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1. Introduction
An important feature of the composite materials is their 

multifunctionality. They have encountered a very wide range 
of applications extending from heavy structural systems to 
micro or nanoelectronic devices. In many of these practical 
uses, the composite components cannot be safely designed 
without taking into account the relevant material thermal 
properties. The material thermal conductivities, for example, 
are indispensable quantities to describe the temperature 
fields used for the evaluation of the thermal stresses which 
have an important role in the mechanical behavior of many 
structural systems, particularly, for those subjected to 
severe non-isothermal environments. The effective thermal 
conductivities of composite materials depend on many 
factors, including properties and volume fractions of their 
constituents, as well as, microstructural characteristics, such 
as geometrical shapes, distributions of the reinforcement and 
interfaces between the matrix and inclusions.

A number of analytical and numerical micromechanical 
models have been formulated to calculate the effective 
thermal conductivity and stiffness of composite materials. 
Many of these analytical models have been developed 
for unidirectional two-phase fiber composites assuming a 
regular microstructure composed by repeating unit cells 
with particular geometrical shape and simple internal 
architectural arrangements1-3. For instance, to estimate 
analytically the effective stiffness of periodic composites, it 

can be mentioned the Periodic Microstructure Model 
(PMM)4, which could be also explored to obtain effective 
thermal properties. However, for the cases of high volume 
fractions of fibers, as well as, high and low fiber-to-matrix 
thermal conductivity ratios, it is common that analytical 
micromechanical models for predicting the transverse 
thermal conductivities provide different results among 
themselves5,6. For more elaborated microstructure, however, 
the use of numerical procedures is needed for accurate 
predictions of the transverse effective thermal conductivity. 
In these latter modeling studies, the finite-element method 
is, typically, the more employed numerical technique.

An attractive alternative to the finite-element method 
in the solution of periodic repeating unit cell (RUC) 
problems is the parametric finite-volume theory developed 
by Cavalcante et al.7 having as basis the original version 
constructed by Bansal and Pindera8. In that parametric 
version the heterogeneous material microstructure is 
discretized using quadrilateral subvolumes which are 
mapped into corresponding reference square subvolumes. 
This mapping has been incorporated into the standard 
finite-volume direct averaging micromechanics (FVDAM) 
model and applied successfully to solve several mechanical 
homogenization problems9-11.

The purpose of this paper is to present a new 
micromechanical extension of the homogenized parametric 
finite-volume theory for evaluation of effective thermal 
conductivities of periodic unidirectional fiber reinforced 
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composites. Such materials are assumed as composed of 
replicated fundamental building blocks, called repeating 
unit cells, with arbitrary internal architectural arrangements 
of fiber coated by thin interphase with low thermal 
conductivity. The interphases are replaced by imperfect 
interface elements with continuity in normal heat flux 
and discontinuity in temperature. Indeed, the proposed 
computational procedure allows an easy and efficient 
treatment of the temperature discontinuity condition through 
the interfaces. The treatment of this temperature jump at an 
interface cannot be easily handled using the classical finite 
element method12. The performance of the homogenization 
model is demonstrated for several numerical examples, 
including composites with perfect and imperfect interfaces 
and different arrays of fibers. The numerical results are 
verified by means of comparisons with solutions obtained 
using analytical and finite element methods.

2. Preliminary Considerations on the 
Homogenization Problem
First, suppose a representative volume element (RVE) of 

a general composite material, with volume V and boundary 
surface S, subjected to a homogeneous temperature 
boundary condition given by

( ) for= ∈o o
i iT G x Sx x 	 (1)

where /= ∂ ∂o o
i iG T x  (i = 1,2,3) are constants. The average 

temperature and the average temperature gradient vector 
taken over the RVE are defined respectively by

1  ( )= ∫
V

T T dV
V

x 	 (2)

1  ( )= ∫
V

dV
V

G G x 	 (3)

being T (x) the temperature field and G(x) the corresponding 
temperature gradient vector whose components are given 
by ( ) /= ∂ ∂i iG T xx . Applying the divergence theorem 
to Equation 3, the following relation is obtained for the 
temperature gradient components

( ) ( )1 = ∫ o
ii

S
G T n dS

V
x x 	 (4)

with ni denoting the i th component of the outward unit 
vector normal to the surface S. The substitution of Equation 
1 into Equation 4 yields

 = o
iiG G 	 (5)

meaning that the components of the average temperature 
gradient over the entire RVE coincide with the 
corresponding components of the temperature gradient on 
the RVE boundary surface S, irrespective of the material 
microstructure. Equation 5 corresponds to the Average 
Temperature Gradient Theorem.

