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Acoustic Birefringence and Poisson’s Ratio Determined by Ultrasound: Tools to Follow-Up 
Deformation by Cold Rolling and Recrystallization
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Poisson’s ratio and birefringence, both measured by ultrasound, are used to follow the evolution 
of the anisotropy in ASTM A-36 steel plates cold-rolled between 5 and 50% deformation, and then 
subjected to recrystallization at 900 and 1000 °C. Times of flight of longitudinal and shear waves along 
the thickness of the plates were measured. As orthotropy increases, both birefringence and the difference 
between Poisson’s ratios measured using a shear wave polarized along the length and another wave 
polarized along the width of the plate, are linearly related to the degree of deformation and cold-rolled 
hardness. In addition, the ultrasonic methods used clearly detected the complex changes in anisotropy 
produced by the austenization and recrystallization heat treatments. Thus, Birefringence or Poisson’s 
ratio, measured by ultrasound, can be used to follow-up nondestructively changes in the anisotropy 
of rolled plates as a function of both, degree of deformation and recrystallization heat treatment.

Keywords: Ultrasound, Poisson’s Ratio, Acoustic Birefringence, Cold Working, Recrystallization

* e-mail: linton.carvajal@usach.cl

1. Introduction
The use of ultrasound to measure second order elastic 

constants in multiphase or polycrystalline materials is based 
on the Christoffel equation, which relates them with the phase 
velocity of three non-dispersive ultrasonic waves with mutually 
perpendicular polarization directions (i.e., of displacement of 
the medium’s particles), propagating in specified directions1. 
This equation comes from considering that the passage of 
a wave through a body generates small elastic stresses and 
deformations, setting up a dynamic equilibrium described 
by the equations of motion, wherefrom the equation that 
governs wave propagation in a homogeneous elastic medium 
is obtained by considering the generalized form of Hooke’s 
law. The Christoffel equation is finally obtained by assuming 
the propagation of harmonic elastic waves as a solution for 
the equation of motion:

     (1)

where Cijkl are the second order elastic constants; (n1,n2,n3), 
the direction cosines of the normal to the wavefront, indicating, 
therefore, the direction of propagation of the wave; ul is 
the displacement or polarization vector; ρ, the density of 
the medium, and δil, the Kroenecker delta. The equation 
corresponds to three homogeneous equations from which, 
for every propagation direction considered, three different 
velocity values arise from the cubic equation in v2, obtained 

by making the determinant of the coefficient matrix equal to 
zero. These three velocities correspond to three waves with 
mutually perpendicular polarization vectors.

The solution to the inverse problem of determining the 
elastic constants from experimental measurements of wave 
velocity is well established, and the measuring protocols 
are clearly defined in the literature1. Most materials used 
in engineering either have isotropic symmetry, with two 
independent elastic constants, or orthotropic symmetry, 
with nine independent constants. The following relations 
are obtained for the isotropic case, where C11 = C22 = C33, 
C44 = C55 = C66 = ½(C11-C12):

             (2)

with vii, the velocity of the longitudinal wave (longitudinally 
polarized to its direction of propagation i), and vij, with i ≠ j, 
the velocity of the shear wave (polarized in the direction j, 
transverse to its direction of propagation i). Thus, the values 
of the elastic constants may be obtained just by measuring 
the velocities of a longitudinal wave and a shear wave in any 
direction of propagation. From the theory of elasticity2, which 
for the isotropic case relates the elastic stiffness constants 
with Young’s and shear moduli, and with Poisson’s ratio ν, 
these parameters may be expressed in terms of the velocities 
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of the longitudinal and shear waves3, as Equation (3) shows 
for Poisson’s ratio:

                (3)

Since in an isotropic material vL and vT are independent 
of their directions of propagation and polarization, access to 
any one plane is enough to calculate its elastic properties.

In order to obtain the independent constants of an 
orthotropic material, nine measurements are required. 
These are the velocities of longitudinal and shear waves in 
the three symmetry directions of the material, allowing to 
obtain C11, C22, C33, C44, C55 and C66; and the velocities of 
either quasi-longitudinal or quasi-shear waves in the three 
symmetry planes, but at an angle with respect to the axes, 
obtaining C12, C13 and C23. Now, using only normal incidence 
for propagation along the z-axis (Figure 1), the following 
relations are obtained:

            (4)

That is, although to obtain all of the constants of an 
orthotropic material, three perpendicular planes must necessarily 
be accessed, variations in the degree of orthotropy may be 
studied by having access to only one plane and measuring 
the velocities of the shear waves v31 and v32, thus determining 
the difference between the elastic constants C44 and C55. This 
difference gives rise to the acoustic birefringence B, which 
is quantified as the ratio of the difference of velocities v31 
and v32 to their average, as Equation 5 shows, so that for a 
perfectly isotropic material, B = 0:

            (5)

where tij corresponds to the times of flight of the waves 
along the z-axis. The equation shows that birefringence can 
be quantified without measuring the distance, usually the 
thickness as in the case of rolled metal plates, of the material 
through which the wave travels, because the ratio of the 
velocities of two waves traveling the same distance becomes 
a ratio of the times of flight of those waves. Therefore, on 
the one hand, an important source of error in measurement 
is omitted, and on the other hand, it allows the study to be 
made under conditions in which it is difficult or impossible 
to measure the thickness4-7.

