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A tight-binding model is fitted to density-functional calculations of the electronic structure of the 
MoS2 monolayer. The model involves 13 atomic orbitals per unit cell: the 4d orbitals of the molybdenum 
atom plus the 3s and 3p orbitals of each sulfur atom. The hopping and overlap couplings of each 
atom with its first nearest neighbors in each crystalline sublattice are considered. Different values are 
allowed for the intraplane and interplane S-S hopping integrals. A closed-form expression is given 
for the effective-mass tensor at stationary points. The isotropy of the valence and conduction bands 
near the edges of the fundamental gap is proven. The role played by the orbital overlapping as well 
as the crystal-field splitting of the molybdenum 4d level is discussed.
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1. Introduction
New two-dimensional (2D) materials have attracted a 

lot of attention since 20041. This is due to amazing advances 
in the investigation of graphene. In this trend, monolayers 
of transition-metal dichalcogenides (TMDs) such as MoS2, 
WS2, MoSe2 and WTe2, have been investigated as well. In the 
laboratory, the new materials can be obtained by mechanical 
exfoliation2 or molecular vapor deposition3, and can be 
characterized by different techniques, such as optical and 
electron microscopy2, and Raman and photoluminescence 
spectroscopy3. The efforts have revealed new physical 
phenomena, such as Landau quantization in an insulating 
WTe2 monolayer4, and has led to technological applications, 
including photodetectors5, flexible devices, light-emitting 
devices, solar cells6 and transistors7. Biomedical applications 
in cancer therapy, drug release and tissue-engineering scaffold 
design have also been considered8.

The experimental work supports as well as benefits 
from the theoretical advances in the description of physical 
and chemical properties of these materials. Most of those 
advances rely on ab-initio calculations of the electronic 
structure, involving the density-functional theory (DFT). 
Costa-Amaral  et  al.9 reported an investigation of the 
adsorption properties of 3d , 4d , and 5d  metal adatoms on the 
MoS2 monolayer, by applying spin-polarized DFT within the 
D3 van der Waals correction. Deng and Li10 predicted a new 
semiconductor and ferromagnetic 2D crystalline structure of 
MoS2. Gabourie et al.11 used molecular dynamics to study 
the thermal conductivity of monolayer and bilayer structures 
of MoS2, comparing suspended, supported, and encased 
structures. Abdi and Astinchap12 used the Holstein model to 
investigate thermoelectric properties of the MoS2 monolayer.

Further understanding and applications of the electronic 
structure of TMDs has been gained through semi-empirical 
tight-binding models (TBMs)13-15, because of their conceptual, 
geometrical, and computational simplicity. In short, they 
approximate the Bloch functions by linear combinations 
of atomic orbitals (LCAOs), apply variational procedures, 
explore symmetry, solve eigenvalue problems, and adjust 
a set of energy and overlap parameters16.

In 2013, Cappelluti  et  al.13 presented a TBM for the 
MoS2 monolayer as well as bulk MoS2. The 4d  orbitals 
of Mo and the 3p orbitals of S are considered. This yields 
11 energy bands: seven valence bands and four conduction 
bands. The tight-binding calculations are fitted to DFT energy 
values, using 11 (13) parameters for the monolayer (bulk) 
crystal. All bulk parameters are transferred to the monolayer, 
except for two interlayer hopping integrals between S atoms. 
In this way, the direct-gap/indirect gap transition is successfully 
described. Three years later, Silva-Guillén et al.14 improved 
their fitting procedures and calculated the electronic structure 
and the optical conductivity of MoS2 and other TMDs.

