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1. Introduction
Magnesium alloy has a lot of unique advantages such 

as excellent specific strength, high specific modulus, 
superior damping capacity, high-thermal conductivity, and 
electromagnetic shielding performance etc., and magnesium 
alloy is one of the lightest structural metallic materials showing 
potential to replace aluminum and steel1-3. Magnesium alloy 
generally exhibits low ductility at room temperature due 
to the few slip systems in hexagonal close-packed lattice3. 
However, at the elevated temperatures, the workability of 
magnesium alloy increases with additional slip systems, 
namely, non-basal and (c + a) slip becomes available by heat 
activation4,5. Hence, industrial manufacturing is reliant on 
the excellent formability at elevated temperatures to produce 
magnesium alloy parts.

It is well known that the hot deformation behavior of 
magnesium alloy is sensitively dependent on deformation 
parameters involving strain, strain rate and temperature. 
The highly non-linear deformation behavior of magnesium 
alloy is always accompanied with work hardening (WH), 
dynamic recrystallization (DRX) and dynamic recovery 
(DRV). Accurate model of flow stress becomes critical to 
improve numerical simulation accuracy in computer-aided 
engineering (CAE) software and optimize deformation 
parameter in related fields such as bulk forming6,7. Therefore, 
it is important to create a model to accurately model and 
predict the non-linear intrinsic relationships between flow 
stress and the deformation parameters. In the past, many 

studies have attempted to develop constitutive models of flow 
behaviors of metals in hot deformation. So far there have 
been three representative constitutive models, i.e. analytical, 
phenomenological and empirical/ semiempirical ones8-13.

The physical-based analytical model involves the 
evolution of mobile dislocation density, and static and 
dynamic grain coarsening etc.14. The analytical models such 
as Fields-Backofen (FB) and Mechanical Threshold Stress 
(MTS) need clear and deep understanding of the evolution 
of microstructure, and then the models which reveal the 
evolution law of microstructures are incorporated into the 
analytical models15,16. Moreover, analytical models need a 
large number of experimental data from accurately controlled 
experiments and the construction of mathematical relations 
on intricate microscopic evolutions. Therefore, it has not 
been widely used in flow stress prediction.

The phenomenological models were less strictly related 
to physical theories and employed extensively by many 
researchers with satisfactory precision in the modelling of 
hot deformation behavior. And the phenomenological models 
only need to calculate necessary material constants and 
develop multivariate nonlinear regression models based on 
the limited experimental results. Lately, the phenomenological 
models expressed by the hyperbolic laws in an Arrhenius-type 
equation and their modified forms were used to predict the 
hot deformation behaviors of materials, such as Ti-6Al-4V[17], 
IMI834[18], and Ti60 etc.19. Slooff et al.20 designed a hyperbolic 
sine constitutive equation which takes into account strain 
to predict the flow stress data in wrought magnesium alloy 
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Mg-Al4-Zn1, obtaining more accurate prediction than the 
initial Arrhenius-type equation in which the effect of strain 
was not considered. Lin et al.21 and Quan et al.22 revised the 
strain-dependent hyperbolic sine constitutive models by 
incorporating the hot forming parameters (such as material 
constants n and a, and structure factor A, activation energy of 
deformation Q). Other kinds of phenomenological constitutive 
models include Khan-Huang-Liang (KHL), and Johnson-Cook 
(JC) etc., showing large differences of accuracy in different 
range of temperatures and strain rates16,23,24. However, the 
prediction accuracy of these phenomenological models 
are not high enough because the multivariate nonlinear 
regression models are difficult to accurately describe the 
highly non-linear deformation behavior. Another reason is 
that the phenomenological models lack physical backgrounds. 
And the phenomenological and empirical models need to 
be recalculated when new experimental data are added16,25.

Recently, the artificial neural network (ANN) supplied 
a new method to predict flow stress data by learning the 
non‑linear relationships. The artificial neural network (ANN) 
is an information processing system by imitating the behavior 
of biological neural systems, i.e. a data-driven black-box 
model13. The ANN model does not need to build intricate 
mathematical models. In addition, ANN model has efficient 
learning ability and accurate imitation, and a well-defined 
ANN model can achieve superior prediction precision13. 
Recently, because of the many advantages of ANN model, 
much attention has been paid to ANN model and their 
improved form in modelling hot deformation behaviors of 
several alloys26. Back propagation neural network model 
(BP‑ANN model) is an improved neural network. The 
BP‑ANN timely disposes training error, and reduces output 
error of the network to an acceptable level. When the actual 
output and the expected output are not the same, the BP-ANN 
enters into the stage of error back propagation. The errors in 
output layer modify the weights and biases of each layer, and 
pass inversely through the input layer and hidden layer27,28.  
N. Haghdadi et al.29 successfully designed an ANN to predict 
the flow stress of A356 aluminum alloy. Mandal et al.30 applied 
an ANN to predict the deformation behavior of stainless steel 
type AISI 304L during hot torsion. Furthermore, the ANN 
models and BP-ANN models were applied to a variety of 
materials science, such as the prediction for processing map 
of hot working process31, the prediction for grain size in the 
primary á  phase of TA15 titanium6, and the modelling of 
the composition-process-property relationships in austenitic 
stainless steels32. The above studies are complex and the 
mathematic relation among the variables are highly nonlinear, 
which show that the ANN models and BP-ANN models 
successfully predicted the complex nonlinear relationship, 
and the two models are gaining increasing attention.

