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This work focuses on studying two types of structure: homogeneous and double-diffused emitter silicon 
solar cells. The emitter collection efficiencies and the recombination current densities were studied for a wide 
range of surface dopant concentrations and thicknesses. The frontal metal-grid was optimized for each emitter, 
considering the dependence on the metal-semiconductor contact resistivity and on the emitter sheet resistance. 
The best efficiency for n+p structures, η ≈ 25.5%, is found for emitters with thicknesses between (0.5-3) µm and 
surface doping concentrations in the range 2 x 1019 cm–3– 4 x 1018 cm–3; while the n++n+p structure a maximum 
efficiency of η ≈ 26.0% was identified for an even wider range of emitter profiles.
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1. Introduction

Solar cell emitters can be divided into two different types: a) ho-
mogeneous and b) double-diffused (DD) or selective. The homogene-
ous emitters are characterized by having the same doping level under 
passivated and metal-contacted regions, while the DD ones present 
a higher doping level under the metal-contacted one. The passivated 
regions can be obtained experimentally by a light phosphorus diffu-
sion. In case of DD emitters, this light diffusion is usually preceded 
by a heavy diffusion only under the metal-grid region.

The theoretical simulations are quite helpful in the development 
of fabrication processes of silicon solar cells, allowing defining the 
requirements for high quality emitters and high efficiency solar cells. 
In this work a re-optimization aiming to compare double-diffused 
(n++n+) and homogeneous (n+) Gaussian profile phosphorus emit-
ters was performed using a one-dimensional model with analytical 
solutions1,2, the currently accepted internal parameters3 and the 
updated intrinsic concentration, n

i 
= 9.65 x 109 cm–3[4]. 

Despite a complete theoretical re-optimization for homogene-
ous emitters having already been made5, the previous DD (double-
diffused) emitter optimizations were carried out using either obsolete 
parameters6,7,8, or without considering the light trapping effect and 
the metal-grid design optimization9. Thus, a re-optimization for the 
double-diffused emitter solar cells (n++n+p) is necessary. In order to 
establish a direct comparison between DD and homogeneous emitter 
structures, the latter will also be re-optimized here. 

2. Theoretical Modelling Assumptions

The homogeneous emitters have the same N
s
 and W

e
 under 

the passivated and the metal-contacted regions; on the other hand 
the double-diffused (DD) emitters are characterized by having a 
higher N

s
 under the metal-contacted one, with N

s
 = 1 x 1020 cm–3 and 

W
e
 = 2.0 µm (13 Ω/square) used in this work. The adopted expres-

sion for the surface recombination velocity under passivated region, 
S

p
 =  N

s
 x 10–16 cm/s, is the one typically found in oxidized surfaces 

followed by FGA annealing3, values corroborated by M. Kerr et. al.10. 
While under metal-contacted regions a constant S

p
 = 3 x 106 cm/s, 

was used.

In order to better show the emitter limitations, a 1 Ω.cm resistivity 
p-type base region with 300 µm thickness, a 1.5 ms minority carrier 
lifetime and a zero rear surface recombination velocity was assumed. 
In sequence, the electrical output parameters (J

sc
, V

oc
, FF and η) of n+p 

and n++n+p complete structures were studied. The short-circuit current 
density, J

sc
 was calculated taking into account the light trapping effect 

and the AM1.5G spectrum (ASTM G173-03). The open-circuit volt-
age, V

oc
 was determined as a function of total emitter recombination, 

J
oe

, the base recombination and J
sc
. The relation between the fill factor, 

FF and the device series resistance was expressed as function of the 
optimized total resistive power loss, p

tot
 and the intrinsic fill factor, 

FF
o
[11], as defined in the expression:

FF FF (1 p )o tot= − 	 (1)

3. Upgraded Program

In order to produce contour plots assuring accuracy even for 
thicker and highly doped emitters for the range N

s
 = 1 x 1018 cm–3 – 

1 x 1020 cm–3 and W
e
 = (0.1 to 10) µm, the 10th order approximation 

was adopted to fulfill the optimizations.
As a matter of fact, the 5th order approximation, used to calculate 

with accuracy the emitters with thicknesses up to 5 µm at the previous 
work9, became unsatisfactory for higher values of thicknesses (required 
at this work). 

Since the emitter can be divided into two different regions: pas-
sivated and metal-contact and the surface doping concentration was 
kept constant under the latter one, the accuracy on the recombination 
under the passivated region was chosen to be analyzed. 