In 2015, Ridolfi et al.15 used a TBM with 12 parameters 
to fit a DFT calculation. Considering the same set of orbitals 
as Cappelluti et al.13, the five energy bands mostly associated 
to Mo orbitals are fitted very well. This gives satisfactory 
values for the energy gap, the valence- and conduction-band 
effective masses, and relevant local extrema of selected bands. 
However, the six tight-binding valence bands dominated 
by the 3p orbitals of S and their DFT counterparts differ 
appreciably. The former (latter) set of bands roughly ranges 
from 98.5−  eV to 24.1−  eV ( 6.6−  eV to 1.1−  eV). As a result, the 
Mo-S (S-S) hopping integrals may have been overestimated 
(poorly estimated).*e-mail: alexys.bruno-alfonso@unesp.br
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While the above described tight-binding approaches 
agree with DFT calculations at certain points of the electronic 
structure, much work remains to be done. Because of 
simplifications, the fitted parameters can fail to describe the 
interatomic couplings appropriately. To improve the approach, 
one can enrich the set of atomic orbitals as well as describe 
the atomic interactions more realistically. Additionally, the 
TBM effective-mass values are routinely estimated through 
quadratic fittings of the energy bands, even though analytical 
calculations can be performed. To advance in these tasks, the 
present work investigates a TBM that fits 13  energy bands of 
the MoS2 monolayer obtained by DFT. The main novelties 
compared with previous works13,15 rely on: (i) including 
the 3s  orbital of S, (ii) considering finite overlaps between 
the atomic orbitals of nearest neighbors in each crystalline 
sublattice, (iii) allowing for differences between intraplane 
and interplane S-S hopping integrals, (iv) adjusting the tight-
binding parameters to find good overall agreement between 
the methods, (v) giving a closed-form expression for the 
effective-mass tensor, and (vi) proving that the valence and 
conduction bands are isotropic near the gap edges.

The manuscript is organized as follows. Section 
2 describes the crystalline structure of the MoS2 monolayer, 
Section 3 describes the DFT procedures, Section 4 presents 
the tight-binding model, and Section 5 gives the numerical 
results and discussions. Section 6 summarizes our main 
findings and perspectives.

2. The MoS2 monolayer
As depicted in Figure 1, the MoS2 monolayer has three 

atoms per unit cell. The structure consists of one Mo atomic 
plane at 0z = , sandwiched between two S atomic planes at 

 z h=± , with15  1.56h≈  Å. It can be decomposed into three 
crystalline sublattices. The atomic positions on each plane have 

the form ζ+R ρ . The lattice vectors are given by 1 1 2 2n n= +R a a , 
where 1n  and 2n  are integer numbers, ( )1 1, 3,0 / 2a= +a  and 

( )2 1, 3,0 / 2a= −a , with15 3.16a ≈  Å, whereas the relative 

atomic positions are 0 = 0ρ , and ( ) ( )1 2 / 3 0,0,h h± = + + ±a aρ . 
The Wigner-Seitz cell is the hexagon on the xy-plane obtained 
by requiring that ( ) 2, ,0 / 2x y ⋅ ≤R R  applies for each lattice 
vector R.

The reciprocal lattice is hexagonal as well, with 
primitive vectors given by ( )1 2 1,1 / 3,0 / aπ=b  and 

( )2 2 1,1 / 3,0 / aπ= −b , and the first Brillouin zone being 
the hexagon shown in Figure  2. The high-symmetry 
points Γ = 0 ,  ( ) ( )1 2K 2 / 3 2 1, 3,0 / 3aπ= + =b b  and 

( ) ( )1 2M / 2 2 0,1,0 / 3aπ= + =b b  as well as the intermediate 

points   u KΛ = , ( )T 1 K  Mu u= − +  and ( )1 KuΣ = − , where 
0 1u≤ ≤ , are displayed. Our choice for the M point differs 
from that in previous works13,15. It aims to simplify the 
symmetry analysis of Bloch functions with respect to the 
plane 0x = . The triangular path K MΓ − − −Γ is used to 
partially display the energy bands.

Besides the translational invariance, the mirror symmetry 
across the plane 0z =  is the most apparent symmetry of the 
MoS2 monolayer. Hence, the Bloch states can be classified 
as either symmetric (even) or antisymmetric (odd) under 

reflection with respect to the xy  -plane. Moreover, the 
monolayer presents reflection and rotation symmetries with 
respect to planes and axes that are perpendicular to the xy

-plane, as given by the plane group p3m117,18. Together with 
the time-reversal symmetry, this guarantees that the energy 
bands present the same symmetries as the Brillouin zone 
depicted in Figure 2. Then, our calculations can be restricted 

Figure 1. (a) 3D pictorial view of the MoS2 monolayer. The blue 
(yellow) spheres are for the Mo (S) atoms. (b) Top view of panel 
(a), where the red arrows are for the vectors 1a  and 2a . (c) Left 
view of panel (a). (d) Front view of panel (a), where the red arrow 
are the vectors hρ  and h−ρ .
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to the irreducible region limited by the triangular path in 
the same figure.