Now, consider that the composite material has a periodic 
microstructure, which can be generated by fundamental 
building blocks called repeating unit cells (RUC), such as 
shown in Figure 1. Considering a two-scale representation, 

the temperature field of an RUC resident in the material 
domain (Figure 1) can be expressed as

( ) ( ) ( )= + oT T Ty x y 	 (6)

where oT  and T  stand for the macroscopic and fluctuating 
temperature contributions, respectively. Here, y indicates 
the local coordinates used in the RUC scale, whereas x 
represents the global coordinates for the RVE scale. Due 
to the material periodicity and the homogeneous boundary 
conditions imposed on the RVE, the fluctuation function 

( )T y  is periodic over the RUC domain.
Using Equation 6 and considering that oG  is a constant 

vector, the volume-averaged temperature gradient over the 
RUC volume W can be written as

( )1  W

W
= + W

W ∫ o dG G G y 	 (7)

where the components of the fluctuating temperature 
gradient vector G  are /= ∂ ∂ 

i iG T y .
Applying the divergence theorem to the integral 

appearing in Equation 7, the components of WG  can be 
expressed in the form

( )1 = W

G
+ G

W ∫ o
i iiG G T n dy 	 (8)

being ni the components of the outward unit vector normal 
to the RUC boundary surface G. As ( )T y  is periodic on the 
RUC, the integral in Equation 8 must be null. Then,

  W = o
ii

G G 	 (9)

i.e., the volume-averaged temperature gradient on the RUC 
is also equal to the temperature gradient of the homogeneous 
boundary conditions applied on the outer surface of the 
RVE. This is an important result for the solution of the 
homogenization problem focused in this work.

It is worth noting that even though Equation 9 is valid, 
the actual temperature boundary conditions of an RUC are 
different from those corresponding to the RVE, what can 
be justified by the periodic fluctuations ( )T y  appearing 
in Equation 6. However, the homogenization problem 
can be solved considering that the response of the entire 
RVE under the above homogeneous temperature boundary 
conditions is identical to the response of an arbitrary RUC 
under appropriate periodic boundary conditions. This allows 
in general a great size reduction and simplification of the 
homogenization problem because the analysis involving 
the entire RVE can be substituted by other restricted to 
the domain of only one RUC. Those periodic boundary 

Figure 1. Periodic composite material and repeated unit cell (RUC).
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conditions are imposed considering the same distribution of 
fluctuating temperature along the pairs of identical sides of 
the RUC characterized by the material periodicity.

3. Theoretical Formulation for the Unit Cell 
Homogenization
In this section the parametric finite-volume theory7 is 

incorporated into the homogenization theory’s framework 
based on a multiscale representation of the temperature 
field for evaluation of effective thermal conductivity 
in periodic unidirectional fiber reinforced composite. 
Here, the material unit cell can present arbitrary internal 
architectural arrangements of fibers coated by thin interphase 
with constant thickness and low thermal conductivity. 
As described in Section 3.3, the interphase subvolumes 
are replaced by interface elements with appropriate 
discontinuity in temperature and continuity in normal heat 
flux13,14. This procedure transforms the explicit three-phase 
problem (matrix, fiber and interphase) into a two-phase 
problem (matrix and fiber) with imperfect interfaces.

The parametric finite-volume theory already has been 
incorporated into the FVDAM’s framework and successfully 
applied to the homogenization of elastic and elastic-plastic 
periodic composites materials with perfect interfaces9-11.

In the parametric finite-volume formulation the actual 
material microstructure is discretized into quadrilateral 
subvolumes whose geometry and location are identified 
by their node coordinates. It is based on a mapping of 
a reference square in the parametric plane h – x onto a 
quadrilateral subvolume in the Cartesian plane y2 – y3 of 
the actual material microstructure7, as shown in Figure 2.

