕ .

One cannot expect Equations 11, 12, 14 and 15 to be 
more than they are. They are equations with a physical or 
mathematical background, but they are still approximations. 
And it is well-known that fitting parameters carry the error 
made by assuming a certain approximation. But, as shown 
above, the parameters are not influenced in the same way. 
Here, parameters that have a direct physical interpretation 
tend to be almost independent of the fitting expression. 
By contrast, parameters that are more directly related to the 
functional form of the fitting expressions tend to have more 
considerable differences.

7. Conclusions
1. The utilization of the logistic formalism to describe 

isothermal and continuous cooling martensite 
transformations yielded quality-fittings of experimental 
data. These quality-fittings are consistent with current 
views regarding martensite’s nucleation-controlled, 
autocatalytic kinetics, and self-similarity.

2. The apparent activation energies obtained from 
Equation 13, 5 kJ/mol - 13 kJ/mol, compares with 
the activation energies for martensite nucleation 
reported in refs46,47. Therefore, one may suggest that 
there are two kinds of active dislocation processes. 
One dislocation process acts in the conversion of 
coordinated atomic groups into nuclei. The other, 
intrinsically different dislocation process relates 
to the relaxation of the martensite shape-strain30.

3. The incorporation of self-similarity into Verhulst’s 
logistic formalism allowed good descriptions of 
the martensite transformation curves as well as 
characterizations of kinetic aspects of isothermal 
or “athermal” transformations.
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