For instance, a 10 µm thickness emitter with N
s
 = 1 x 1020 cm–3 

presented J
oepass

 = 158 fA.cm–2 as the recombination current density 
under the passivated region (without the metal-contact factor, F

m
) 

using the 10th order approximation, being about 5% inferior than the 
solution obtained by the PC1D code. On the other hand, if a 3rd and a 
5th order approximations were considered these errors would increase 
up to 39.2 and 26.5%, respectively. 
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4. Metal-Grid Optimization

In the present work, Ti-Pd-Ag metal-grid designs, typical of 
laboratory solar cell with 2 x 2 cm area, are optimized using classical 
models5,11. This optimization is performed by an iterative method until 
the shadowing loss becomes equal to the total resistive power loss, p

tot
 

(emitter layer, metal fingers and metal contacts) for each emitter. The 
metal (Ti) – semiconductor (Si) contact resistances were calculated 
taking into account their dependence on the emitter5,12 and Ag contact 
resistance was considered to be ≈2 x 10–6 Ω.cm2 [13]. The initial finger 
width was D = 6 mm and after being electroplated, D

F
= 30 mm, with a 

10 µm thickness. The bus-bar was supposed to be tapered and with a 
two-step Ag plating, typical of high efficiency solar cells14.

The shadowing factor, F
s
 was extracted from the total shadow-

ing power losses (fingers, p
sf
 plus bus-bar, p

sb
). However, the metal-

contacted factor, F
m
, due to the area increase caused by the electro-

plating, is a fraction of the p
sf 

 (20%) and p
sb

 (50%), as presented in 
expression (2).

( )F 100 (D / D ) p 0.5 pm F sf sb= × × + × 	 (2)

Figures 1 and 2 show the optimized shadowing factors, F
s
 and 

the spacing between fingers, S as functions of N
s
 and W

e
 for single 

and double emitters. 

Comparing these figures, it can be observed that the higher 
the surface doping concentration (>2 x 1019cm–3) of thick emitters 
(>3 µm), the higher the required spacing between fingers (>1.79 mm), 
and consequently, the lower F

s
 (about 2.4-2%) for both types of 

emitters. Nevertheless, for lowly doped emitters (1 x  1018  cm–3 <  
N

s
 < 4 x 1018 cm–3) a significantly different behavior can be observed. 

While the F
s
 and S contour plots of homogenous emitters present a 

plateau as the thickness increases, the DD plots decrease continu-
ously. This difference in behavior is due to the higher metal-contact 
resistance of homogeneous emitters, making a higher F

s
 necessary; 

and therefore, a lower S.

5. Emitter Optimization 

The emitters had their collection efficiency, η
c
 and their re-

combination current density components under metal-contacted, 
J

oemet
, and passivated, J

oepass
, regions calculated as function of N

s
 

and W
e
. The total emitter recombination current densities, J

oe
 result 

from the sum of the components J
oemet

 and J
oepass

 multiplied by their 
respective optimized weight factors, (F

m
) and (1-F

m
), as commented 

in the following.
According to the modelling results the Gaussian profile emit-

ters can provide high collection efficiencies (η
c
 ≥ 98%). Moreover, 

in order to maintain a high η
c
 as the thickness increases, a steady 

decrease in the surface doping concentration is imperative. Thus, 
emitters with N

s
 = 2 x 1019 cm–3, 1 x 1019 cm–3, 4 x 1018 cm–3 and 2 x 

1018 cm–3 require W
e
 = (0.94, 1.73, 3.68 and 6.17) µm, respectively 

to provide the same η
c
 = 98%. 

5.1. Homogeneous emitter recombination (n+)

The emitter recombination current densities under both metal-
contacted, J

oemet
 and passivated, J

oepass
 regions are shown in Figure 3 

and Figure 4, respectively. In Figure 3, it can be observed that the 
moderately doped emitters, 4 x 1018 cm–3 < N

s
 < 2 x 1019 cm–3 with 

thickness in the range, 0.5 µm < W
e
 < 3 µm have J

oemet
 between 

≈3.6 x 103 fA.cm–2 and ≈3.3 x 102 fA.cm–2. In contraposition, Figure 4 
shows that the passivated recombination component in the same 
region, J

oepass
 is much lower, between ≈11 fA.cm–2 and ≈88 fA.cm–2. 