The mapping of the point (h, x) in the reference square 
to the corresponding point (y2 – y3) in the quadrilateral 
subvolume of the actual discretized microstructure is 
expressed in the form

( ) ( ) ( )
( ) ( ) ( )

1 ,1 2 ,2

3 ,3 4 ,4

, , ,

, ,      1, 2  

h x = h x + h x +

h x + h x =
j j j

j j

y N y N y

N y N y j 	
(10)

where yj,m indicates the coordinate yj of the subvolume 
node m and

( ) ( )( ) ( ) ( )( )1 2
1 1,  1 1 ,  1 1
4 4

h x = − h − x h x = + h − xN N

	 (11)

( ) ( )( ) ( ) ( )( )3 4
1 1,  1 1 ,  1 1
4 4

h x = + h + x h x = − h + xN N

3.1. Thermal conduction relations for a subvolume
For a homogeneous subvolume of the discretized RUC, 

the heat flux components are defined by the Fourier law

( )             , 1, 2,3∂
= − =

∂i ij
j

Tq k i j
y

	 (12)

being kij the material thermal conductivities. Considering 
the temperature field given by Equation 6, this last equation 
becomes

 ∂
= − −

∂

o
i ij j ij

j

Tq k G k
y 	 (13)

For the case of stationary thermal conduction without 
heat source and using Equation 13, the energy conservation 
equation is given by

2

2 0∂ ∂
= − =

∂ ∂


i

ij
i j

q Tk
y y

	 (14)

Here, the fluctuating temperature field is assumed as 
independent of y1 1( . ., / 0)∂ ∂ =i e T y  and approximated 
by a second-order representation in the local parametric 
coordinates7

( ) ( ) ( )2 2
00 10 01 20 02

1 1,  3 1 3 1
2 2

h x = + h +x + h − + x −     T T T T T T (15)

where mnT  are unknown coefficients. For this second-order 
expansion, the surface-averaged values of the fluctuating 
temperature field on the subvolume faces (F1, F3) and 
(F2, F4), shown in Figure 2, are defined respectively by

Figure 2. Mapping of the reference square subvolume onto a quadrilateral subvolume of the actual microstructure (after Cavalcante et al.6).
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� ( )
( )

11,3
00 01 02

1

1 , 1  
2

+

−
= h x = h = +∫    T T d T T T 	

(16)
� ( )

( )
12,4

00 10 20
1

1 1,  
2

+

−
= h = ± x x = ± +∫    T T d T T T

Using a similar definition for the surface-averaged 
gradients on the subvolume faces, the following expressions 
are easily obtained

� ( ) � ( )1,3 1,3

10 01 02     3∂ ∂
= = ±

∂h ∂x


  T TT T T 	

(17)
� ( ) � ( )2,4 2,4

10 20 013       ∂ ∂
= ± =

∂h ∂x
  T TT T T

In the context of the parametric finite-volume theory, 
the relation between surface-averaged gradients on the p th 
face of a subvolume in the reference and actual coordinate 
systems is simplified by using the volume-averaged Jacobian 
J , as follows:

�

�

( ) �

�

( )

2

3

ˆ

   ∂ ∂   
∂ ∂h   =   
∂ ∂   

   ∂ ∂x  

 

 

p p
T T
y

T T
y

J 	 (18)

where 
1 1

1

1 1

ˆ 1
4

+ +
−

− −
= = h x∫ ∫ d dJ J J , being

32

32
 

∂∂ 
 ∂h ∂h =

∂ ∂
 ∂x ∂x 

yy

yy
J 	 (19)

Taking into account Equations 13 and 18, the relation 
between the surface-averaged heat flux vector and the 
surface-averaged temperature gradient vector for the p th 
face can be written in the form

( )
( )

�

�

( )

2 2

3 3

ˆ ˆˆ
ˆ

 ∂   ∂h   = = +       ∂   
 ∂x 





p

p o
p

o

T
q G
q G T

q k kJ 	 (20)

with 22 23

23 33

 
= −  

 

k k
k k

 k .

Based on Equation 20, the total surface-averaged 
heat flux vector for the p th face of the subvolume can 
be expressed as � ( ) ( )

= + 
p po q q q , where oq  is the constant 

macroscopic part depending on the known values 
( )2,3=o

kG k  and ( )


p
q  indicates the unknown contribution 

of the surface-averaged fluctuating temperature gradients.
The projection of the surface-averaged heat flux onto 

the normal to the p th face of the subvolume is given by

( ) ( ) ( ) ( ) ( )

�

�

( )

2

3

 ˆ ˆˆ

 ∂   ∂h = = +     ∂   
 ∂x 





p

o
p p p p p

n o

T
G

q
G T

n q n k n kJ 	 (21)

where ( ) [ ]( )
2 3= pp n nn , with n2 and n3 indicating the 

components of the outward unit vector normal to the face.