In this study, a comparative study has been made on the 
performances of the improved Arrhenius-type constitutive 
model and BP-ANN in modelling the hot deformation 
behavior of AZ80 magnesium alloy. In order to evaluate 
the performances of the improved Arrhenius model and the 
BP-ANN model, several standard statistical parameters are 
applied, such as the correlation coefficient (R) and average 
absolute relative error (AARE). Comparisons of the results 
show that the well-trained BP-ANN has higher R-value and 

lower AARE-value, which indicate that the BP-ANN has 
higher prediction accuracy than the improved Arrhenius-type 
constitutive model, and the results show that the BP-ANN 
can accurately predict the experimental data in a wide strain 
rate range and temperature range.

At present, most studies on finite element software 
mainly concentrate in mesh generation and post-processing, 
however, the flow stress models in the FEM software have 
rarely been reported. In isothermal compression simulation, 
at a fixed strain rate, if the FEM software need to invoke flow 
stress at unknown temperature, the system mainly calculates 
unknown flow stress data by interpolation method based on 
stress-strain curves of a certain temperature range, and then 
the interpolations are invoked to continue the simulation. 
However, there is a large variance between flow stress data at 
low and elevated temperatures, thereby, calculating unknown 
flow stress by interpolation method will seriously affect the 
accuracy in different temperature ranges.

It is universally acknowledged that stress-strain data 
play important roles in many studies, for instance, inverse 
analysis of the stress-strain curve to determine work hardening 
(WH) and dynamic recovery (DRV)33, modelling for dynamic 
recrystallization evolution34, construction of processing 
maps35 and ductile fracture criteria36, etc. In the previous 
studies, Sun et al. and Sabokpa et al. only predicted flow 
stress data of unknown temperature at the certain strain and 
strain rate6,12,30,37-39. Quan et al.13 developed discontinuously 
three-dimensional (3D) response plot of the experimental 
flow stress data and predicted flow stress data corresponding 
to strain and temperature at fixed strain rates. In this study, 
a novel continuous 3D prediction map of flow stress was 
plotted, and it can represent corresponding flow stress data 
at arbitrary temperature, strain and strain rate. In the novel 
continuous 3D prediction map of flow stress, the predicted 
flow stress data outside of experimental conditions articulate 
the similar intrinsic relationships with the experimental 
stress-strain curves. The full-scale database of flow stress 
can improve the accuracy of finite element modelling and 
other related research fields such as processing maps and 
ductile fracture criteria etc., without resorting to expensive 
and time-consuming experiments.

2. Construction of BP-ANN Model for AZ80 
Magnesium Alloy

2.1. Acquisition of experimental stress-strain data 
and their characteristics

The as-cast AZ80 magnesium alloy used in the study 
was a homogenized metal bar with a height of 325 mm and 
a diameter of 100 mm, and the bar was scalped to several 
specimens with a height of 12 mm and a diameter of 10 mm. 
The chemical compositions (wt. %) of the AZ80 magnesium 
alloy are as follows: Al 8.90, Zn 0.53, Mn 0.20, Si 0.008, 
Fe 0.004, Cu 0.008, Ni 0.0008, and balance Mg. Figure 1 shows 
the optical microstructure of the as-received AZ80 magnesium 
alloy. The specimens were tested on a servo‑hydraulic and 
computer-controlled Gleeble-1500 machine. The graphite 
lubricants were applied to coat the mating surfaces of the 
specimens and anvils, so as to minimize the friction and 
prevent bonding of the specimens to the anvils. In order 
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to assure a unified temperature and decrease the material 
anisotropy, the samples were heated at a rate of 10 K/s and 
held at a certain temperature for 3 min. These specimens were 
compressed with a height reduction 60% at the temperatures 
of 523, 573, 623, and 673 K, and the strain rates of 0.01, 
0.1, 1, and 10 s-1, and then the specimens were rapidly water 
quenched to retain the microstructures obtained at elevated 

temperatures. In these compression tests, a computer equipped 
with an automatic data acquisition system was used to 
monitor the nominal stress and nominal strain continuously, 
and then these data were converted into true stress and true 
strain according to the following formulae: ( )T N N1σ σ ε= −  
and ( )T N ln 1ε ε= − , where Nε  is the nominal strain, Nσ  the 
nominal stress, Tσ  the true stress, and Tε  the true strain34.

The true compressive stress-strain curves of AZ80 
magnesium alloy at different temperatures and strain rates 
were illustrated in Figure 2. By comparing each other, it 
is summarized that, for a certain temperature, the flow 
stress level increases with increasing strain rate; on the 
other hand, for a certain strain rate, the flow stress level 
decreases markedly with increasing temperature. As for the 
stress evolution with strain, it exhibits three obvious stages. 
At the initial deformation stage where work hardening (WH) 
predominates, the flow stress quickly increases to a critical 
value with increasing strain, meanwhile the stored energy in 
the grain boundaries grows quickly to DRX activation energy. 
If the critical driving force is achieved, the recrystallization 
nucleation starts to occur, which induces the softening of 
flow stress. At the second stage, DRX is extending, and 
the growth rate of flow stress is slowed down till a peak 
stress where DRX softening and dynamic recovery (DRV) 
are balanced with WH. At the third stage, DRX softening 

Figure 1. Microstructure of the as-received AZ80 magnesium 
alloy billet.

