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1. Introduction
There is an extensive literature on functionally graded 

materials (FGMs)1. Many applications of FGM arise in 
ceramic–metal systems and in traditional systems such as 
carburized steels used to improve a specific property such as 
wear resistance. However the possibility of using a simple 
geometric arrangement of compositionally graded phases in 
metallic systems enables materials to be designed to control 
a range of plastic properties and fracture processes2.

The fabrication process of FGMs is a quite complex 
task. In this sense, most published works deal with laminated 
samples that are formed by homogeneous layers of different 
compositions. On the contrary, continuous FGMs are scarcely 
reported. An extraordinary effort has been made in order to 
develop continuous FGMs in a wide range of systems and it has 
been attained in several works3. In this way, functionally graded 
steels (FGSs) have recently been produced from austenitic 
stainless steel and carbon steel using electro slag refining 
(ESR)4,5. In these composites, by selecting the appropriate 
arrangement and thickness of the primary ferritic and austenitic 
steels as electrodes, it is possible to obtain composites 
with several layers consist of ferrite, austenite, bainite and 
martensite. The resultant composites using two slices of original 
ferrite (α0) and original austenite (γ0) is as below; 

α g → αβg0 0( ) ( )
R

el com

Where α, β and γ are ferrite, bainite and austenite phase 
in the final composite respectively; el is electrode; com is 
composite and R is remelting.

Diffusion of chromium, nickel and carbon atoms which 
taking place at the remelting stage in the liquid phase controls 
the chemical distribution of chromium, nickel and carbon atoms 
in the produced composites. The thicknesses of the bainitic and 

martensitic layers depend on the thickness of the corresponding 
primary slices in the electrode and process variables (voltage, 
current intensity and the drawing velocity of the product). The 
transformation characteristics of FGSs have previously been 
investigated, in that the diffusion coefficients of chromium, 
nickel, and carbon atoms at temperatures just above the melting 
point of iron were estimated.

Also, the thicknesses of the emerging bainite and 
martensite phases were determined4.

Furthermore it has been shown that the tensile strength 
of the FGS composites depends on the composition and 
number of layers and those has been modeled based on the 
tensile behavior of individual phases5; to do so the yield 
stress of each layer in the composites was related to the 
microhardness value of that layer.

In the previous studies, Charpy impact energy of 
functionally graded steels in crack divider configurationand 
in crack arrester configuration6 was experimentally examined 
and modeled by different methods. Fracture toughness of these 
specimens in terms of JIC in both crack divider and crack arrester7 
configurations was also investigated. The tensile behavior of 
oblique layer functionally graded steels was the other property 
which studied in the previous studies8,9. Prediction Vickers 
hardness10 and tensile strength11 of functionally graded steels 
by the mechanism-based strain gradient plasticity theory was 
the other works done in this area.

Although there is an extensive volume of literature on 
contact mechanics of functionally graded materials, there 
seems to be only a few studies investigating the behavior 
of cracks located in FGMs subjected to contact stresses12-14.
Through experiments conducted on graded specimens,12 
showed that a controlled gradient in the modulus of elasticity 
at a surface could eliminate conical cracking that results from 
Hertzian indentation. Choi considered a nonhomogeneous 
medium that comprises a homogeneous substrate, a graded 
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interfacial layer, and a homogeneous coating13. By assuming 
that the composite medium is under the effect of contact 
stresses, the author computed the stress intensity factors 
(SIFs) for an embedded crack in the homogeneous substrate 
by using an analytical method. analytical technique based 
on the singular integral equations (SIEs) to evaluate mode I 
and II SIFs for a surface crack lying in a graded half-plane, 
that is in contact with a sliding flat stamp14.

The analytical model considers a FGS half-plane with a 
crack, in contact with a rigid flat punch. The crack develops 
in the direction normal to the contact interface, in the same 
direction of grading. Such crack divider configuration was 
introduced by Aghazadeh et al.15.The shear modulus of the 
half-plane is assumed to constant along the lateral direction. 
The problem is reduced to a system of singular integral equation 
of the second kind which is solved numerically to compute the 
contact stress distributions. In order to provide more insight 
into the behaviour of the functionally graded steel, contact 
mechanics analysis is also conducted by means of the finite 
element method. The parametric analyses are performed by 
considering flat punch profiles. The presented results illustrate 
the influences the coefficient of Coulomb friction on the 
distributions of the contact stresses and stress intensity factors.