The symmetry group has mirror planes at / 2x na=  and 
3x y na± = , where n takes integer values [see Figure 1b]. 

They are all equivalent to the plane 0x = . The reflection 
symmetry with respect to the latter plane manifests itself 
in the Bloch functions with wave vector k along the Σ 
line displayed in Figure 2. They can be classified as either 
symmetric or antisymmetric across the plane 0x = . The group 
also has vertical glide planes given by ( ) 2 1 / 4x n a= +  and 

( )3 2 1 / 2x y n a± = + , where n takes integer values.
Considering vertical rotation axes, the group has third-order 

axes passing through each Mo atom at ( ), ,0x y = R, through each 

pair of S atoms at ( ), , hx y h ±± = +R ρ , and through each point 
given by ( ) ( )1 2, ,0 / 3x y = − +R a a . Here R is a lattice vector [see 
Figure 1b]. The rotational symmetry around the z-axis manifests 
itself on the Bloch functions of the Γ  and K points. They are 
eigenvectors of the counterclockwise rotation in 120°, with the 
eigenvalue being a cubic root of 1, namely 1 or ( )exp 2 / 3iπ± .

3. Density-functional-theory
The DFT calculation was run in the PWscf package developed 

by Quantum ESPRESSO19 under Linux Ubuntu in a personal 
computer. Since this code deals with 3D crystalline structures, 
we consider an infinite stack of MoS2 monolayers. The spacing 
between the Mo planes of consecutive monolayers is 5 7.8h =  Å, 
i.e., we deal with a bulk crystal with a hexagonal lattice generated 
by the vectors 1a , 2a , and ( )0,0,5h . The spacing is rather large to 
ensure that van der Waals interactions between the monolayers is 
negligible. Perdew-Burke-Ernzerhof functionals for scalar relativistic 
pseudopotentials with projector-augmented waves and non-linear 
core corrections of Mo and S atoms are given in files20 Mo.pbe-
spn-kjpaw_psl.1.0.0.UPF and S.pbe-n-kjpaw_psl.1.0.0.UPF, 
respectively. Cutoff parameters are given by ecutwfc = 80 and 

ecutrho = 400. The self-consistent calculation of the crystalline 
potential is done for 21 energy bands over a 21 21 1× ×  wave-vector 
mesh. Then, a non-self-consistent calculation of the same bands 
is performed along the K MΓ − − −Γ path.

4. Tight-binding-model
The TBM approximates each Bloch function of an electron 

in the MoS2 monolayer by an LCAO of the constituent 
elements Mo and S. Here, the spin-orbit interaction is 
neglected, and the electron Hamiltonian is independent of 
spin. Considering the 4d  orbitals of Mo and the 3s and 3p 
orbitals of S, the Bloch function reads

( )
{ }

( ), , , ,
0,

  ,
h A

c

ζ

ζ ϕ ζ ϕ
ζ ϕ

ψ φ
∈ ± ∈

= ∑ ∑k k kr r 	 (1)

where

( ) ( )  
, ,   ,i

R

eζ ϕ ζφ ϕ ⋅−= −∑ k R
k r r R ρ 	 (2)

and 0A  and hA  consists of atomic orbitals of Mo and S, namely, 

( )2 2 20 , , , ,xz yz xyz x yA d d d d d−=  and ( ), , ,h z x yA s p p p= . Using 
the matrix product, the Bloch function can be rewritten as

( )
{ }

( ), ,
0,

  
h

ζ ζ
ζ

ψ φ
∈ ±

= ∑k k kr r c 	 (3)

with

( ) ( ) 
,  e  . i

ζ ζ ζφ ⋅ −= −∑ k R
k

R

r r Rϕ ρ 	 (4)

The coordinates of both the row matrix ( )ζ rϕ  and the 
column matrix ,ζ kc  are arranged as the orbital ϕ runs over 
the sequence Aζ . One may also write ( ) ( )ψ φ=k k kr r  c , 
with a row matrix ( ) ( ) ( ) ( )( )0, , ,, ,h hφ φ φ φ−=k k k kr r r r  and a 
column matrix ( )0, , ,, ,h h−=k k k kc c c c .