3.2. Local thermal conductivity matrix of a 
subvolume

In this subsection is presented the derivation of the local 
thermal conductivity matrix for a subvolume of a discretized 
RUC domain. Herein, this conductivity matrix relates the 
surface-averaged fluctuating temperatures to the normal 
surface-averaged fluctuating heat fluxes associated with the 
four faces of the subvolume. Introducing Equation 17 into 
Equation 21 for each face p, the normal surface-averaged 
heat flux vector for the subvolume can be obtained in the 
form

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1 1
10

2 2 2
2 01

3 3 3 203
4 4 4 02

ˆ

ˆ

ˆ

ˆ

     
      
              = +                 
           









n
o

n
o

n

n

q T
q G T

TGq
T

q

n v

n v
k

n v

n v

	 (22)

where ( ) ( ) ( )ˆ=p p pv n kJa  and

( ) ( )1,3 2,41 0 0 0 1 0 3 0
   

0 1 0 3 0 1 0 0
±   

= =   
   

a a 	 (23)

The next step consists of obtaining a relation between 
the unknown temperature coefficients appearing in Equation 
22 and the fluctuating surface-averaged temperatures on the 
subvolume faces. For this, Equation 16 are used together 
with the volume-averaged heat conduction equation for the 
subvolume. This last equation is obtained from Equation 
14 using the inverse of the volume-averaged Jacobian,
 Ĵ , to derive the relationships between the second partial 
derivatives of the fluctuating temperature with respect to 
(y2, y3) coordinates and the corresponding second derivatives 
with respect to (h, x) coordinates. The volume-averaged 
heat conduction equation resulting of that procedure can 
be written as

( ) ( )2 2 2 2
22 11 23 11 21 33 21 20 22 12 23 12 22 33 22 02

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 0ˆ2+ + + + + = k J k J J k J T k J k J J k J T 	(24)

Now, using Equations 16 and 24, the zero th order 
coefficient 00

T  is obtained directly in function of the surface-
averaged fluctuating temperatures as

� ( ) � ( ) � ( ) � ( )2 4 1 3
00

   
= λ + + ω +   

   
    T T T T T 	 (25)

where, for the case of isotropic material with k22 = k33 = k  
and k23 = 0,

( ) ( )
2 2 2 2
11 21 12 22

2 2 2 2 2 2 2 2
11 12 21 22 11 12 21 22

   
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
  

2 2 ˆ ˆ
+ +

λ = ω =
+ + + + + +

J J J J
J J J J J J J J

	(26)
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Substituting Equation 25 into Equation 16, the relation 
between the coefficients of the fluctuating temperature field 
and the fluctuating surface-averaged temperatures on the 
subvolume faces is found in the form

� ( )

� ( )

� ( )

� ( )

� ( )

� ( )

� ( )

� ( )

1 1

10 2 2
01

3 320

02 4 4

0 1/ 2 0 1/ 2
1/ 2 0 1/ 2 0

1/ 2 1/ 2
1/ 2 1/ 2

   
     −            −   = =      −ω − λ −ω − λ           − ω −λ − ω −λ        
      

 


 


 



 

T T
T

T TT
T

T T
T

T T

B

	

(27)

Introducing Equation 27 in Equation 22, the normal 
surface-averaged heat flux vector for the subvolume 
becomes

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

� ( )

� ( )

� ( )

� ( )

1
1 1 1

22 2 2
2

3 3 3 3
3

4 4 4 4

ˆ

ˆ

ˆ

ˆ

 
       
       
        
     = +   
                
              









n
o

n
o

n

n

Tq

q G T

Gq T
q

T

n v

n v
k B

n v

n v

	 (28)

which can be written in compact form as,

�ˆ = + 
n L

oq NkG K T 	 (29)

where 2

3

 
=  

  

o

o

G

G
oG  and the local conductivity matrix of the 

subvolume is

=LK VB 	 (30)

with ( ) ( ) ( ) ( )1 2 3 4   =   

T
V v v v v .

3.3. Imperfect interface element
Figure 3a shows an arbitrarily curved thin interphase of 

constant thickness h located between a fiber and the matrix 
of a composite material. It is shown in Benveniste14 that the 
mentioned thin interphase can be approximately replaced 
by an equivalent interface, positioned at the location of the 
middle surface S0, considering appropriate conditions of 
temperature and normal heat flux for the case of thermal 
analysis (Figure 3b). Using a Taylor expansion, Hashin13 
showed that a thin interphase with much smaller thermal 
conductivity than the phases can produce a finite jump in 
the temperature while a finite jump in the normal heat flux 

can be produced when the interphase thermal conductivity 
is very large.