2. Analytical Solution
The geometry of the considered contact /crack problem 

is depicted in Figure 1. The contact area extends from x= a 
to x = b at the surface y = 0. Coulomb’s dry friction law is 
assumed to hold in the contact area hence the tangential force 
per unit length Q transferred by the contact is taken to be 
equal to ηP where η is the coefficient of friction and P is the 
applied normal force per unit length. The spatial variation of 
the Poisson’s ratio is assumed to be negligible. As a result, 
the Poisson’s ratio υ is considered to be a constant. Under 
these assumptions, the equations of equilibrium in terms 
of the displacement components are obtained as follows16:

∂ ∂ ∂
+ + − + =

∂ ∂∂ ∂

2 2 2

2 2( 1) ( 1) 2 0,u u vk k
x yx y

 (1)

∂ ∂ ∂
− + + + =

∂ ∂∂ ∂

2 2 2

2 2( 1) ( 1) 2 0,v v uk k
x yx y

 (2)

where u and v are the displacement components in x and y 
directions, respectively and μ is the shear modulus of the 
half plane, k is the Kolosovs constant and for this plane 
strain problem, it is equal to 3-4υ. The contact mechanics 
problem defined above has to be solved by considering the 
following mixed boundary conditions16:

σ = < >( ,0) 0,             and   xx x x a x b  (3)

σ = < >xy ( ,0) 0,              and    x x a x b  (4)

µ ∂
= < <

+ ∂
4 ( ,0) ( ),           

1
v x f x a x b

k x  (5)

σ = hσ < <xy ( ,0) ( ,0)          yyx x a x b  (6)

σ = −∫ ( ,0) ,
b

yy
a

x dx P
 

(7)

σ = < <xx (0, ) 0,           0y d y  (8)

σ = < <xy (0, ) 0,           0y d y  (9)

f (x) is a known function dictated by the profile of the 
rigid punch. In addition, the solution of the problem must 
satisfy the regularity conditions at infinity, requiring that all 
field quantities should be bounded as infinity.

The stresses and displacements for the coupled problem 
may then be expressed as:

σ = σ + σ =(1) (2)( , ) ( , ) ( , ),           ,  or  ij ij ijx y x y x y i j x y  (10)

= +(1) (2)( , ) ( , ) ( , ),u x y u x y u x y  (11)

= +(1) (2)( , ) ( , ) ( , ),v x y v x y v x y  (12)

Problem 1 is the contact problem without crack and in 
this case the stresses and displacements will be obtained in 
terms of the unknown contact stress. In problem 2 stress 
and displacement fields will be obtained in terms of two 
unknown functions. The total stress and displacement fields 
for the original problem can then be obtained by summing 
the solutions of the problems 1 and 2 and satisfying the 
boundary conditions of the original coupled problem. Since 
the expressions for the contact and crack problems are 
derived, stresses and normal displacement derivative with 
Hookes Law for the coupled crack and contact problem can 
now be obtained in the following form16:
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Figure 1. FGS half-plane containing surface crack in frictional 
sliding contact with a rigid punch of an flat profile.
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Where f1(t), f2(t) and f3(t) are unknown functions. The 
kernels are given by:
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The singular behavior of the unknown functions will be 
examined using a function-theoric method. In this analysis, 
there are two cases. If b<0, in addition to the Cauchy 
singularities only terms that can become singular are K11 
and K22. Other kernels are bounded at all points of their 
respective intervals. If b=0, all of the kernels have to be 
examined to determine the singular behaviour of unknown 
function7.

A numerical solution procedure based on the expansion–
collocation method is developed so as to solve the singular 
integral equation (Equation (13)) in conjunction with the 
equilibrium condition given by Equation 7. Solution, it is 
possible to express transform unknown functions an infinite 
series in terms of the Jacobi polynomials.

For example in the case of flat punch problems and 
b<0[16]:

1/2 ( 1/2,0)
1

0
( ) (1 ) ( ),n n

n
m r r A P r

∞− −

=
= − ∑  (15.a)

1/2 ( 1/2,0)
2

0
( ) (1 ) ( ),n n

n
m r r B P r

∞− −

=
= − ∑  (15.b)

( , )
3

0
( ) (1 ) (1 ) ( ).n n

n
m r r r C P r

∞β ω β ω

=
= − + ∑  (15.c)

