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Fe SnSe, belongs to the adamantine family of quaternary chalcogenides crystallizing in the olivine
type structure, which can be described from a hexagonal close-packing of selenium anions with the
octahedral and tetrahedral sites occupied by the iron and tin cations, respectively. The structural
characterization of the sample, synthesized by the melt and annealing technique, was carried out by
powder X-ray diffraction at room temperature. The XRD data analysis shows, that Fe,SnSe, adopt
the orthorhombic olivine type structure, space group Pnma, and unit cell parameters a = 13.2019(3)
A, b=17.6746(1) A, c = 6.3572(1) A, V = 644.11(2) A® were derived.
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1. Introduction

The ternary chalcogenide semiconductors A" -B™-
XY, (IlI= Mn, Fe, Co; IV= 8Si, Ge, Sn; VI= 8, Se, Te) have
drawn wide interest for their magnetic, optoelectronic and
thermoelectric properties!-'2. The presence of transition metal
and chalcogenide elements in the same compound enables
unique interaction between the electron spins, which is one
of the factors that give rise to potential applications'.

These type of materials generally belongs to the adamantine
family of ternary chalcogenide crystallizing in the olivine type
structure' with the anions forming a hexagonal close packing
and the cations in tetrahedral and octahedral coordination.
However, a distorted spinel structure with space group /4,/a
has been reported for Fe,SnS,?, and an orthorhombic structure
with space group Crmmm for Mn,SnS *. It should be noted
that the presence of a transition metal in these materials
additionally introduces a magnetic behavior*.

From the point of view of their magnetic structure and
properties, the chalcogenide olivines represent interesting
examples of frustrated lattices of magnetic atoms determining
complex magnetic excitations'*. Materials belonging to this
family of olivine-type compounds have been considered as
good model systems to study multicritical phenomena'®, and
have found important new applications also for thermoelectric
power generation®, and as cathode materials for batteries'c.

In particular, for olivine-like structures containing iron
atoms, recently it has been proven that the ternary chalcogenides
Fe,GeS, and Fe,SiS, have the potential to overcome the
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limitations in the binary FeS,, which is considered as one of
the promising light-absorbing material with high absorption
coefficient to be used in thin film solar cells'”. These materials
are proposed to have high absorption coefficients and gap of
1.40 eV and 1.55 eV, respectively, which is more suitable for
solar light absorption. Besides both phases are predicted to
be more stable than the binary FeS, phase. These properties
make Fe,GeS, and Fe,SiS, as a potential material to use in
photovoltaics'”. Meanwhile, Fe-content olivine compounds
with Se ad Te anions emerge as promising candidates with
good thermoelectric performances®.

The compound Fe,SnSe,, or more precisely Fe,Sn[]
Se,, where [] denotes the cation vacancy which is included
to maintain the same number of cations and anions sites,
belongs to this family, I-IV-VI,, of ternary chalcogenide
semiconductors'®. As regards to the physical properties
of the ternary Fe,SnSe,, it was reported that it shows
ferromagnetic behavior with a Curie temperature near to room
temperature Tc=301.4K5, and interesting transport properties
for thermoelectric applications®. However, no complete
X-ray crystal structure analysis has been reported and the
only crystallographic information are the cell parameters:
(a=14.778 A, b=10.764 A, c= 6.061 A, V=964.0 A®)’ and
(a=14.803 A, b= 10.768 A, c= 6.059 A, V= 965.8 A)°.
Moreover, a search in the databases Powder Diffraction File
PDF-ICDDY, Inorganic Crystal Structure Database (ICSD)%,
and Springer Materials®' showed no entries for this ternary
chalcogenide compound.

Itis very important to establish the crystal structure of a
semiconductor because this is used to understand and explain
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the physical properties relevant to possible applications.
In the hope of providing a full description of the Fe,SnSe,
structure, in the present work, and as part of ongoing crystal
structural studies on chalcogenide compounds®?’, we report
the structural characterization of this ternary compound using
powder X-ray diffraction techniques.