Based on these results, in the present work the thin 
slowly conducting interphase is represented by an interface 
lying between the fiber and the matrix, across which the 
temperature exhibits a discontinuity whereas the normal 
heat flux presents continuity. For the case of isotropic and 
homogeneous interphase, the temperature jump across the 
interface can be written as follows14:

1 1 2
2+ −

 
− = + −  

 
n

m f I

hT T q
k k k

	 (31)

where T+ and T– are the temperatures at the interface S0 on 
the sides of the matrix and fiber respectively (Figure 3b). The 
parameters km, kf and kI stand for the thermal conductivities 
of the matrix, fiber and interphase, respectively. In Equation 
31, qn indicates the heat flux normal to the interface assumed 
as positive in the direction shown in Figure 3b.

Considering Equation 6 and taking into account that the 
macroscopic temperature jump 0 0

+ −−T T  across the interface 
is null, Equation 31 can be written as

1 1 2
2+ −

 
− = + −  

 
 

n
m f I

hT T q
k k k

	 (32)

being +
T  and −

T  the interfacial fluctuating temperatures on 
the sides of the matrix and fiber, respectively.

As the parametric finite-volume formulation employs 
quadrilateral subvolumes for discretization of fiber and 
matrix, the interfaces are discretized into straight line 
segments, as shown in Figure 4. Using Equation 32, the 
surface-averaged temperature jump across an interface 
element is given by

� �
2 1 n

h 1 ˆ1 2T T q
2

 
− = + −  

 
 

m f Ik k k
	 (33)

where �1T  and � 2T  are the surface-averaged fluctuating 
temperatures on the element faces F1 and F2, respectively, 
and nq̂  is the surface-averaged normal heat flux across the 
interface element. For the interface element, the relation 
between the surface-averaged normal heat fluxes on the 
faces F1 and F2 is given by ( ) ( )1 2

n n nq qˆ ˆ q̂= − = − . Then, through 
Equation 33, the following expression is derived

( ) ( ) � �( )1 2
2 1n nq̂ Tq̂ T= − = − c 	 (34)

Figure 3. (a) Interphase fiber/matrix and (b) equivalent imperfect interface.
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where

2 1
1 1 2=

+ −
m f I

c
h

k k k
	 (35)

Equation 34 can be written in a matrix form as
( )

( )

�

�

1
1n

2
2n

q T

q T

ˆ

ˆ

   −    =    −       





c c
c c

	 (36)

Then, the local conductivity matrix of the interface 
element is given by

− 
=  − 

LI
c c

K
c c

	 (37)

3.4. Global conductivity matrix construction
The normal surface-averaged heat fluxes on the local 

faces of each subvolume and interface elements of the 
unit cell are related to the corresponding surface-averaged 
fluctuating temperatures through the local conductivity 
matrix, as shown in Equations 29 and 36. The local 
conductivity matrices are assembled into a global system 
of equations by applying surface-averaged interfacial 
fluctuating temperature and normal heat flux compatibility 
conditions, followed by the specified boundary conditions. 
This approach is based on an appropriate global face 
numbering system, in which each internal local face has a 
corresponding global face number, common to the adjacent 
subvolumes or subvolume and interface element, while the 
external faces of subvolumes along the opposite unit cell 
boundaries are numbered taking into account the periodicity 
conditions. These external faces, with similar fluctuating 
temperature distributions imposed by the periodicity 
conditions, receive common face numbers. The procedure 
for assembling the global system is similar to that used in 
the finite-element algorithms. In these later, the degrees of 
freedom are associated with the element nodes, while in the 
present finite-volume formulation they are referred to the 
subvolume and interface element faces.

Imposing compatibility conditions of normal surface-
averaged heat flux and surface-averaged fluctuating 
temperatures on the common interfaces, as well as, the 
specified boundary conditions, the global system of 
equations takes the form

0=
G G GK T Q 	 (38)

where KG is the global conductivity matrix and 0
GQ  is a 

vector comprised of the resulting macroscopic normal 
surface-averaged fluxes in the interfaces of adjacent 
subvolumes and faces located along the discretized unit cell 
boundary. The vector GT  contains all the unknown interfacial 
and boundary surface-averaged fluctuating temperatures. 
As the matrix KG is singular, the solution of Equation 38 is 
not directly accessible. This problem can be eliminated by 
imposing null surface-averaged fluctuating temperatures on 
the four corner subvolume faces. The remaining surface-
averaged fluctuating temperatures are determined by solving 
the reduced system of equations.