Despite this difference, sometimes the determining contributor to the 
total J

oe
 is the passivated region, J

oepass
, since these components must 

be also multiplied by the corresponding area weight factors.
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Figure 1. Optimum shadowing factors, F
s
 (%) and spacing between fingers, 

S (mm) as functions of surface doped concentration, N
s
 and thickness, W

e 
for 

homogeneous emitters.

Figure 2. Optimum shadowing factors, F
s
 (%) and spacing between fingers, 

S (mm) as functions of surface doped concentration, N
s
 and thickness, W

e 

for DD emitters.

Figure 3. Metal-contacted recombination current density, J
oemet

 (fA.cm–2) 
vs. surface doping concentration, N

s
 and thickness, W

e
, under homogeneous 

emitters (S
p 
= 3 x 106 cm/s).
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5.2. Double-diffused emitters recombination (n++n+)

Differently from the homogeneous emitters, the metal-
contacted recombination component of the DD ones is always 
J

oemet
 = 315 fA.cm–2, since it was assumed a fixed N

s
 = 1 x 1020 cm–3 

and W
e
 = 2 µm under this region for each studied case. Under the pas-

sivated region the component, J
oepass

 is the same shown in Figure 4. 
A comparison between the total recombination, J

oe
 for both types 

of emitters is shown in Figure 5 as function of emitter N
s
 and W

e
. It can 

be observed that the homogeneous total recombination, in the major-
ity of cases, is higher (30 fA.cm–2 < J

oe
 < 200 fA.cm–2) than the DD 

case (12 fA.cm–2 < J
oe

 < 200 fA.cm–2), due to the lower recombination 
loss under the metal-contacted regions in the latter type of emitters. 
This difference becomes meaningful mainly for the lowly/moderately 
doped emitters (1 x 1018 cm–3 < N

s
 < 7 x 1018 cm–3) pratically in the 

whole thickness range (0.1 µm < W
e
 < 10 µm), where the DD J

oe
 can 

reach values between 12 fA.cm–2 and 18 fA.cm–2.

Another remarkable point in Figure 5 is that the total J
oe

 of 
both emitter types are practically coincident for moderately doped 
(5 x 1018 cm–3 < N

s
 < 4 x 1019 cm–3) emitters with thickness range 

(2 µm < W
e
 < 10 µm) and also for highly doped (N

s
 > 6 x 1019 cm–3) 

emitters with (0.7 µm < W
e
 < 10 µm), due to a non-significant con-

tribution of the metal-contacted region.

5.3. Emitter recombination for optimum homogeneous and 
DD structures

A comparison between the emitter recombination current den-
sity (including the component contributions and the total J

oe
) of the 

optimum emitters from Figures 8 and 11 is presented in Table 1. The 
optimum homogeneous emitter is N

s 
= 7.5 x 1018 cm–3 with 1.7 µm, 

while the DD optimum emitter is given by N
s 
= 3 x 1018 cm–3 and 

W
e 
= 1.4 µm. 
Analyzing Table 1, it can be concluded that the passivated region 

of both types of emitters is the dominant component. The higher 
J

oepass 
presented by the homogeneous emitter is principally due to the 

difference between the respective surface doping concentrations, 
N

s 
= 7.5 x 1018 cm–3 for homogeneous and N

s 
= 3 x 1018cm–3 for DD, 

since their optimum metal-contacted factors are quite close, the 
former F

m 
≈ 0.88% (F

s 
= 3.21% in Figure 1) and the latter F

m 
≈ 0.93% 

(F
s 
= 3.49% in Figure 2).

6. Output Electrical Parameters of N+P Solar Cells

The output electrical parameters (short-circuit current density, 
J

sc
; open-circuit voltage, V

oc
 and efficiencies, η) of homogeneous 

emitter silicon solar cells are shown in the contour plots of Figures 6, 
7 and 8, respectively.
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 (fA.cm–2) as a 
function of surface doping concentration, N
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 and thickness, W

e
 for both types: 

homogeneous and DD-emitters (S
p
 = N
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Table 1. Comparison between the homogeneous and DD emitter recombina-
tion current density for the optimum complete structures from Figure 8 and 
11: the components multiplied by the weight factors, (F

m
).J

oemet
 and (1-F

m
).

J
oepass

, and the total, J
oe

.