2. Experimental procedures

2.1 Synthesis

Fe,SnSe, was synthesized by the reaction of high purity
elements, Fe, Sn, and Se with a nominal purity of at least
99.99% (Sigma-Aldrich), using the melt and annealing
technique. Stoichiometric quantities of the three elements
were charged in an evacuated quartz ampoule, previously
subject to pyrolysis to avoid reaction of the starting materials
with quartz. Then, the ampoule was sealed under vacuum
(~10"* Torr) and the fusion process was carried out inside a
furnace (vertical position) heated up to 1100 K at a rate of
20 K/h, with a stop of 48 h at 493 K (melting point of Se).
The ampoule was shaking using a mechanical system during
all the heating process to guarantee the complete mixing
of all the elements. Then, the temperature was gradually
decreased until 600 K and this temperature was maintained
for 30 days. Finally, the furnace was turned off and the ingots
were cooled to room temperature.

2.2 Chemical analysis

The stoichiometry of the sample was determined by
energy-dispersive X-ray spectroscopy (EDS) analysis using a
JMS-6400 scanning electron microscope (SEM). The average
composition of Fe: Sn: Se sample, taken from the central
part of the ingots, was 14.0: 28.6: 57.4 at. % that led to the
formula close to the ideal value composition 2: 1: 4. The
error in the standardless analysis was around 5%.
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2.3 X-ray powder diffraction

For the X-ray analysis, a small quantity of the sample
was ground mechanically in an agate mortar and pestle.
The resulting fine powder was mounted on a flat holder.
The X-ray powder diffraction data were collected at room
temperature, in reflection mode using a Panalytical X pert
diffractometer using CuKa radiation (A = 1.5418 A). The
specimen was scanned from 10 to 80° 26, with a step size
0f'0.02° and counting time of 20 s. Silicon (SRM-640) was
used as an external standard.

3. Results and Discussion

For pattern indexing and unit cell parameter refinement,
the precise determination of peaks positions was carried
out using the Highscore Plus v3.0 analytical software. The
X-ray diffractogram of Fe,SnSe, is shown in Figure 1. A
search in the PDF-ICDD database'® was performed and no
binaries are present. Therefore, the powder X-ray pattern
corresponds to a single phase.

The 20 first measured reflections were completely indexed
using the program DICVOLO04%, which gave a unique
solution in an orthorhombic cell with unit cell parameters a
=13.202A,b=7.675 A, c=6.357 A, and indexed figures of
merit M, =26.7* and F, = 40.7(0.0100, 49)*. Systematic
absences indicate a P-type cell, which suggested along with
the sample composition and cell parameter dimensions that
this material is isostructural with the olivine type compounds
with orthorhombic space group Pnma (N° 62) as the recently
reported compound Mn,SnSe, [*7]. So the space group Pnma
and the atomic position parameters of Mn,SnSe, were taken
as the staring values to refine the structural parameters of
Fe,SnSe,.

The crystal structure refinement, employing the
Rietveld method’!, was performed using the Fullprof
program* available in the software package Winplotr®,

1100 T T T T . .
!
fe2snsed4_1.PRF: i
i * 1.Yobs
— 2.Ycalc
— 3. Yobs-Ycalc
E 7000} | 4. Bragg_position
= ,
=
a
@ 5000 i
=
[
o 3000- |
=
=
1000
T 1 A1 TR R ICCATR RO (1
4 w.iw o 1’* o W*\—N“ﬂ\’—w*——Q———.‘p———ﬂ/W
10 20 30 40 50 80 70 80
2 Theta (%)