Figure 2. True stress-strain curves for as-cast AZ80 magnesium alloy under different temperatures and strain rates of: (a) 0.01 s–1, 
(b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1.
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surpasses WH, and flow stress decreases with increasing 
strain. The flow stress evolution at the third stage shows 
two types as following: decreasing followed by a stable 
platform revealing a new dynamic balance between WH 
and DRX softening (573-673 K & 0.01 s–1, 623-673 K & 
0.1 s–1, 573-673 K & 1 s–1), and the continuous decline with 
distinctly DRX softening (523 K & 0.01 s–1, 523-573 K & 
0.1 s–1, 523 K & 1 s–1, 523-673 K & 10 s–1).

2.2. Construction process of BP-ANN model for 
as-cast AZ80 magnesium alloy

Error back-propagation algorithm is a representative 
method by adjusting the weights and biases to minimize the 
target error, which is selected to train the artificial neural 
network, namely BP-ANN[19]. The BP-ANN is composed 
of input layer, middle layer (hidden layer) and output layer, 
and its structure diagram is shown as Figure  3. In this 
investigation, the input variables of the BP-ANN include 
strain (ε), strain rate ( ε̇) and temperature (T), and the output 
variable aims to flow stress (σ ).

The information processing system includes the forward 
propagation process of information and the backward 
propagation of error. The neurons in input layer are responsible 
for receiving the input information from the outside world, 
and then the input information is transferred to the neurons 
in the intermediate layer which is responsible for information 
exchange. Based on different datasets, the middle layer can 
be set as a single hidden layer or multiple hidden layers. 
If there are deviations between the actual output and the 
expected output, the BP-ANN enters into the stage of error 
back propagation. The output layer timely modifies the 
weights and biases of each layer based on the error level 
to reduce the output error of the network till an acceptable 
level27,28. The forward propagation of information and the 
back-propagation of error constitute the training process of 
BP-ANN model, accompanying continuous adjustment of the 
weights and biases. This process will be stopped when the 

output errors achieve an acceptable level, or the procedure 
arrives at a predetermined learning iteration.

The fluctuant experimental data were fitted to smooth 
stress-strain curves to minimize experimental error, and 
the smooth curves which show good regularity are helpful 
to improve the training precision. The sixteen stress-strain 
curves were divided into two sets, i.e., training dataset and 
independent test dataset, and this clarification was shown 
in Table 1. In this study, a total of 1180 input-output pairs 
were selected from the fitted stress-strain curves to train 
and test the BP-ANN model. As shown in Table 1, among 
the 1180  nput-output pairs, 88.8% (1036) of them were 
used to train the BP-ANN model at the strain range of 
0.09-0.91 with an interval of 0.01 which exclude the test 
data and the two untrained experimental stress-strain curves, 
and the remained 11.2% (144) flow stress points at the strain 
range of 0.1‑0.9 with an interval of 0.1 were not used for 
training but for testing the predictability of the developed 
BP-ANN model.

The experimental data were measured in different units 
involving temperature, strain, strain rate and stress, therefore, 
there were great discrepancies between different kinds of 
data. If the data in different sizes are simultaneously inputted 
to the input layer of the BP-ANN, the smaller data have little 
effect on the network, and such differences will decrease the 
convergence speed and precision in the network. Therefore, 
the input datasets and output datasets measured in different 
units should be normalized into the dimensionless units that 
in a small range to train the BP-ANN model, and then the 
convergence speed and accuracy of the BP-ANN model would 
be improved13. The input variables (temperature, strain and 
strain rate) and output variable (flow stress) were normalized 
by the improved relation Equation 113,40. In order to narrow 
the range of the normalized values, a serious of empirical 
coefficients were adopted in Equation 113,40.

The input variables (temperature, strain and strain rate) 
and output variable (flow stress) were normalized by the 
improved relation Equation 1. In order to narrow the range 
of the normalized values, a serious of empirical coefficients 
were adopted in Equation 1.

min

max min

0.950.05 0.25*
.05 0.95n

x xx
1 x x

= +
−

- 	 (1)

where xn is the normalized value of x; x is the experimental 
data; xmax and xmin are the maximum and minimum value of 
x respectively.

Hornik et al.41 found that an ANN with single hidden 
layer can map many functions of practical problems, and 
was extensively used. Without limiting the neuron number 
in hidden layer, the BP-ANN model with two hidden 
layers or multiple hidden layers can achieve higher training Figure 3. Structure diagram of the BP-ANN model.

Table 1. The clarification of training dataset and test dataset.