The TBM requires finding the best values for the 
coefficients ( ),cζ χ k  in Equation 1. This is done by minimizing 
the expected value of the electron energy in the Bloch state, 
which is given by the Rayleigh quotient
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Here WS denotes the Wigner-Seitz cell of the 
MoS2 monolayer,

( ) ( )†

WS
    Ĥ dxdy dzφ φ

+∞

−∞
= ∫k kk r r ∬ 	 (6)

and

Figure 2. The first Brillouin zone of the MoS2 monolayer. The 
points Γ, Κ, M as well as the lines along generic points Λ, Τ, Σ are 
symmetry elements of the reciprocal lattice.
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( ) ( )†

WS
   .dxdy dzφ φ

+∞

−∞
= ∫k kk r r ∬ 	 (7)

These 13×13 matrices are Hermitian, and can be given 
in terms of their blocks

	 (8)

and
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ρ ρ

	 (9)

with ,Dζ ζ ′ being the set of vectors ζ ζ′= + −d R ρ ρ  joining 
an atom of sublattice ζ  at ζρ  to each atom of sublattice ζ ′ 
at ζ ′+R ρ ,

	 (10)

and

( ) ( )†
, ,    .dV

∞

ζ ζ ζζ

∞

′ ′

+

−

= −∫∫∫ d r r dϕ ϕ 	  (11)

The kinetic-energy operator is isotropic, whereas the 
interaction energy can be approximated by a superposition of 
isotropic interactions with the atomic cores. In Equation 10, 
the atomic cores at ζρ  and ζ + dρ  dominate the contribution 
of the interaction energy.

For 0=d , the atomic energy levels are affected by the 
nearest neighbors. Then, the 4d energy level of Mo splits into 
three sublevels 0dE , 1dE  and 2dE , associated to the orbital 
subspaces { }2zd , { , }xz yzd d  and { 2 2 , xyx yd d− }, respectively. 
In the same way, the 3p energy level of S splits into a 
couple of sublevels 0pE , 1pE  for the orbital subspaces { }zp  
and { ,x yp p }, respectively. Additionally, the S atom has 
the energy level sE  of the 3s orbital. This yields six on-site 
energies for the TBM.

For 0≠d , the integral can be calculated under the 
assumption that Ĥ  presents cylindrical symmetry around the 
line through the atomic positions ζρ  and ζ + dρ . In this way, 
one can apply the Slater-Koster procedure to obtain  
and , ,ζ ζ ′ d  in terms of σ , π  and δ  integrals14,16. We consider 
the coupling of each atom to its first nearest neighbors in 
each crystalline sublattice of the MoS2 monolayer. Only 
independent hopping and overlap integrals are listed below.

Each Mo atom couples to the six nearest Mo atoms 
through three hopping integrals ( ddV σ , ddV π , ddV δ ) and three 
overlap integrals ( ddS σ , ddS π , ddS δ ). It also couples to the 
three nearest S atoms at z h=  and the three nearest S atoms 
at z h= − . The coupling is given by three hopping integrals 
( dsV σ, dpV σ, dpV π ) and three overlap integrals ( dsS σ , dpS σ, dpS π).

The coupling of each S atom to the three nearest Mo 
atoms is given by three hopping integrals ( sdV σ , pdV σ , pdV π ) 
and three overlap integrals ( sdS σ , pdS σ , pdS π ). Each S atom 
also couples to its six nearest S atoms on the same plane 
through four hopping integrals ( ,  ss spV Vσ σ , ppV σ , ppV π ) and 
four overlap integrals ( ,  ss spS Sσ σ , ppS σ , ppS π ), as well as to 
the nearest S atom on the other S plane, with four overlap 
integrals ( , ssV σ  spV σ , ppV σ , ppV π ) and five overlap integrals 
( , ssS σ  spS σ, ppS σ, ppS π). Since the distance between coplanar S 
atoms is 3.16a ≈  Å, while that between the S planes is 2  3.12h≈  
Å, we assume that sp spS Sσ σ= , pp ppS Sσ σ=  and pp ppS Sπ π= . 
This gives 14 independent hopping integrals: ddV σ, ddV π , ddV δ , 

,  ss spV Vσ σ , ppV σ , ppV π , ,ssV σ  spV σ , ppV σ , ppV π , sdV σ , pdV σ , 
pdV π , and 10 overlap integrals ddS σ , ddS π , ddS δ , ,  ss spS Sσ σ , 
ppS σ, ppS π , sdS σ , pdS σ , pdS π . Collecting the on-site energies, 

the hopping integrals, and the overlap integrals, our TBM deals 
with 30 adjustable parameters. The dependence of k  and k  
on those parameters is explained in Appendix 1.