Figure 1. Observed (circles), calculated (solid line), and difference plot of the final Rietveld refinement of Fe,SnSe,. The Bragg reflections

are indicated by vertical bars.
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The indexing results were taken as the starting unit cell
parameters. The angular dependence of the peak full width
at half maximum (FWHM) was described by the Caglioti’s
formula, FWHM?=Utan?0+Vtan0+W, where U, V, and W
are fitting parameters®. Peak shapes were described by
the parameterized Thompson-Cox-Hastings pseudo-Voigt
profile function®. The background was described by the
automatic interpolation of 66 points throughout the whole
pattern. The thermal motion of the atoms was described
by one overall isotropic temperature factor. Details of the
Rietveld refinement of Fe,SnSe, are summarized in Table 1,
and the atomic positions and thermal displacement factors are
presented in Table 2. The observed, calculated, and residual
powder XRD patterns of Fe,SnSe, are shown in Figure 1.

It should be noted that the previously reported unit cell
parameters for this material®® will be used to reproduce
the experimental diffraction pattern, however, it does not
produce good results. On the other hand, the unit cell volume
obtained in this work agrees in the order of magnitude with
those reported for similar compounds (see Table 3).

The structure of the ternary chalcogenide Fe SnSe, can
be described as an olivine type structure which consists of a
hexagonal close packing of Se? anions with the Fe* cations

occupying half of the octahedral sites and the Sn* cations
occupying an eighth of the tetrahedral sites. As expected for
these materials each anion is coordinated by four cations
(three Fe and one Sn) located at the corners of a slightly
distorted tetrahedron. The polyhedral coordination of the
cations and anions are presented in Figure 2, showing the
FeSe, octahedra, SnSe, tetrahedra and Se(SnFe,) tetrahedra
formed. Figure 3 shows the unit cell diagram of Fe,SnSe,
with the octahedra and tetrahedra coordination around the
cations. Details of the olivine type structure description are
published elsewhere?!.

Unit cell parameter values of Fe, SnSe, are very similar
to those reported in the crystal structures of the Fe-content
compounds with IL,-IV-VI, compositions as shown in Table 3.
The Fe-Se bond distances vary from 2.52(1) A t0 2.76(2) A
[with a mean value of 2.66(2) A] and Sn-Se bond distances
from 2.42(1) A to 2.56(2) A [mean value of 2.47(2) A].
These interatomic distances are shorter than the sum of the
respective ionic radii for structures tetrahedrally bonded?®,
nevertheless compare quite well with those observed in other
adamantane structures with common elements, found in
the Inorganic Crystal Structure Database (ICSD)?, such as
Cu,FeSnSe,”, Fe,GeSe,*, Cu,(Cd,Zn)SnSe **, Cu,SnSe,*,

Table 1. Rietveld refinement details for the ternary chalcogenide Fe,SnSe,.

molecular formula formula Fe,SnSe, wavelength (CuK ) 1.5418 A
molecular weight (g/mol) 546.24 data range 26 (°) 10-80
a(A) 13.2019(3) step size 20 (°) 0.02
b(A) 7.6746(1) counting time (s) 20
c(A) 6.3572(1) step intensities 4001
V (A% 644.11(2) Peak-shape profile pseudo-voigt
z 4 R (%) 6.1
Crystal system orthorhombic R, (%) 6.5
Space group Pnma (N° 62) R, (%) 5.5
d, (g/em?) 5.63 R, (%) 5.0
Temperature (K) 298(1) S 1.2

R, = 100 [(N-P+C) /3 (Yo DI Ry =100 3]y, - Yol / XY fs Ry = 100 [, 1Y = Yol / Z MY 1? 8 = [R, /R (I Ry = 100 3 L -le [ /3, L] N-P+C

is the number of degrees of freedom

Table 2. Atomic coordinates, occupancy factors, isotropic temperature factors, and geometric parameters (A, ©) for Fe,SnSe,.