Temperature (K)
Strain rate/s–1

0.01 0.1 1 10
523 Training Test Training Training
573 Training Training Test Training
623 Training Training Training Training
673 Training Training Training Training
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accuracy. For a particular dataset, the appropriate transfer 
function, training function, and appropriate neuron number 
etc. are often designed by a trail-and-error procedure. It is 
noteworthy that the neurons in the hidden layer cannot 
be too less, otherwise the trained network might not have 
sufficient ability to learn the process. However, too more 
neurons in the hidden layer will lead to misconvergence 
or the training data may be over fitted, as illustrated in 
reference42. Generally, the neuron number in each hidden 
layer should be increased with increasing training sample 
number13,42. And an empirical formula for neuron number 
of each hidden layer is expressed as Equation 2.

( )i ok m m b= + + 	 (2)

where k  is the number of neuron node in hidden layers; im  is 
the number of neuron node in input layer; om  is the number 
of neuron node in output layer; b is an integer in the range 
of 2 to 28. Here, im =3 and om =1. In this investigation, the 
selected transfer functions of the hidden layers and output 
layer are ‘tan sigmoid’ and ‘pure linear’ respectively, and 
the training function is ‘trainbr’.

In order to select the neuron number for each hidden 
layer and evaluate the performance of the BP-ANN model, 
an evaluator, mean square error (MSE) between experimental 
stress data and predicted stress data were introduced as 
Equation 343,44.

2

1

1 ( )
N

i i
i

MSE E P
N =

= −∑ 	 (3)

where E is the sample of experimental value; N is the number 
of stress-strain samples of test dataset; P is the sample of 
the predicted value by BP-ANN.

Here, the hidden neurons were scheduled in the range of 
4-30 with an interval of 1. After calculation, the MSE-values 
of the different models are in the range of 0 to 1200. If the 
scale of MSE-value is too large, the small differences between 
similar data are not obvious in a figure. The ln MSE are in 
the range of –2 to 8 through a logarithmic transformation, 
and the small differences and variation trend can be visually 
displayed in a figure, and the corresponding ln MSE are 
shown in Figure  4. The results show that the minimum 
MSE-value of 0.3158 (ln MSE= –1.1526) is achieved when 
the neurons in two hidden layers meet 16 and 16 with the 
most appropriate b-value of 14. The rest of MSE-values are 
higher than 0.3158 and fluctuated substantially, which show 
the instable convergence. In double hidden layers, each 
layer can contain various numbers of neurons and there are 
many combinations of neurons. In this model, the typically 
double hidden layers with the same neurons were simulated, 
and the prediction accuracy is outstanding to identical 
with expectation. Because the expected accuracy has been 
achieved, all the different combinations were not simulated.

A statistical index, the correlation coefficient (R) as 
Equation 443 was introduced to evaluate the degree of the 
close correlation between the experimental stress data 
and predicted stress data. An R-value near 1 indicates a 
well correlation between the experimental stress data and 
predicted stress data.

     
2 2

1 1

)( )

) ( )

N
i ii

N N
i ii i

(E E P P
R

(E E P P
=

= =

− −
=

− −

∑

∑ ∑
	 (4)

where E is the sample of experimental value; P is the 
sample of the predicted value by BP-ANN; E  and P  are 
the mean value for E and P respectively; N is the number 
of stress‑strain samples.

As shown in Figure 5, the R-value for the training samples 
and fitted value of BP-ANN model is 0.9999. There are 
two singular points. The deformation conditions of the two 
singular points are on the edge of strain range corresponding 
to 523 K & 1 s–1 & 0.09 (ε) and 573 K & 10 s–1 & 0.09 (ε), 
which are prone to lack of learning ability of the BP-ANN. 
And the few singular points do not affect accuracy of the 
whole model.

3. Comparison of BP-ANN Model with 
Improved Arrhenius-type Constitutive 
Model

3.1. Existing improved Arrhenius-type 
constitutive model for AZ80 alloy

The general Arrhenius-type constitutive relation was 
expressed by Equation 5 in which the effect of strain was 
not considered. However, strain shows a significant effect on 
flow behaviors of magnesium alloy, thus the compensation 

Figure 4. The mean square errors of single hidden layer and two 
hidden layers.

Figure 5. Correlation between experimental flow stress data and 
predicted flow stress data for the training dataset of BP-ANN model.
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of strain should be considered. Lin  et  al.45,46 presented a 
modified hyperbolic sine constitutive equation, in which 
the hot forming parameters (such as Q, n, a, and A) as 
functions of strain were incorporated in the improved the 
Arrhenius‑type constitutive equation. Quan et al.22 calculated 
a series of coefficients (Q, n, A, and a) shown in Table 2 for 
the improved Arrhenius-type constitutive model of as-cast 
AZ80 alloy.

}
1/7.9064

2/7.9064 1/21 ln ( ) [( ) 1]
0.0129

Z Z
A A

σ = + +


	 (5)

exp[ / ]Z Q RT.ε= 	 (6)

where σ  is flow stress (MPa) for a given strain; Q is 
the activation energy of hot deformation (kJ·mol–1); 
R is the universal gas constant (8.31 J·mol–1·K–1); T is 
temperature (K); ε̇ is strain rate (s–1); A is a structure factor; 
Z is Zener‑Hollomon parameter considering the effects of 
temperature and strain rate47.

