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Figure 4. Detail of the calcite layer without defined microstructure; (a) in the upper part is the layer with cloud form composed of calcite
(calcite cloud layer — inside the dotted square) and the aragonite sheet nacreous layer; (b) — the calcite cloud layer amplified; (c) — the
same layer from another animal and (d) in more detail; (e) and (f) the calcite cloud layer from other specimens denoting the morphology
of this layer.
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Figure 5. Scanning electron micrographs. (a) — Sheet nacreous layer composed of aragonite. It makes up the greatest part of the golden
mussel shell. Bar = 20pm. (b) — Detailing of overlapping tiles. (c) — Prismatic aragonite layer (internal layer). Bar = 20pm. (d) — Surface
view of the intersection between the nacreous layer sheet and the prismatic aragonite layer. Bar = 10pm. (e) — Image showing discontinuous
bands growth (mesolayer). Bar = 20pum.
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Layer” due to its form remind the nimbus cloud. This is
a new microstructure found in the molluscs’ shells. The
electronmicrographs show in details the morphology of the
layer from different animal’s shells.

The greater part of the golden mussel’s shell structure
is constituted of the polymorph aragonite, which is
microstructurally organized in the form of superimposed
sheets (Figure 5a, b) — the aragonite sheet nacreous layer®
(=120pm) — and in the form of prisms (Figure 5c, d) — the
aragonite prismatic layer® (=26pum). Contrary to other
bivalves>"182324 the prismatic layer in the L. fortunei is
located in the internal part of the shell and is composed of
aragonite. Eventually, along the aragonite sheet nacreous
layer, isolated inserts from the prismatic layer can be
observed in the form of discontinuous bands (Figure Se).
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Known as mesolayers, these inserts are probably related to
momentary interruptions in the growth of the sheet nacreous
layer, primarily by shortage of the environmental availability
of nutrients!’.

3.2. Atomic force microscopy images

The AFM images show the topography in three
dimensions of the shell of L. fortunei. In Figure 6a, the
aragonite sheet nacreous layer with the visible fit between
the tiles. In Figure 6b, the transition between the sheet
nacreous layer and the calcite layer can be observed. In
Figure 6¢c, aragonite prismatic layer, with accentuated
topography, immediately follows the end of sheet nacreous
layer. In this image, the relatively homogeneous area
corresponds to the resin.
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Figure 6. AFM images of a shell layers (a) — sheet nacreous layer (b) — intersection between the sheet nacreous layer and calcite layer
(c) — intersection between the sheet nacreous layer and aragonite prismatic layer.
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3.3. X ray diffraction

In Figure 7 are the diffraction diagrams of the internal
regions (a), external dorsal (b), external ventral (c) and
of the shell powder (d). In Figure 7a only the intensities
corresponding to the aragonite appear, the intensity at
20 =31 greater than 20 = 33.5. In Figure 7b the appearance
of the calcite peak (20 =29.5) can be seen, albeit with lesser
intensity and the presence of the two peaks of the aragonite,
which are the same as the internal region of the shell, albeit
with lower intensities, which is related to the concentration
of this crystalline phase in that region. In Figure 7c is
possible to see that the peak of the calcite reaches very
high intensity, unlike the other regions and there is only
the peak of the aragonite at 20 = 33.5. The diffraction
diagram of the powder (Figure 7d) presents the majority of
the peaks of the two polymorphs with different intensities,
in addition to the presence of two peaks corresponding to
the aragonite (26.5 and 27.5). In this case (diffraction of
the whole shell) it should be noted that the aragonite peak
at 20 = 33.5 increases in intensity while that of the calcite
peak at 20 = 29.5 diminishes. The intensities between 85 and
90 (20 degrees) are preferential orientations that differ from
the intensities found at the software card and according to
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the Figure 7a this orientations correspond to the aragonitic
prismatic layer.

4. Conclusions

The polymorph of CaCO, calcite is present only in the
more external ceramic layer (Calcite Cloud Layer) of the
shell of L. fortunei (below the periostracum). This layer has
a microstructure morphologically different from the layers
that make up the shells of other bivalves, it does not present
a well-defined form as the others do. Despite the apparent
absence of morphological pattern in its organization, this
layer presents crystalline structure.

The peaks at 20 = 33.5; 26.55 and 27.55 are associated
with the biogenic aragonite, which makes up the aragonite
sheet nacreous layer and the intensity at 20 = 31.0; 85.0
and 88.0 with the biogenic aragonite of the aragonite
prismatic layer. There is a greater concentration of calcite
in the ventral region of the shell, which may be associated
with the mussel’s living conditions. The presence of calcite
below the periostracum can confirm the hypothesis!® that
the biomineralization of aragonite mesocrystals (forming
the aragonite sheet nacreous layer and aragonite prismatic
layer) need a previously mineralized layer supporting the
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Figure 7. Diffraction patterns obtained from the internal regions (a), external dorsal (b), external ventral (c¢) and of the shell powder
(d) of the golden mussel. A — Aragonite intensities and C — Calcite intensities.
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organic matrix that, through their chemical and structural
singularities (such as micro and nanoporosities and presence
of channels) provides stability to aragonite, ensuring the
structural hierarchy of tiles and prisms.
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