Atom Ox. Site x y z foc B, (A)
Fel Iy 4a 0 0 0 1 0.6(2)
Fe2 ey 4c 0.242(1) v, 0.503(1) 1 0.6(2)
Sn 4 4c 0.407(1) v 0.073(1) 1 0.6(2)
Sel 2 8d 0.328(1) 0.008(1) 0.253(1) 1 0.602)
Se2 2 4c 0.416(2) v 0.688(2) 1 0.6(2)
Se3 2 4c 0.583(2) v, 0.247(1) 1 0.6(2)
Fel-Sel’ 2.76(1) Fel-Se2" 2.52(1) Fel-Se3" 2.73(1)
Fe2-Sel’ 2.70(1) Fe2-Sel 2.70(1) Fe2-Se2 2572)
Sn-Sel 2.42(1) Sn-Se2; 2.45(1) Sn-Se3 2.56(2)
Sel"-Fel-Se2it 96.5(2) Se3i_Fe2-Sel™ 89.0(2) Se2-Sn-Se3 113.14)
Sel"-Fel-Se3" 88.6(2) Se3i-Fe2-Sel 89.02) Se2-Sn-Sel™ 119.4(2)
Sel™-Fel-Se3 91.4(2) Se3ii-Fe2-Sel"t 94.6(2) Se2i-Sn-Sel 119.4(2)
Sel"-Fel-Se2" 83.502) Se3i_Fe2-Sel® 94.6(2) Sel"-Sn-Se3 100.6(3)
Sel"-Fel-Sel 180.03) Sel"-Fe2-Sel 174.8(2) Sel"-Sn-Sel 100.4(3)
Se2i-Fel-Se2" 180.0(5) Sel-Fe2-Sel™ 174.8(2) Se3-Sn-Sel 100.4(3)

Symmetry codes: (i) X, y, -1+z; (ii) -0.5+x, y, 0.5-z; (iii) -0.5+x, 0.5-y, 0.5-z; (iv) 0.5-x, -y, -0.5+z; (v) 0.5-%, -y, 0.5+z; (vi) X, 0.5-y, z; (vii) 0.5-x, 0.5+y, 0.5+z.
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Table 3. Crystallographic information reported in the literature for the system Fe,-IV-VI, (IV= Si, Ge, Sn; VI= S, Se, Te).

Compound SG a(A) b(A) c(A) V(A% Ref.
Fe SnS, 14 /d 7.308(5) 7.308(5) 10.338(9) 552.1(3) 2]
Fe SiS, Pnma 12.407(2) 7.198(1) 5.812(1) 519.0(1) ]
Fe GeS, Pnma 12.467(2) 7.213(1) 5.902(1) 530.7(2) (]
Fe GeSe, Prma 13.069(1) 7.559(1) 6.2037(6) 612.8(1) [34]
Fe GeTe, Pnma 13.655(2) 7.898(1) 6.484(1) 699.3(2) 7]
Fe SnSe, Prma 13.2019(3) 7.6746(1) 6.3572(1) 644.11(2) this work

Fe1

Se1l

Fe1 Fe1
Fe2 Sn
S
e Fe2 Se2
Fe2 Se3
Fe2 Sn
n Fel Fe1

Figure 2. Coordination polyhedra of the cations (Fel, Fe2, Sn) and anions (Se), showing the FeSe, octahedra, SnSe, tetrahedra, and
Se(SnFe,) tetrahedra formed in the Fe,SnSe, structure.

Cu,SnSe.*', Fe CrSe,”, Cu,MnSnSe,*”, CuFe(Al,In,Ga)Se,**

and CuFe (Al,Ga,In)Se,**". All the bond angles in the
structure of Fe,SnSe, are close to the ideal tetrahedral and
octahedral bond angle values.

4. Conclusions

The crystal structure of the ternary magnetic compound
Fe SnSe, was refined using powder X-ray diffraction through
the Rietveld method. This material was synthesized by the
melt and annealing technique and crystallizes with an olivine
structure in the orthorhombic space group Pnma. This is a new
compound of the IL-IV-VI, family of semiconductors with
an olivine-type structure. The crystal structure knowledge
of Fe,SnSe, allows further investigation of this material
about their structure-property relationship. This ternary
semiconductor compound can be considered as a potential
candidate for device thermoelectric applications.
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