1/ ( )

1/22/ ( ).
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1

( )

c.

c

b T

e d

b T

d

ε

ε

ε ε
σ

ε ε

ε ε

ε

 
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	 (7)

where d(ε ), e(ε ), c(ε ), and b(ε ) are polynomial functions of 
strain for A, α , n, and Q respectively, as shown in Equation 8.

ln

2 3 4 5 6 7
0 1 2 3 4 5 6 7

2 3 4 5 6 7
0 1 2 3 4 5 6 7

2 3 4 5 6 7
0 1 2 3 4 5 6 7

2 3 4 5 6 7
0 1 2 3 4 5 6 7

Q B B B B B B B B

n C C C C C C C C

A D D D D D D D D

E E E E E E E E

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

α ε ε ε ε ε ε ε

= + + + + + + +

= + + + + + + +

= + + + + + + +

= + + + + + + +

	 (8)

3.2. Comparison of the performance of 
the developed BP-ANN and improved 
Arrhenius‑type models

A popular evaluator, relative error (δ) was introduced to 
evaluate the performance of the predicted work, as expressed 
by Equation 9.

( ) 100%i i

i

E P% =
E

δ −
× 	 (9)

where E is the sample of experimental data; P is the sample 
of predicted data; N is the number of stress-strain samples 
of test dataset.

Comparisons of the stress data predicted by the improved 
Arrhenius-type constitutive model and BP-ANN model are 
shown in Table 3. From Table 3, it is found that the δ-values 
obtained from the improved Arrhenius-type constitutive 
model vary from –7.32% to 2.23%, while the δ-values are 
in the range from –2.88% to 0.80% for the BP-ANN model. 
Mean value (µ) is the average value of all the relative errors 
of test data, and N is the number of stress-strain samples 
of test dataset. The formula for  µ-value is expressed by 
Equation 1030,43,47. Standard deviation (w) reflects discrete 
degree of individual in the dataset. A large w represents a 
large difference in most of individual values and average 
value of the dataset, while a small w indicates most of values 
are close to the average value. And the formula for standard 
deviation is expressed by Equation 1113,43,48.

1

1 N
i

iN
µ δ

=
= ∑ 	 (10)

2

1

1 ( )
( 1)

N
i

i
w

N
δ µ

=
= −

−
∑ 	 (11)

where δ is the sample of relative percentage error; μ is the 
mean value of δ-values; N is the number of stress-strain 
samples of test dataset.

As shown in Figure 6, it can be summarized that the 
BP‑ANN can track the stress-strain curves in a wide temperature 
range, strain range, and strain rate range. Figure 7a, b show 
the distribution of δ-values corresponding to the improved 
Arrhenius-type constitutive model and BP-ANN respectively. 
The height of each column diagram represents the relative 
frequency of each δ-level. The μ-value and w-value of the 
BP-ANN are 0.0125 and 0.5775 respectively, whereas 
the μ-value and w-value of the improved Arrhenius-type 
constitutive model are 0.0501 and 6.7151 respectively. 
In addition, it is found that the δ-values obtained from the 
improved Arrhenius-type constitutive model vary from –10% 
to 30%, while the δ-values obtained from the BP‑ANN 
vary from-3% to 3%. Smaller μ-value and w-value of the 
BP-ANN show that the distribution of δ-values are more 
centralized, i.e. more predicted stress values are close to 
the experimental stress values.

Table 2. Polynomial fitting results of Q, n, ln A and α for AZ80 alloy.

Q n ln A α
B0 127.62 C0 5.89 D0 –7.42 E0 0.07
B1 –280.90 C1 41.83 D1 593.38 E1 –1.22
B2 8664.94 C2 –505.22 D2 –4117.87 E2 10.73
B3 –53118.60 C3 2644.85 D3 16415.46 E3 –48.35
B4 156794.60 C4 –7163.31 D4 –38156.60 E4 122.08
B5 –252838 C5 10394.41 D5 49808.87 E5 –173.99
B6 213012.90 C6 –7637.83 D6 –33463.50 E6 130.58
B7 –72490.70 C7 2230.64 D7 8983.70 E7 –40
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Table 3. Comparisons between experimental and predicted flow stress data at 523 K & 0.1 s–1 and 573 K & 1 s–1.

Strain 
rate/s-1 Temperature /K Strain Flow stress (MPa) Relative error /%

Experimental BP-ANN Equation 
prediction BP-ANN Equation

0.1 523 0.1 125.6316 123.3342 117.5177 –1.86 –6.29
0.2 142.2319 141.1772 137.4617 –0.75 –3.39
0.3 135.0259 135.7151 134.0651 0.51 –1.17
0.4 127.6225 128.4479 126.7222 0.64 –0.75
0.5 121.1925 122.119 116.4642 0.76 –3.94
0.6 115.579 116.1569 108.5135 0.50 –5.67
0.7 110.6125 110.8962 103.0283 0.26 –7.32
0.8 106.1707 106.5419 99.23393 0.35 –6.41
0.9 102.1647 101.9143 96.09139 –0.25 –6.27