3.5. Homogenized conductivity matrix
The in-plane homogenized Fourier law for the 

composite material relates the effective heat flux Q* to the 
macroscopic temperature gradient G0 as follows:

* = − * oQ K G 	 (39)

where * * *
2 3 =  

T
Q QQ  and K* is the effective thermal 

conductivity. The effective heat flux is defined as the volume 
average of the in-plane heat flux field q throughout the 
repeating unit cell by

( ) ( ) ( )
m f I

*
2 3 m 2 3  f 2 3  I

1 , , ,
W W W

 
= W + W + W 

W   
∫ ∫ ∫y y d y y d y y dQ q q q 	(40)

where Wm, Wf and WI denote the matrix, fiber and interphase 
domains, respectively. Using the Fourier law (Equation 12) 
and assuming homogeneous and isotropic phases, Equation 
40 can be rewritten in the form

( ) ( ) ( )
m f I

*
2 3 m f 2 3 f I 2 3  I

1 , k , k , 
W W W

 
= − W + W + W 

W   
∫ ∫ ∫mk y y d y y d y y dQ G G G 	(41)

being G the local temperature gradient vector. After 
the substitution of the interphases by the imperfect 
interfaces and discretization of the unit cell, the following 
approximation can be used to evaluate the effective heat flux

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )*

1 1 1

ˆ
2

ˆ ˆ ˆ
= = =

υ  ≅ − υ − υ − − + −  ∑ ∑ ∑
fm I

sNN Nr r s sl l I
m m m f I m I fImf f If

l r s
k k k k k kQ G G G G 	(42)

where Nm and Nf indicate the number of subvolumes used in 
the discretization of the matrix and fiber domains and  NI is 
the number of interface elements. The symbols ( ) υm  and ( ) υ f  
are the volume fractions of the matrix and fiber subvolumes 
over the discretized unit cell with interphase replaced by 
interface and ( ) υI  are the volume fractions of the interphase 
elements, respectively. In Equation 42, ( )ˆ

m
 G  and ( )ˆ

f
 G  are the 

volume-averaged temperature gradients of the matrix and 
fiber subvolumes, while ( )ˆ

Im
 G  and ( )ˆ

If
 G  indicate the surface-

averaged temperature gradients evaluated on the sides of 
matrix and fiber of each interface element, respectively. 
Equation 42 takes into account that to replace an interphase 
by an imperfect interface both the matrix and fiber materials 
are extended of h / 2 up to that interface.

Now, introducing the concept of subvolume (or interface 
element) temperature gradient concentration matrix H ( ), 
such that,

Figure 4. Interface element.
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ= = = =r r s s s sl l
m m Im Imf f If If

o o o oG H G G H G G H G G H G 	 (43)

into Equation 42 and using Equation 39, the following 
relation is found for the homogenized thermal conductivity

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )*

1 1 1 2= = =

υ  = υ + υ + − + −  ∑ ∑ ∑
fm I

sNN Nr r s sl l I
m m m f I m I fImf f If

l r s
k k k k k kK H H H  H 	 (44)

The 2×2 matrices H ( ) appearing in Equation 44 can be 
readily obtained through the solutions of Equation 38 
corresponding to two conveniently selected macroscopic 
gradient Go. For each assumed Go, Equation 38 provides 
the fluctuating surface-averaged temperatures, what enables 
the evaluation of the temperature gradient field inside each 
subvolume or interface element and, then, the vectors ( ) Ĝ  
can be readily determined. As example, for Go = [1   0]T, 
Equations 43 provide, for a matrix or fiber subvolume, 

( ) ( )  
22 2 ˆ=H G  and ( ) ( )  

32 3 ˆ=H G , whereas for Go = [0   1]T, the same 
equations give ( ) ( )  

23 2
ˆ=H G  and ( ) ( )  

33 3 ˆ=H G .