In this case following transformation are used,
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Pn is the Jacobi polynomial, An, Bn and Cn are unknown 
constants. ω and β stand for the strengths of the singularities 
at the end points x = b and x = a, respectively. The 

expressions for these exponents are derived through the 
function-theoretic analysis and given as follows16:
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In the numerical solution, the infinite series given 
by Equation 15 is truncated at N. The truncated form is 
substituted into Equations 13 and 7. A collocation approach 
is used to convert Equations 13 and 7 into a system of linear 
algebraic equations in terms of the constant coefficients. 
After solving the system of linear algebraic equations for 
An, Bn and Cn contact stresses can be obtained using equation 
(15.c) and normalized stress intensity factor for mod І and 
П can be expressed as follow16:
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3. Finite Element Analysis
Besides the analytical model described in the previous 

section, a finite element model was developed with the 
general purpose finite element software ABAQUS to study 
the contact problem between a FGS substrate, comprised of 
layers of different elastic properties stacked orthogonally to 
contact interface, and a flat punch.

As will be shown in the next section, a very good agreement 
is obtained between the results obtained by the analytical and 
finite element methods which are indicative of the high levels 
of accuracy attained by these two separate techniques. The 
functionally graded medium is discretized by using 8-noded 
quadrilateral CPE8R elements. This finite element mesh 
contains a total of 7020 elements. As shown in Figures 2, B; 
H and W, respectively, denote the width of the rigid punch, 
the height of the graded medium and the width of the graded 
medium. Since the graded elastic medium is modelled as a half-
plane in the analytical solution, these dimensions are selected 

Figure 2. Boundary condition and dimension of problems.
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such that the boundaries of the elastic medium would have 
no influence on the contact stresses. Hence, B/W is taken as 
1/20 and H/W is set as 1/2. Moreover, the finite element mesh 
density is increased significantly in the vicinity of the contact 
region so as to accurately capture the sharp variations of the 
stress components especially near the ends of the contact zone. 
The deformed shape and opening crack of the finite element 
mesh during loading has been shown in Figure 3.

4. Results and Discussion
This section presents the numerical results obtained using 

the analytical model described in Section 2 and the finite 
element model described in Section 3. Figures 4, 5. compares 
the normalized contact stress distributions and normalized 

stress intensity factor at the crack tip with respect to the normal 
load pressing the punch against the substrate obtained by the 
analytical model and ABAQUS. Figures 6a, b. shows the 
distribution of normalized contact stress syy generated in the 
case of frictional contact between a flat punch and a graded 
substrate for different values of friction coefficient η.the contact 
stresses are infinite at the ends of the contact area except for 
the case η=0, for which there is no singularity at the end x=0. 
Contact stresses for different values of (a-b)/d are shown in 
Figures 6c, d. Contact stresses are singular at the end points 
of the contact area.

The effect of the punch location on mod І and mod 
П stress intensity factor for a flat punch is shown in 
Figures 7a, b. in these figures (a-b)/d is kept constant 
as 10 and υ=0.28, and stress intensity factors are given 

Figure 3. The Deformed shape and opening crack of the finite element mesh.

Figure 4. Comparisons of normalized contact stress distributions computed with the analytical model and ABAQUS for the case of a flat 
punch: (a) h=0.8, ν=0.28, a/d=1, b=0; (b) h=0.6, ν=0.28, a/d=1, b=0.
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for different values of b/d. Since, stress intensity factors 
are normalized with respect to d, the effect of the punch 
location b on stress intensity factors can be clearly 
observed in these figures. As b/a increases from 0, mode 
І stress intensity factors initially increase and they go 
through a peak for larger values of friction coefficient 
η. further increase in b/d results in a decline in mode І 
stress intensity factors and they approach zero for larger 

values of b/d which is the expected result. Similary, mod 
П stress intensity factors approach zero, for larger values 
of b/d. It can also be seen that, if there is no tangential 
force, i.e., η=0, mod І stress intensity factors are negative 
and mod П stress intensity factors are positive for all 
values of b/d.

The effect of the contact area (a/d) respect to the friction 
coefficient on the mod І and mod П stress intensity factors 

Figure 5. Comparisons of normalized stress intensity factors computed with the analytical model and ABAQUS for the case of a flat 
punch h=0.8, ν=0.28, (a-b)/d=1: (a) mod І; (b) mod П.

Figure 6. Normalized contact stress distributions computed for various values of the coefficient of friction by considering a flat punch: 
(a) b=0, υ=0.28, d/a=0.4; (b) b=0, υ=0.28, a/d=0.4; (c) (a-b)/d=1,υ=0.28, b/d=0.4; (d) (a-b)/d=10, υ=0.28, b/d=0.4.
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for b=0 is shown in Figures 7c, d. All plots were obtained 
for a gradation leading to a Poisson’s ratio 0.28.