1 573 0.1 115.3297 114.8605 117.4507 –0.41 1.91
0.2 131.1884 127.5171 134.1385 –2.88 2.23
0.3 122.078 120.1074 121.6997 –1.64 –0.21
0.4 114.002 113.3566 111.9394 –0.57 –1.69
0.5 108.048 108.5202 107.6426 0.44 –0.50
0.6 103.6945 104.5339 99.04359 0.80 –4.35
0.7 100.6389 101.4465 96.39865 0.80 –4.30
0.8 98.77956 99.45059 94.45956 0.67 –4.46
0.9 98.1938 98.31215 93.77498 0.12 –4.37

Figure 6. Comparisons between the experimental flow stress and predicted flow stress by BP-ANN model at different strain rates and 
temperatures (a) 0.01 s–1, 523-673 K, (b) 0.1 s–1, 523-673 K, (c) 1 s–1, 523-673 K and (d) 10 s–1, 523-673 K.
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In order to further evaluate the predictive ability of 
the improved Arrhenius-type constitutive model and BP-
ANN model, another evaluation index, average absolute 
relative error (AARE) expressed by Equation 12 is used to 
evaluate the predictive ability together with the correlation 
coefficient (R). The AARE has been used as an unbiased 
statistical parameter to further evaluate the predictability 
of the two models. It is calculated through relative absolute 
error term by term.

1

1 N
i i

i i

E PAARE
N E=

−
= ∑ 	 (12)

where P is the sample of predicted value; E is the sample of 
experimental value; N is the number of stress-strain samples 
of test dataset.

Figure 8a, b show the correlation between the experimental 
flow stress data and predicted flow stress data of the improved 
Arrhenius-type constitutive model and BP-ANN model 
respectively. The R-value and AARE-value of the BP-ANN 
are 0.9999 and 0.32% respectively, while the R-value and 
AARE‑value of the improved Arrhenius-type constitutive 

model are 0.9901 and 4.92% respectively. Zeng  et  al. 
developed ANN models for as-cast titanium alloy, and the 
best correlation coefficient (R) and average absolute relative 
error (AARE) were 0. 999 and 2.41% respectively19,37. And all 
of stress-strain curves participated in the training process 
in their study, which increase the prediction accuracy of 
the ANN models. Nevertheless, in this investigation, two 
stress-strain curves were reserved to evaluate the predictive 
ability of BP-ANN, which did not participate in the training 
procedure. Less input variables reduce the difficulties of 
building an accurate ANN model. Quan et al.13 also developed 
an ANN model for as-cast Ti‑6Al-2Zr-1Mo-1V alloy, and 
the ANN model achieved higher R-value and smaller 
AARE-value, however, in their study, the input variables just 
include deformation temperature (T) and strain (ε). In this 
study, temperature (T), strain (ε), and strain rate (ε̇) were 
trained in the BP-ANN model, and two stress-strain curves 
were reserved to evaluate the prediction accuracy, which 
increase the difficulties to construct the high accuracy model. 
O. Sabokpa et al.38 developed an ANN in predicting the hot 
compressive behavior of cast AZ81 magnesium alloy, and 

Figure 7. Distribution of relative percentage errors of all test data corresponding to (a) improved Arrhenius-type constitutive model and 
(b) BP-ANN model.

Figure 8. Correlation between experimental flow stress data and predicted flow stress data by (a) improved Arrhenius-type constitutive 
model and (b) BP-ANN model.
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the R-value and AARE-value of the ANN are 0.998 and 3.5% 
respectively. Y. J. Qin et al.49 established a BP-ANN with single 
hidden layer to investigate the flow behavior of ZK60 alloy 
during hot compression, and the R-value and AARE-value 
of the predicted data of the BP-ANN are 0.9819 and 3.91% 
respectively. A smaller AARE-value of 0.32% and a greater 
R-value of 0.9999 were achieved in this study.

It can be summarized that the BP-ANN can track the 
stress-strain curves in a wide temperature range, strain range, 
and strain rate range, and it has higher prediction accuracy 
than the improved Arrhenius-type constitutive model. On the 
contrary, the improved Arrhenius-type constitutive model 
is difficult to describe the flow behaviors, for the reason 
that the mathematical regression method is difficult to 
accurately track the highly non-linear deformation behavior. 
Another reason is that the phenomenological models such as 
Arrhenius‑type constitutive model lack of physical backgrounds 
involving the complex microstructural evolution. What is 
worse, the Arrhenius-type constitutive model needs to be 
recalculated when new experimental values are involved. 
The advantages of Arrhenius-type equation are the equation 
does not need substantial physical theories to understand 
intricate microscopic evolutions in plastic deformation, 
and only some material constants are needed which can be 

obtained by mathematical regression method based on the 
experimental results. Thereby, in the situation that does not 
demand high precision, using the Arrhenius-type equation 
is more convenient. However, the prediction accuracy of 
Arrhenius-type equation in a wide range of temperatures 
and strain rates can be different and not outstanding, so the 
BP-ANN shows great advantage when superior accuracy 
is required. And the BP-ANN does not need to build the 
intricate mathematical models and physical interpretations. 
The BP-ANN only needs representative samples from the 
research projects, and then optimizes the training parameters 
and structure of hidden layers.