4. Numerical Examples
4.1. Unidirectional two-phase composite with 

square and hexagonal arrays of fibers
This first example consists of a unidirectional two-phase 

composite material with periodic square and hexagonal 
distributions of fibers (Figure  5). The assumption of 
perfect fiber-matrix interfaces is adopted for this case. 
Here, the objective is to investigate the effect of the RUC 
discretization on the effective thermal conductivity, as 
well as, to illustrate the results obtained by the present 
formulation compared with finite-element solutions for a 
wide range of fiber-volume fractions and fiber-to-matrix 
thermal conductivity ratios.

For the unit cell discretization convergence study, 
three different meshes for each type of fiber array are used, 
as shown in Figure 6 for a fiber-volume fraction of 0.60. 
Figures 7 and 8 show the results of the effective transverse 
thermal conductivity * * *

22 33 = =K K K , normalized by km, 
in function of the conductivity ratio kf  / km, for the RUC 
discretizations illustrated in Figure 6.

Results obtained by Sihn and Roy6, using the finite-
element method, are also presented in Figures 7 and 8. 
Figure  9 shows the results for the normalized effective 
transverse thermal conductivity of the composite for a large 
range of fiber volume fraction, considering a fiber-to-matrix 
thermal conductivity ratio kf  / km = 666. In addition to the 
solutions obtained by Sihn and Roy6, experimental results 
due to Thornburg and Pears1 are also presented in Figure 9. 
It is observed that the results provided by the proposal model 
exhibit fast convergence with the RUC mesh refinement and 
a very good agreement with the finite-element solutions.

4.2. Size-dependence of the effective thermal 
conductivity of a composite with interfacial 
thermal resistance

In this example, the proposal model is applied to 
investigate the effect of the fiber size on the effective 
thermal conductivity for a composite SiC/Al with interfacial 
thermal resistance and periodic square fiber distribution. The 

thermal conductivities of the matrix and fibers are assumed 
as km = 178W / mK and kf = 300W / mK, respectively.

The interphases have thickness h = 20nm and thermal 
conductivity kI = 2.918W / mK.

A fiber-volume fraction of 30% is assumed for 
the composite. Figure  10 shows the variation of the 
normalized effective thermal conductivity with the fiber 
radius (0.05mm ≤ r ≤ 10mm), considering three conditions: 
a) three-phase material (matrix, fiber and interphase) with 
perfect interfaces, b) two-phase material (matrix and fiber) 
with imperfect interfaces and c) two-phase material (matrix 
and fiber) with perfect interfaces. To verify the model, the 
numerical results are compared with those obtained by 
an analytical micromechanics formulation presented in 
Nan et al.15, which predicts the effective thermal conductivity 
of composite materials with interfacial thermal resistance 
in terms of an effective medium approach combined with 
the essential concept of Kapitza thermal contact resistance. 
Figure  10 clearly shows the great fiber size-dependence 
effect on the effective thermal conductivity (Kapitza effect) 
for small radius values and also a very good agreement of 
the results obtained by the presented model, incorporating 
the imperfect interface elements, in comparison with those 
predicted using three-phase unit cells with perfect interfaces, 
as well as, with the analytical micromechanics solution15. 
The difference between the result for two-phase unit cell 
without interphase (horizontal dashed line) and the other 
curves in Figure 10 represents the influence of the presence 
of the thin interphase on the effective thermal conductivity 
of the composite material, which decreases as the fiber size 
increases.

4.3. Analysis of applicability of the assumption of 
imperfect interface with continuity in normal 
heat flux and discontinuity in temperature

The aim of this example is to investigate the range 
of the interphase thermal conductivity ki for which the 
usual assumption of imperfect interface with continuity in 
normal heat flux and discontinuity in temperature can be 
successfully employed. For this, a periodic composite with 
unidirectional circular fibers coated by thin interphases is 
considered. The fibers have a radius r = 1mm and square 
periodic array. The thermal conductivity of the matrix is 
assumed as km = 1W / mK. Two situations are considered: 
a) the unit cell is discretized and analyzed as composed 

Figure 5. Unidirectional two-phase composite with periodic square 
and hexagonal distributions of fibers.
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by three phases (matrix, fiber and interphase) with perfect 
interfaces e b) the unit cell is discretized and analyzed as 
a two-phase material with imperfect interfaces. In this last 
situation, the actual interphase is replaced by an interface 
with continuous normal heat flux and discontinuous 
temperature field. For the first situation the interfaces 
matrix-interphase and interphase-fiber are considered 
as perfect, i.e., with continuity in both normal heat flux 
and temperature. Figures 11, 12 and 13 show the results 
obtained for fiber-volume fractions of 30%, 50% and 70%, 
respectively. For each fiber-volume fraction, four different 

ratios km / kf (0.02, 1, 10 and 50) are considered. In the 
comparative analyses of this example, the solutions obtained 
for the cases of three-phase material with perfect interfaces 
are taken as reference to evaluate the results generated using 
the imperfect interface model.