To ensure the existence of a global minimum of Ek  as 
a function of kc  we require k  to be non-singular21. Since 
neglecting the orbital overlapping would reduce k  to the 
identity matrix, the feasible region of the overlap parameters 
is such that k  is a positive definite matrix for each k. To find 
the optimal kc  we derive the second line of Equation 5 with 
respect to †

kc . In fact, instead of the real and imaginary parts 
of kc , the complex variables kc  and †

kc  can be treated as 
independent variables, and the corresponding derivatives 
of the real-valued function Ek are the complex conjugates 
of each other. The derivative vanishes whenever16

 E=k k k k k c  c  .	 (12)

Hence, the energy bands and the coefficients in the LCAO 
are the solutions of the generalized eigenvalue problem for 
the pair ( ),k k   . This is solved by using the Eigensystem 
command in Wolfram Mathematica22, giving 13 energy bands.

The mirror symmetry across the plane 0z =  is related to the 
reflection operator σ̂  given by ( ) ( )ˆ  , , , ,x y z x y zσψ ψ= − . Even 
and odd Bloch states are eigenvectors of ˆ  with eigenvalue 

1+  and 1− , respectively. The even states will be given by 
( ) ( )ψ φ=k k kr r  c   , with13,15
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with   being a 13 7×  matrix, whereas the odd states read 
( ) ( )ψ φ=k k kr r  c   , with13,15
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where   is a 13 6×  matrix. They satisfy the generalized 
eigenvalue problem

, , , , , ,E=k k k k k c  c           	 (15)

where †,
,,   = kk    
    and †,

,,   = kk    
   . 

Here k  and  are 7 7×  matrices, whereas O
k  and O

k  are 
6 6×  matrices. They lead to seven (six) energy bands with 
even (odd) Bloch functions, provided 

k
 and 

k
 are positive 

definite matrices21 for each k.
The tight-binding parameters should fit the DFT results. 

They depend on the set of DFT ( ), Ekk  points involved. We 
first use the 13 band energies of Γ, Κ and Μ, i.e., 39 ( ), Ekk  
points, and minimize an objective function denoted by KMfΓ . 
Then we double the amount of information by including the 
13 band energies at the midpoints of the line segments Λ, Τ 
and Σ in Figure 2. The new objective function is denoted by 

K MfΓΛ Τ Σ. Each objective function is the root mean square 
of the energy differences between the TBM and DFT at 
the corresponding points. The optimal set of parameters 
obtained for KMfΓ  can be used as a starting point for the 
minimization of K MfΓΛ Τ Σ.

Regarding the tight-binding parameters, we run two 
configurations: (TBM-20), where the overlap integrals 
between neighbor atoms are neglected, and (TBM-30) 
where the full set of parameters is considered. In both cases, 
additional conditions reduce the number of parameters by 
two. The energies at the K point of both the fifth and sixth 
TBM bands with even Bloch functions are pinned the DFT 
values. This gives the on-site energies 0dE  and 2dE  in terms 
of the remaining parameters.

The numerical fitting is performed by combining random 
multi-start and local minimization procedures23. Only starting 
points with all the on-site energies between 20−  eV and 10 
eV, and sE  being the lowest among them, are considered. 
The local minimization uses the FindMinimum command 
in Wolfram Mathematica22. In the TBM-30 configuration, 
each overlap integral S  between neighbor atoms should 
satisfy 1 1S− < < . To simplify this, we map each S into an 
auxiliary variable Z  according to the one-to-one relation 

( )/ 1Z S S= − . Nevertheless, the feasibility region for the 
overlap parameters is given by the restriction that both k

  
and k

  should be positive definite matrices21 for each k.
The effective-mass values at the selected stationary points 

are among the main information usually extracted from the 
band structure. They affect thermal, transport and optical 
properties of the investigated material. The corresponding 
tensor is given by

2

* ,kE
m

= ∇∇


	 (16)

where the Hessian matrix is the result of applying the dyadic 
product of ∇ with itself. It can be obtained by implicit 
derivation of the secular equation