4. Applications of BP-ANN in Material 
Computations

4.1. Stress-strain data volume expansion by 
BP‑ANN

The flow stress data at temperatures of 548 K, 598 K, 
648 K, and 698 K under strain rates of 0.01 s–1, 0.1 s–1, 1 s–1 
and 10 s–1 were predicted for as-cast AZ80 magnesium alloy 
by the well-trained BP-ANN model, as shown in Figure 9. 
The strain-stress data volume expansion contributes to the 
accuracy improvement in the following aspects.

Figure 9. The true stress-strain data of AZ80 magnesium alloy under different temperatures and different strain rates (a) 0.01 s–1, (b) 0.1 s–1, 
(c) 1 s–1, (d) 10 s–1, among which the solid curves are experimental data and the fitted curves by dots are predicted data.
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4.2. Accuracy improvement in FE simulations
In this section, simulations were simulated in the finite 

element method (FEM) analysis software DEFORM-2D to 
analyze the influence of stress-strain curves on simulation 
results. The billet size of the simulation was the same as 
the experimental specimen, and one half of the specimen 
was chose in finite element calculation due to geometric 
symmetry. The bottom die was set to be fixed. In the previous 
experiments, graphite lubricants were applied to coat the 
top and bottom surfaces of specimens in compression 
tests, thereby, in DEFORM-2D, the friction type between 
the surfaces of specimens and dies was set as shear type. 
The heat exchange and heat radiation among specimens, 
dies and surrounding environments were ignored, so as to 
simulate the actual isothermal compression test.

In the three different simulation schemes shown in 
Table 4, stress-strain curves were variables. All of the initial 
conditions were identical except for stress-strain curves. 
Scheme-A has no interpolation intervals. As mentioned in 
previous chapter, the stress-strain curves at the temperatures 
of 548 K, 573 K, 598 K, 648 K, and 698 K and strain rate 
of 1 s–1 were predicted by BP-ANN model, and then these 
stress-strain curves were applied to scheme-B. However, 
scheme-C only adopted experimental stress-strain curves 
at temperatures of 523 K, 623 K and 673 K and strain rate 
of 1 s–1. The stress-strain curves at the temperature of 573 K 
and strain rate of 1 s–1 were interpolated by FEM software. 
The interpolation interval was 100 K for scheme-C.

Figure 10a shows the distribution of effective strain for 
scheme-A. Figure 10b shows the distribution of effective 
strain for scheme-B, which can also be roughly divided into 
three regions, and the average strain is 0.929 approaching to 
scheme-A. Figure 10c depicts the distribution of effective strain 
for scheme-C, which is similarly divided into three regions, 
and the average strain is 1.03 showing small difference to 
scheme-A, however, there are great differences between the 
distributions of effective strain values. In addition, the shape 
of outer perimeter of the billet was not the typical drum-type, 
for the reason of the failing interpolation in wide interpolation 
interval. Furthermore, Figure 11 shows the load curves of 
the top die responding to strokes of three different schemes. 
By comparing these simulated results, it can be found that 
the top die loads of scheme-B and scheme-A are extremely 
close. The load trends of scheme-C and scheme-A before 

4 mm are roughly uniform, afterwards, there are huge load 
differences between them. The relative errors of the top die 
load value were obtained in the range of –6.04-4.44% between 
scheme-A and scheme-B, and it were obtained in the range of 
–10.42-29.94% between scheme-A and scheme-C. It can be 
summarized that the large span of interpolation will result in 
unfaithful simulation results. Furthermore, the deformation 
behavior under different temperature range of material is 
significantly non-linear, therefore, calculating flow stress 
by interpolation method is extremely inaccurate in FEM 
software. For example, accurate control of the forming process 
requires accurate material data. The large deviations of the 
preliminary simulation results will severely impact on the 
computation accuracy, generating huge economic and human 
capital losses. It can be summarized that the BP-ANN can 
predict the flow stress and narrow the interpolation interval 
to improve the simulation precision.

4.3. Construction of 3D mapping relationships of 
flow behavior parameters

Sun et al., O. Sabokpa et al., Ji et al. and Zhu et al. only 
predicted stress values of unknown temperatures at certain 
strains and strain rates6,12,30,37-39. Quan et al.13 just developed 
discontinuous 3D response plot of experimental stress 
data and predicted stress data corresponding to strain and 
temperature under fixed strain rates. In this investigation, the 
flow stress data at supposed temperatures of 548 K, 598 K, 
648 K, and 698 K under strain rates of 0.01 s-1, 0.1 s-1, 1 s-1 
and 10 s-1 were predicted for as-cast AZ80 magnesium alloy 
by the well-trained BP-ANN model. Based on these existing 
experimental stress-strain data and predicted stress-strain 
data, an interpolation method was employed to densely 
insert stress-strain data into the existing data, and the 3D 
continuous relationships among temperature, strain, strain 
rate and stress were subsequently established as Figure 12 
by a surface fitting process in Matlab. And the novel 3D 
prediction map of flow stress has not been reported before. 
Undoubtedly, with the help of BP-ANN model, more 
stress-strain data with smaller interpolation intervals can be 
predicted into the 3D prediction map of flow stress to improve 
accuracy. Compared with the typical two dimensional true 
stress-strain curves, the novel 3D prediction maps of flow 
stress have advantages of continuation and can represent 
corresponding flow stress value at arbitrary temperature, 

Table 4. These three finite element simulation schemes at the temperatures of 573 K and the strain rate of 1 s–1.