For all analyzed cases, it is observed that the thermal 
conductivity of the connected matrix phase has a strong 
influence on the effective thermal conductivity. This occurs 
because to reach the disconnected fiber phase the heat 
must be transported through the connected matrix phase. 
The results show a continuous reduction of the effective 

Figure 6. RUC discretizations for square and hexagonal arrays.

Figure 7. Normalized effective transverse thermal conductivity of the composite with square distribution of fibers.
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Figure 8. Normalized effective transverse thermal conductivity of the composite with hexagonal distribution of fibers.

Figure 9. Variation of the normalized effective transverse thermal conductivity of the composite in function of the fiber volume fraction.

Figure 10. Variation of the effective thermal conductivity with the fiber radius.
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thermal conductivity with the decrease of the interphase 
thermal conductivity. However, when kf > km the values of the 
effective thermal conductivity remain practically constant 
for ki > km as shown in Figures 11a, b, 12a, b and 13a, b for 
the cases of three-phase materials with perfect interfaces. 

On the other hand, when the matrix is more conducting than 
the fibers (km > kf), the results show that the effective thermal 
conductivity present significant augment with the increase 
of the interphase thermal conductivity in the interval ki > km. 
This happen because the interphase is more conducting than 

Figure 11. Effective thermal conductivity versus interphase thermal conductivity for imperfect/perfect interfaces and vf = 30% (solid 
lines - imperfect interfaces; dashed lines - perfect interfaces).

Figure 12. Effective thermal conductivity versus interphase thermal conductivity for imperfect/perfect interfaces and vf = 50% (solid 
lines - imperfect interfaces; dashed lines - perfect interfaces).
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Figure 13. Effective thermal conductivity versus interphase thermal conductivity for imperfect/perfect interfaces and vf = 70% (solid 
lines - imperfect interfaces; dashed lines - perfect interfaces).

the matrix, which has a thermal conductivity km > kf . In this 
last case, it is also observed lower differences between the 
curves corresponding to the assumptions of three-phase 
material with perfect interfaces and two-phase material with 
imperfect interface, respectively, in the range ki > km. When 
the fiber-volume fraction increases, the volume of interphase 
inside a unit cell is augmented and, as a consequence, the 
influence of ki on the effective thermal conductivity K* is 
increased, what is responsible for the greater slope of the 
curve K* > km for ki > km. (Figures 11c, d, 12c, d and 13c, d).

Figures 11, 12 and 13 show that the curves obtained with 
the above two assumptions are practically coincident in the 
interval ki ≤ km. The results also allow to conclude that the 
proposed model of imperfect interfaces can provide good 
results for ratio ki / km smaller than a limit (ki / km)lim. As it 
can be seen in Figures 11, 12 and 13, this limit is greater 
than 10 for the most of the analyzed cases.

5. Conclusions
An efficient new micromechanical model has been 

formulated by using a parametric finite-volume theory 
which is suitable for the evaluation of the effective thermal 
conductivity of periodic unidirectional composite materials 
with arbitrary internal architectural arrangements of fiber 
coated by thin interphase with low thermal conductivity. 

To demonstrate the performance of the model, examples of 
composite materials with different arrays, sizes and volume 
fractions of fibers have been presented. Size-dependence 
of the effective thermal conductivity of a composite with 
interfacial thermal resistance also has been investigated. 
Solutions obtained by the proposal model have been 
compared with analytical and finite element results. These 
comparisons show an excellent performance of the new 
model. Additionally, an investigation has been carried out 
on the range of interphase thermal conductivity for which 
the hypothesis of discontinuity in temperature and continuity 
in normal heat flux across the interfaces provides consistent 
solutions. Using as reference the results for the RUC 
constituted by three phases (matrix, fiber and interphase), it 
has been found that the mentioned hypothesis is capable of 
providing good results for interphase thermal conductivities 
beyond the range of low values in relation to the matrix 
thermal conductivity. In the most of the analyzed cases, 
that hypothesis provided satisfactory results for interphase 
thermal conductivity in the order of ten times the matrix 
thermal conductivity.
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