( )det 0=k ,	 (17)

where  E= −k k k k   . Since the partial derivative of ( )det k  
with respect to ( ) ,j j′k  equals24 the cofactor ( ) ,j j′k  of k , the 
gradient of Equation 17 with respect to k reads

( ) ( )
'

2

, , '
, 1

0,j j j j
j j

′
=

∇ =∑


k k  	 (18)

i.e., ( )Tr  0F ∇ =

k k , where k  is the cofactor or adjugate 
matrix of k . This leads to

( )
( )

Tr  

Tr

E
E

∇ − ∇  
∇ =





k k k k
k

k k

  
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.	 (19)

Differentiating again with respect to k, and considering 
a stationary point, Equation 16 becomes

( )
( )

2

*

Tr   
.

Tr

E E

m

∇ ∇ − ∇ + ∇∇ − ∇∇      
=



 



k k k k k k k k

k k

     

 
	(20)

Since k  and k  are linear combinations of 
exponentials like ( )exp  i ⋅k R  in Equations 8 and 9, their 
gradients (∇ k  and ∇ k ) and their Hessians (∇∇ k  and 
∇∇ k ) can be obtained by substituting each exponential 
by ( ) expi i ⋅R k R  and ( ) exp i− ⋅RR k R , respectively. Moreover, 

( ) ( ) ( ) ( ), ,
, 1  Tr  j j j jj j

j j
+ ′ ′′

′
 

∇ = − ∇ 
 


k k k   , where ( ),j j′
k  is the 

submatrix of k  obtained by crossing out row j and column 
'j , and ( ),j j′

k  is the cofactor matrix of ( ),j j′
k .

The high-symmetry points Γ, K and M are stationary 
points. Because of the three-fold rotational symmetry of the 
energy bands around Γ and K, the effective masses at such 
points are scalars. In other words, each effective-mass tensor 
equals a scalar multiple of the identity matrix, i.e., the effective 
mass is isotropic at these points. Unexpectedly, claims of 
the effective-mass isotropy at K being only approximate are 
available in the literature15,25. This can be an artifact a sparse 
k mesh, truncation in data storage, or limited precision of 
fitting procedures.

At the M point, the bands present mirror symmetry with 
respect to the MΓ −  line (see Figure 2). There, the principal 
axes of each energy band are parallel to the Cartesian axes. 
If the corresponding effective-mass values have the same 
sign (opposite signs), then M gives a local extremum (saddle 
point). The effective mass anisotropy can also be found at 
other stationary points, such as the Q point considered by 
Ridolfi et al.15.

5. Numerical results and discussions
Figure 3 shows 13 bands of the electronic structure of 

the MoS2 monolayer along the K MΓ − − −Γ path. They have 
been produced by PWscf19, as described in Section 3. We 
have discarded the lowest four bands, which are associated 
to the 4s and 4 p orbitals of Mo atoms, as well as the highest 
four bands. The latter ones can be dominated by either the 
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5s and 5p orbitals of Mo atoms or the 3d orbitals of S atoms. 
Colors are used to distinguish even from odd Bloch functions 
with respect to the Mo plane. This classification is done by 
means of a code developed in Wolfram Mathematica22. It 
considers the weights of atomic orbitals in the output of the 
code projwfc.x code provided by Quantum ESPRESSO19. 
Even (odd) Bloch functions have no contribution from xzd  
and yzd  ( 2 2 2, ,z x yd d −  and xyd ) orbitals of the Mo atoms.

The lowest two bands in Figure 3 are dominated by the 
3s orbitals of S atoms. The first six bands above them are 
mainly associated to the 3p orbitals of S. The remaining five 
bands are dominated by the 4d orbitals of Mo. A fundamental 

energy gap of 1.76 eV splits this latter group of bands into one 
branch of the valence band and four branches of the conduction 
band. The gap width is near experimental photoluminescence 
results15,26, namely close to 1.9 eV. The whole band structure 
is shifted in energy to put the valence-band top at 0E =  eV.