Failure may occur either because stresses developed 
in the contact region become higher than the yield limit 
or because stress intensity factor equals the critical 
stress intensity factor. Let us denote as Pcr

(1) and Pcr
(2), 

respectively, the critical normal loads at which plastic 
deformations may occur and crack can propagate. Figure 8 
shows Von Mises stress in contact area compute with FEM, 

Figure 7. Normalized stress intensity factor distributions generated by considering a flat punch: (a) mod І for (a-b)/d=10, υ=0.28; (b) 
mod П for (a-b)/d=10, υ=0.28; (c) mod І for b=0, υ=0.28; (d) mod П for b=0, υ=0.28.

Figure 8. Shows Von Mises stress in contact area compute with 
FEM for ( ) / 1, 0.28, 0.8a b d− = υ = h = .

assume that when minimum Von Mises stress in contact 
area equal to yield stresses of functionally graded steels, 
area under contact can be yield. The critical load at which 
fracture can propagate and compute with analytical model 
and Critical stress intensity factor. Tables 1 and 2 presents 
numerical results for αβγ and γMγ gradations15 obtained 
by setting the friction coefficient η equal to 0.8 and 0.4, 
respectively. Figures 9, 10 shows the normalized stress 
intensity factor and normalized critical stress intensity 
factor for the abγ and γMγ composite and original ferrite 
and original austenite steel ploted for friction coefficient 
η equal to 0.8 and 0.4, respectively. if critical load Pcr

(2) 
is lower than critical load Pcr

(1), failure is caused by crack 
growth, and if critical load Pcr

(2) is lower than critical load 
Pcr

(1), failure is caused by yield contact.
The yield limit of composite γMγ is higher than that of 

composite abγ. However, the minimum critical normal load 
(i.e. the minimum load between Pcr

(1) and Pcr
(2)) of composite 

αβγ computed for η=0.8 is higher than that computed for 
the γMγ composite. The reverse behavior is observed for 
η=0.4. This indicates that the minimum critical normal load 
depends on punch geometry/dimensions, crack position and 
length, yield limit, fracture toughness and coefficient of 
friction. Remarkably, the minimum critical normal load of 
the graded constructions is almost two times as large as the 
critical normal load of original ferritic or austenitic phases.
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Table 1. Mechanical properties and critical normal loads for 0.8,( ) / 1a b dh = − = .

Composite/steel(1)
crP  (N)Yield stress-1

ICJ (kNm )(1)
IC crk / P(2)

crP  (N)

αβg480×106440mpa21.80.1442460×106 N
gMg710×106690mpa11.60.0711337×106 N
α260×106 245mpa 90.171-
g215×106 200mpa 500.4875-

Table 2. Mechanical propertes and critical normal loads for 0.4,( ) / 1a b dh = − = .

Composite/steel(1)
crP  (N)Yield stress-1

ICJ (kNm )(1)
IC crk / P(2)

crP  (N)

αβg810×106440mpa21.80.1442-
gMg1200×106 690mpa11.60.07111150×106

α480×106 245mpa 90.171-
g400×106 200mpa 500.4875-

Figure 9. Normalized mode I stress intensity factors and normalized critical stress intensity factor for (a-b)/d=1, η=0.8, d=1: (a) composite 
αβγ; (b) composite γMγ; (c) original ferrite α and original austenite γ.
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4. Conclusion
This study presented a parametric study on the 2-D 

nonlinear partial slip contact between a graded half plane 
(in the normal direction to contact interface) and a rigid flat 
punch subject to normal load. Functionally graded steels 
(FGS) recently produced from austenitic stainless steel 
and carbon steel by means of electro slag refining (ESR) 

were analyzed. The effect of friction coefficient on contact 
stresses and stress intensity factors was evaluated. For that 
purpose, an analytical model was developed that is in good 
agreement with a model implemented in the commercial 
finite element code ABAQUS. Remarkably, graded material 
constructions show critical loads two times as large as those 
of original ferrite and original austenite steels.

Figure 10. Normalized mode I stress intensity factors and normalized critical stress intensity factor for (a-b)/d=1, η=0.8, d=1: (a) composite 
αβγ and composite γMγ ; (b) original ferrite α and original austenite γ.
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