Type Fm
%

(F
m
).J

oemet

fA.cm–2

(1-F
m
).J

oepass

fA.cm–2

J
oe

fA.cm–2

n+ ≈0.88 ≈7.4 ≈24.5 ≈31.9

n++n+ ≈0.93 ≈2.9 ≈11.0 ≈13.9
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Figure 6. Short-circuit current density contour plots, J
sc
 (mA/cm2) as a func-

tion of surface doping concentration, N
s
 and thickness, W

e
 of n+p structure 

solar cell with base resistivity 1 Ω.cm.
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According to Figure 6, the short-circuit current densities reach 
the maximum, J

sc 
= 43.0 mA.cm–2 – 43.5 mA.cm–2, for emitters with 

surface doping concentration 4 x 1018 cm–3 < N
s 
< 2 x 1019 cm–3 and 

thickness 0.4 µm < W
e
< 4.0 µm. However, it can be noticed that high 

short-circuit current densities can be reached even for highly doped 
emitters (2 x 1019 cm–3 – 1 x 1020 cm–3) since their thickness are about 
(0.4-0.6) µm.

In Figure 7, the V
oc

 were calculated as a function of the total 
J

oe
, taking into account both components (J

oepass
 and J

oemet
) and their 

respective weight factors from the metal-grid optimization, as shown 
by Figures 1 and 2, and Equation (2).

This figure shows that the maximum open-circuit voltages, 
V

oc
 are between 700 mV and 715 mV, for emitters with surface 

doping concentrations N
s 
< 2 x 1019 cm–3 and thickness range 

0.4  µm  < W
e 
<  10.0  µm, similarly to the bottom right corner of 

Figure 4. On the other hand, there is a decrease of 30 mV for highly 
and thin doped emitter N

s 
= 1 x 1020 cm–3 and W

e 
= 0.2 µm, the upper 

left corner, resulting in efficiencies of about η = 24.3%, as it can be 
seen in Figure 8.

According to Figure 8, the maximum efficiencies, η = 25.5‑25.3%, 
are obtained in the range N

s 
= 2 x 1019 cm–3 - 4 x 1018 cm–3. The sur-

face doping concentration upper bound (≈2 x 1019 cm–3) allows 
lower thicknesses (≈0.5 µm < W

e 
< ≈1 µm); while the lower bound 

(≈4 x 1018 cm–3) requires thicker emitters, ≈1 µm < W
e 
< ≈3 µm. The 

output parameters of a solar cell with an intermediate N
s
 from the op-

timum range, N
s 
= 7.5 x 1018 cm–3 and 1.7 µm (R

square 
≈ 87.5 Ω/square), 

are J
sc
= 43.4 mA.cm–2, V

oc 
= 710.3 mV, FF = 0.826 and η = 25.5% 

with an optimized metal-grid design given by F
s 
= 3.21%, F

m 
= 0.88% 

and S ≈ 1.24 mm. Thus, in order to mantain a high efficiency there 
must be a trade off between high short-circuit current density and 
open-circuit voltage (minimum recombination).

Comparing the results of Figure 8 to the ones obtained in a 
previous work9, it can be seen that the maximum efficiencies at that 
work, η = (21.6-21.7%), were reached for surface doping concen-
tration and thickeness ranges, N

s 
= (1 x 1019 – 5 x 1018)  cm–3 and 

W
e 
=  (1.2  –  2.0)  µm respectively, also belonging to the optimum 

ranges of the η = 25.3% contour plot in Figure 8. Nevertheless, the 
difference between the absolute values of efficiencies is strictly related 
to the introduction of the light trapping effect in the semiconductor, 
generating an important increase of the short-circuit current density, 
changing from 38.6  mA.cm–2 to 43.5 mA.cm–2. The open-circuit 
voltages that were about 690 mV for emitters with surface doping 
level, N

s 
= 5 x 1018 cm–3, reached the maximum value V

oc 
> 700 mV, 

as shown in Figure 7. The main cause for the differences between the 
maximum V

oc
 can be owed to the fact that the previous structures were 

made of three different regions n+pp+; and therefore, the recombina-
tion coming from a p+ region was inserted.

7. Output Electrical Parameters of N++N+P  
Solar Cells

Similarly to the homogeneous emitter solar cells, the output elec-
trical parameters (short-circuit current density, open-circuit voltage 
and efficiency) of the DD emitter solar cells were analyzed in contour 
plots, as presented in Figures 9, 10 and 11.

Analyzing that the short-circuit current density, J
sc
 surrounded 

by the 43.4 mA.cm–2 contour plot in Figure 9 present the J
sc
 between 

43.4 mA.cm–2 < J
sc 

≤ 43.6 mA.cm–2. On the other hand, in Figure 10, 
it can be verified high open-circuit voltages V

oc 
= 725 mV for low 

doped emitters, with N
s 
< 2 x 1018 cm–3 in a wide range of thickness, 

0.25 µm < W
e 
< 4.0 µm. 