The valence and conduction effective-mass values at 
the K point, denoted by vm  and cm , respectively, have been 
extracted from our DFT calculations. This is done by using 
the same quadratic term but different cubic terms along 
the K −Γ  and K M−  directions, giving 00.5986 vm m≈ −  and 

00.4691 cm m≈ , where 0m  is the bare electron mass.
The DFT results at the Γ, Λ, M, T, Σ and K points 

associated to the vertical lines in Figure 3 have been fitted 
by two TBM configurations. Tables 1, 2 and 3 display the 
parameters that were found for the configurations TBM-20 
(neglecting overlaps) and TBM-30 (with finite overlaps). 
For 20 (30) parameters, the approximate root-mean-square 
difference with the DFT results at the Γ, Λ, M, T, Σ and K 
points equals 0.34 eV (0.14 eV).

As shown in Table 1, the splitting of the 4d Mo energy level 
given by the TBM-20 configuration fulfills 0 2 1d d dE E E< < . 
This agrees with a simple model of crystal-field theory where 
the nearest S atoms are substituted by negative point 
charges27,28. In the TBM-30 case, the sublevels are ordered 
as 1 2 0d d dE E E< < . Here we note that the orbital overlap 
between neighbor atoms affects the splitting appreciably. 
Pasquier and Yazyev29 have reported still another ordering, 
namely 2 0 1d d dE E E< < . This should be investigated in more 
detail, by improving the optimization procedures, increasing 
the amount of DFT information to be fitted, and considering 
more realistic tight-binding models.

Our optimal tight-binding parameters in Tables 1 and 2 do 
not correlate well with the values found in previous works13,15. 
On one hand, our values have the same order of magnitude 
as those reported by Cappelluti  et  al.13. However, the 

Figure 3. The electronic structure of the MoS2 as given by the DFT 
calculations. Blue (red) dots are for Bloch states that are symmetric 
(antisymmetric) with respect to the Mo plane.

Table 1. Optimized on-site energies of the tight-binding model. The TBM-20 (TBM-30) columns are for the calculation that neglects 
(considers) overlap integrals between neighbor atoms.

On-site energy (eV) TBM-20 TBM-30 On-site energy (eV) TBM-20 TBM-30

0dE 0.004− 0.392− sE 10.455− 11.515−

1dE 0.165 1.740− 0pE 1.966− 2.031−

2dE 0.100 0.536− 1pE 2.125− 2.287−

Table 2. As of Table 1, but for the optimized hopping integrals.

Hopping integral 
(eV) TBM-20 TBM-30 Hopping integral 

(eV) TBM-20 TBM-30

ddV σ 0.739− 0.834− sdV σ 2.405 2.015−

ddV π 0.716 0.375 pdV σ 2.105 2.062

ddV δ 0.065− 0.011 pdV π 1.014− 1.097−

ssV σ 0.463− 0.500− ssV σ 0.733− 0.892−

ppV σ 0.768 1.206 ppV σ 1.488 1.945

ppV π 0.228− 0.217− ppV π 0.419− 0.605−

spV σ 0.423− 0.498− spV σ 1.451 0.585−



7Thirteen-band Tight-binding Model for the MoS2 Monolayer

ordering of on-site energies and the signs of various hopping 
integrals differ. On the other hand, comparing with the values 
reported by Ridolfi et al.15, our S on-site energies are more 
than 35 eV higher, and several of our hopping integrals are 
roughly 10 times smaller. The cited report prioritizes the five 
bands dominated by the 4d  Mo orbitals over the six bands 
associated to the 3p S bands. We also note that the largest 
overlap integrals in Table 3 are ddS σ , ppS σ , pdS σ  and pdS π .

Figure 4 displays the TBM and DFT energy bands of the 
MoS2 monolayer. In Figure 4a, the 20 optimal parameters 
roughly fit the DFT energy bands. Neglecting the overlap 
integrals, the direct gap at the K point is not well reproduced. 
Much better agreement is apparent in Figure 4b, where 30 
parameters include finite overlap integrals between nearest 
neighbors. The two lowest bands, dominated by the 3s orbitals 
of S are very well fitted. The next six bands, associated to the 
3p orbitals of S, are reasonably well reproduced. The main 
differences are near the K point, in the first band with odd 
Bloch functions. The top five bands, dominated by the 4d  
orbitals of Mo, display good agreement. Noticeable differences 
are near the M  point and/or in the highest two bands.

