Acessibilidade / Reportar erro

Mg-based Nanocomposites for Hydrogen Storage Containing Ti-Cr-V Alloys as Additives

In this study, we have investigated the synthesis, microstructure and hydrogen storage properties of Mg-based nanocomposites containing different concentrations of TiCrV and TiCr1.2V0.8 alloys. The Mg-based nanocomposites of Mg containing Ti-Cr-V additives were prepared by reactive milling (RM) under hydrogen atmosphere. The structural characterization revealed the presence of the β-MgH2, γ-MgH2 and BCC phases in the powders samples after RM. In addition, a very refined and homogenous microstructure with average MgH2 crystallite size of around 10-12 nm was observed, including a nanometric dispersion of the additives in the magnesium hydride matrix. The doping with TiCrV and TiCr1,2V0,8 greatly improves the hydrogen desorption behavior of Mg in comparison with the sample without additive, resulting in the lowest onset temperature (240 ºC) for the sample containing 5%mol. of TiCrV. Very fast absorption and desorption kinetics at 275 ºC and 300 ºC (7 minutes and 5 minutes for full desorption and absorption, respectively) were observed in the samples containing TiCrV and TiCr1,2V0,8 without any notable difference between the type of additive used in comparison with the pure sample. However, a slight reduction in hydrogen capacity is observed in the mixtures than for the pure sample (6.7 wt.% against 7.3 wt.%).

Keywords
Hydrogen storage; Magnesium hydride; Reactive Milling; BCC Alloys; Additives


ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br