Comparing Figures 7 to 10, it can be concluded that higher open-
circuit voltages are reached in the double-diffused emitter silicon 
solar cells as it was predicted previously in Figure 5. 
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Meanwhile, the n++n+p structures (see Figure 11) can provide 
higher efficiencies, η = 26.0-25.7% for a wider range of emitter 
regions, 1 x 1018 cm–3 < N

s 
< 1 x 1019 cm–3 with 0.5 µm < W

e 
< 10 µm, 

in agreement with previous results9. However, in that work the 
maximum efficiencies were lower, η = 21.9% (no light trapping) 
and provided by a narrower range of emitter profiles, N

s 
=  1 x 

1019 cm–3 – 5 x 1018 cm–3 and W
e 
= (1.2-2.0) µm, due to fewer cases 

having been analyzed (0.1 µm < W
e
 < 5 µm and 5 x 1018 cm–3 < 

N
s 
< 1 x 1020 cm–3).
For an optimized n++n+p structure with N

s 
= 3.0 x 1018 cm–3 and 

W
e 
= 1.4 µm (R

square 
= 172.4 Ω/square), the output parameters are 

J
sc 

=  43.5 mA.cm–2, V
oc 

= 721.5 mV, FF = 0.829 and η = 26.0%. 
The corresponding optimized metal-grid is defined by F

s 
= 3.49%, 

F
m 

= 0.93% and S = 1.11 mm. 
These results are slightly different from those ones found 

by A. Aberle et al.8, where the maximum efficiencies η ≈ 27% 
were provided also for lightly doped emitters N

s 
= 5 x 1018 cm–3 – 

1 x 1019 cm–3, but for a lower thickness range W
e 
=  (0.1-0.3) µm. 

As shown in Figure 11, despite shallow emitters could also provide 
high efficiencies, the maximum values, η = 26% were obtained for 

a shifted thickness range, 1 µm < W
e 
< 10 µm. This fact is due to 

the differences between the used input parameters. At that work, the 
frontal surface recombination velocity was not variable under pas-
sivated region as in this work: S

p 
= 500 cm/s was kept constant for 

the four studied surface doping concentrations (N
s 
= 1 x 1018 cm–3, 

5 x 1018 cm–3, 1 x 1019 cm–3, 5 x 1019 cm–3). Meanwhile, the metal-
contacted region surface recombination velocity was a bit lower, 
S

p 
= 1 x 106 cm/s. The parameters under the metal-contacted region 

were N
s 
= 5 x 1019 cm–3 and W

e 
= 2 µm. As it can be noticed, these 

results overestimated the efficiencies for shallow and moderately 
doped emitters, since the metal-contact factor F

m
 was underestimated 

by fixing it at 3%. On the other hand, E. Demesmaeker7, by fulfilling 
grid-optimization, but adopting R. King3 parameters and a higher 
surface doping concentration under the metal-contact region N

s 
= 1 

x 1021 cm–3, obtained more similar results to this work. Despite the 
lower optimum efficiencies η = 21%, the correspondent ranges of 
maximum efficiencies were N

s 
= 2 x 1018 cm–3 - 1 x 1019 cm–3 and 

thickness 1 µm < W
e 
< 10 µm. 

8. Conclusions

Gaussian profile phosphorus emitters were optimized showing 
high quality, high collection efficiencies (≥98%) and low recombina-
tion (minimum J

oe
 for homogeneous and DD are respectively 30 fA.

cm–2 and 12 fA.cm–2). The total recombination, J
oe

 of lowly doped 
homogeneous emitters showed to be strongly dependent on the metal-
contacted recombination component, J

oemet
 and on the optimized 

metal-grid designs.
The optimum homogeneous structure efficiencies (η = 25.5‑25.3%) 

were found for surface doping in the range N
s 
=  2  x 1019 cm–3 

4  x  1018 cm–3 together with a thickness of W
e 
≈ (0.5-3) µm. On 

the other hand, the best DD structures can provide higher ef-
ficiencies (η = 26.0-25.7%) for a wider range of emitter profiles,  
1 x 1018 cm–3 < N

s 
< 1 x 1019 cm–3 and 0.5 µm < W

e 
< 10 µm. 
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