The curvatures of the valence and conduction bands near 
their edges seem to be in good agreement. However, the 
valence and conduction effective masses at the K point, as 
given by Equation 20, are 00.7557 vm m= −  and 00.5637 cm m= , 
respectively. This can be improved, for instance, by fitting 
the TBM with additional DFT data15. Moreover, the 5s and 
5p orbitals of Mo atoms, which are not included in our TBM, 
can interact with the 4d orbitals of Mo. This can affect the 
shape of the conduction bands with a strength that should 
be assessed in further investigations.

6. Conclusions
A 13-band tight-binding model has been fitted to a DFT 

electronic structure of the MoS2 monolayer. The model 
was run in two configurations: (i) neglecting the overlap 
between neighbor atoms and dealing with 20 parameters, and 
(ii) considering the overlap, thus increasing the number of 
parameters to 30. The first one is more realistic than previous 
works13,15 because the 3s S orbitals are included, and different 
hopping integrals are considered for intraplane and interplane 
couplings between S atoms. It gave a crystal-field splitting of 
the 4d Mo level in agreement with crystal-field theory27,28 but 
did not reproduce the DFT bands appropriately. The second 
configuration fitted the DFT results very well but reversed 
the sublevel ordering in the crystal-field splitting.

A closed-form expression for the effective-mass tensor 
at stationary points was derived. Besides giving relevant 
information accurately, it can be used to adjust the tight-
binding parameters whenever effective-mass values appear 
explicitly in the objective function. In contrast with previous 
works15,25, the valence and conduction effective masses at 
the K point were shown to be exactly isotropic.

Our tight-binding parameters are not well correlated to 
the values found in previous reports13-15. We have used more 

Table 3. As of Table 1, but for the optimized overlap integrals.

Overlap integral TBM-20 TBM-30 Overlap integral TBM-20 TBM-30

ddS σ 0 0.110 sdS σ 0 0.023

ddS π 0 0.011 pdS σ 0 0.166−

ddS δ 0 0.031 pdS π 0 0.104

ssS σ 0 0.013 ppS π 0 0.019−

ppS σ 0 0.064− spS σ 0 0.008

Figure 4. Calculated tight-binding (curves) and DFT (dots) energy 
bands of the MoS2 monolayer. Blue (red) curves and dots are for 
even (odd) Bloch states with respect to the Mo plane. Panel (a) 
[(b)] is for the computational configuration TBM-20 [TBM-30] 
which neglects [considers] orbital overlap between neighbor atoms.
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adjustable parameters, and chose different DFT information, 
another objective function, and alternate optimization procedures. 
Our DFT results are in good qualitative agreement with the 
literature and yields an energy gap close to the experimental 
values. They have served the purpose of providing enough 
information to fit the tight-binding energy bands. The present 
approach is expected to successfully fit more accurate DFT 
calculations as well. The tight-binding method can be applied 
to multilayer structures with different stacking patterns30 (1T, 
2H, 3R), and to twisted bilayer structures31. This requires 
additional discussions on symmetry as well as the inclusion 
of new interlayer hopping and overlap matrix elements13.

More realistic tight-binding models should be investigated 
in detail. A small correction can be done by considering 
different values for the intraplane and interplane overlap 
integrals between S atoms. Crystal-field theory needs further 
consideration to better understand the splitting of the Mo 
atomic level as well as to better describe the effects on the 
3s and 3p levels of S. For instance, the three neighbor Mo 
atoms of each S atom can induce an on-site 3 3 zs p−  coupling. 
Considering the lack of rotation symmetry around either the 
intraplane S-S lines or the Mo-S lines should introduce new 
hopping integrals between atomic orbitals having different 
projections of the angular momentum along the line. 
Including the 5s and 5p Mo orbitals, and possibly the 3d S 
orbitals in both the DFT and the tight-binding descriptions 
should give better account of the conduction band. This 
claim is motivated by a previous study on the electronic 
structure of the Mo atom that places the 5s level below the 
4d  level32. The interatomic couplings can also be extended 
to the second nearest neighbors. Moreover, there is plenty of 
room for improvements in the computational methods13,14, in 
the selection of what experimental or ab-initio information 
will be fitted, and in choosing an appropriate weight for each 
information in the objective function. Efforts along these 
lines will contribute to a better understanding of the physical 
properties of the new 2D materials under consideration 
and should impact the development of theoretical and 
computational methods for Materials Science.
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