Acessibilidade / Reportar erro

Structure, Characteristics and Corrosion Behaviour of Gold Nanocoating Thin Film for Biomedical Applications

Nanocoatings thin films are layers deposited to improve required properties and corrosion resistance as a major objective for materials that are used for various biomedical applications such as biosensors. In this study, Gold (Au) thin films with 50 nm and 100 nm have been synthesized on Ni-Cr-Mo alloys by magnetron sputtering deposition technique. X-Ray diffraction (XRD), Atomic Force Microscopy (AFM), and Energy-dispersive X-Ray spectroscopy /Scanning Electron Microscopy (EDS/SEM ) have been used to distinguish the surfaces morphology. The results showed that there is no defects or micro-cracks with a uniform and homogenous film. It has spherical nanoparticles diameter morphology with 200-400 nm shaped to fine aggregation. The roughness average (Ra) decreased from 3.91 nm for 50 nm films to 3.70 nm for 100nm films with FCC crystal structure (111) for gold thin films. In vivo, after 50 nm and 100 nm nanocoated thin film by gold, a significant improvement in the localized corrosion resistance has been obtained in artificial saliva corrosive media at 37 °C compared with the uncoated surface.

Keywords:
Corrosion resistance; sputtering deposition process; gold thin films; Ni-Cr-Mo biomaterial alloy


ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br