Temperature (K)
Finite element simulation schemes

A B C
523 Experiment curve Experiment curve Experiment curve
548 Null Predicted curve by BP-ANN Null
573 Experiment curve Predicted curve by BP-ANN Interpolation of FEM software 

(DEFORM)
598 Null Predicted curve by BP-ANN Null
623 Experiment curve Experiment curve Experiment curve
648 Null Predicted curve by BP-ANN Null
673 Experiment curve Experiment curve Experiment curve
698 Null Predicted curve by BP-ANN Null
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Figure 10. Distribution on effective strain by (a) scheme-A, (b) scheme-B and (c) scheme-C, at the temperatures of 573 K and the strain 
rate of 1s–1, and the total height reduction of 60%.
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strain rate and strain. In Figure 12, the X-axis, Y-axis and 
Z-axis represent deformation temperature, strain rate and 
strain, respectively, and the flow stress values are measured 
with different colors. Figure 12b-d show the slice maps of 
Figure 12a in three different directions. Figure 12b expresses 
the corresponding flow stress to arbitrary strain rate and 
strain at fixed temperatures. It can be observed that the flow 
stress level increases with increasing strain rate at a certain 
strain, which cannot be fully displayed in the typical two 
dimensional true stress-strain curves. Figure 12c indicates 

the flow stress corresponding to arbitrary temperature and 
strain at fixed strain rates. It can be observed that the flow 
stress level decreases with the increase of temperature at a 
certain strain. Figure 12d indicates the corresponding flow 
stress to arbitrary temperature and strain rate at fixed strains.

According to the above analysis, the predicted stress 
data outside of experimental conditions show similar rule 
with the known experimental stress-strain curves. A large 
amount of stress-strain data outside of experimental 
conditions predicted by the accurate BP-ANN can enrich 
the flow stress data and narrow the interpolation intervals. 
With the help of the procedure of the 3D prediction maps 
of flow stress, the continuous space can be converted into a 
full-scale database which can represent corresponding flow 
stress data at arbitrary temperature, strain rate and strain.

The BP-ANN shows potential to integrate into FEM 
by using programming language. With the help of the 
combination of BP-ANN with FEM, it is possible to 
achieve high precision of simulations without resorting to 
expensive and time-consuming experiments. With the rapid 
development of FEM software and deep study of BP-ANN, 
it is achievable to build a relatively full-scale and accurate 
database automatically based on known stress-strain data, 
which contribute greatly to the simulation accuracy and 
the related studies. For example, the full-scale and accurate 
database can improve the processing maps, ductile fracture 
criteria etc.

Figure 12. The (a) three-dimensional prediction map of flow stress and the cross profiles at different (b) temperatures, (c) strain rates 
and (d) strains.

Figure 11. The corresponding relationship between the stroke and 
the loading force of top die for the three schemes.
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5. Conclusions
A well-trained BP-ANN was constructed to predict the hot 

deformation behavior of as-cast AZ80 magnesium alloy based 
on the experimental stress-strain curves from hot compression 
tests at the temperatures ranging from 523 to 673 K, and the 
strain rates ranging from 0.01 to 10 s–1. And a continuously 
3D prediction map of flow stress was plotted based on the 
BP-ANN model. Following main conclusions are drawn 
from the current study:

(1)	 The hot deformation behavior of magnesium alloy 
shows a highly non-linear intrinsic relationship with 
temperature, strain and strain rate, accompanying 
work hardening (WH), dynamic recrystallization 
(DRX) and dynamic recovery (DRV).

(2)	 The correlation coefficients (R-values) from the 
improved Arrhenius-type constitutive model and 
BP-ANN are 0.9901 and 0.9999 respectively, and 
the average absolute relative errors (AARE‑values) 
from the two models are 4.92% and 0.32% 
respectively. The high level of R-value and smaller 
AARE-value of the BP-ANN show that more 
predicted flow stress data were extremely close to 
the experimental flow stress data, which indicated 
that the BP-ANN has a better prediction precision 

in modelling the hot deformation behavior of as-cast 
AZ80 magnesium alloy.

(3)	 The flow stress data under different temperature 
ranges of material are significantly different, 
thereby, calculating flow stress data by interpolation 
method in FEM software will result in extremely 
inaccurate simulation results. And the well-trained 
BP-ANN can directly predict flow stress and narrow 
the interpolation interval.

(4)	 It is universally acknowledged that stress-strain 
data play critical roles in many studies such as the 
construction of processing maps and ductile fracture 
criteria. Therefore, the continuously full-scale 
database of flow stress can represent corresponding 
flow stress data at arbitrary temperature, strain 
rate and strain, which can contribute greatly to 
the simulation accuracy and optimization of the 
processing maps and ductile fracture criteria etc.
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