Notice that Equation (3) indicates that the thickness can 
also be omitted to calculate Poisson’s ratio. This equation is 
valid for an isotropic material; for an orthotropic material, the 
difference between the elastic constants C44 and C55 should 
generate two values for Poisson’s ratio, depending on the 
polarization direction of the shear wave, that is:

            
                                                                                  (6)

              (7)/
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Figure 1. Waves for the determination of elastic constants, with 
longitudinal and shear waves propagating along z. The longitudinal 
wave is polarized along the z-axis, while the shear waves of velocities 
v31 and v32 are polarized along the x and y axes, respectively.

Therefore, it should be possible to relate Poisson’s 
ratio with the effect of deformation processes and post 
deformation heat treatments on the anisotropy, without 
specifying the thickness of the material under study. There 
is no information in the literature with respect to the use of 
Poisson’s ratio for this purpose. The objective of this paper 
is, then, to study the feasibility of relating Poisson’s ratio 
and acoustic birefringence measured by ultrasound with 
the degree of cold-working and the temperature and time of 
austenization after cold deformation of an structural steel. 
For this research, the traditional contact ultrasonic technique 
was used (as Figure 1 suggests), which readily lends itself 
to some industrial use, though it might be a limitation when 
contact between transducers and the part becomes an issue. 
However, the method is suitable for any non-contact technique, 
such as Electromagnetic Acoustic Transducer (EMAT) and 
Laser Ultrasonic (LUS), as long as longitudinal and shear 
waves may be induced in the part.

2. Experimental Procedure

Seven samples measuring 505 mm x 54 mm x 15 mm 
were cut for cold rolling from a hot-rolled ASTM A-36 steel 
plate. Their surfaces were adequately prepared to readily 
accommodate the transducers and propagate the ultrasonic 
waves. Before rolling each sample, 21 points were identified 
along the central line of the top surface, separated by 10 
mm each. The thickness at every point was measured with 
a micrometer. Then, the seven samples were rolled each at a 
different degree of deformation. Afterwards, the seven rolled 
samples were each cut into four equal parts, all of which were 
heat-treated in a 20-kW Lindberg model 56667-E furnace, 
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previously heated at the required temperature as shown in 
Table 1. Thus, four heat treatments were performed for each 
degree of deformation.

The longitudinal velocity v33, whose polarization vector 
is perpendicular to the rolling direction, has a decreasing 
trend as the degree of deformation increases beyond 
17.9%, reaching, at 42%, a maximum difference of 46 m/s 
(0.78%) compared to its original average value without cold 
deformation. On the other hand, it is observed that for the 
original non-cold rolled sample, the difference between the 
average values of velocities of the perpendicularly polarized 
shear waves, v31 and v32, is barely 3 m/s. From Equation 
4, this gives rise to a difference of a mere 0.18% between 
C44 and C55, rendering the sample nearly isotropic. As cold 
deformation increases, the shear wave velocity v31, polarized 
parallel to the rolling direction, increases constantly from 
its original average value, so that the velocity is 2 m/s 
higher (0.06%), at ε = 5.4% and 28 m/s higher (0.86%) at ε 
= 49.7%; meanwhile, v32 (perpendicularly polarized to the 
rolling direction) decreases between 5 and 86 m/s (0.15% and 
2.65%), relative to its respective original value. Following 
Equation 4, this implies that C55 increases and C44 decreases 
because of the deformation, while the effect on C33 is more 
complex, although it clearly tends to decrease.

3.2 Effect of cold rolling on poisson’s ratio and 
birefringence

According to Equations 5, 6 and 7, the changes in the 
elastic constants modify B and ν. To illustrate the effect of 
cold rolling, Figure 2a compares Poisson’s ratios at the 21 
locations of a sample before and after cold rolled to 12.3% 
deformation, and Figure 2b does the same for the sample 
rolled to 42%. On the non-rolled samples of Figure 2, the 
average values of Poisson’s ratios determined from Equations 
6 and 7 are ν3̅1 = 0.2817 and ν3̅2 = 0.2810, respectively. Figure 
2 also shows that the individual values of ν31 and ν32 before 
deformation slightly fluctuate around their respective mean 
values, with a maximum difference between ν31 and ν32 of 
0.0019 at locations 4 and 10. On the other hand, when the 
samples are rolled, fluctuations around the respective averages 
increase somehow, but more importantly, as the deformation 
increases, ν31 decreases while ν32 increases at every location. 
Hence, the difference between the mean values for the sample 
rolled to 12.3% grows to ν̅31 – ν̅32 = 0.0042, while for the 
one rolled to 42%, climbs to ν3̅1 – ν3̅2 = 0.0168, that is, more 
than an order of magnitude greater than ν3̅1 – ν3̅2 = -0.0007, 
the difference between the mean values for the non-rolled 
samples. The effect of cold deformation, from 0 to 49.7%, 

Table 1. Time and temperature for heat treatment of rolled samples.

Temp. ºC 900 900 1000 1000

Time, min. 15 30 15 30

To determine birefringence and Poisson’s ratio, normal 
incidence from longitudinal and shear contact piezoelectric 
transducers and pulse-echo technique were used. Ultrasonic 
tests were carried out before and after each deformation and 
after each heat treatment in the 21 locations corresponding 
to the marked points. The waves propagated from the top 
surface (xy plane in Figure 1) and along the thickness of the 
samples (z-axis in Figure 1). Naturally, longitudinal waves 
were always polarized along the z-axis. On the other hand, 
by alternatively placing the shear wave transducer on the 
surface with its polarization direction perpendicular to and 
along the rolling direction, shear waves polarized along the 
principal axes (x and y axes in Figure 1) of the samples were 
propagated. The ultrasonic system consisted of a Panametrics 
5077PR pulser-receiver, on pulse-echo mode; 5-MHz, 11 mm 
in diameter Panametrics contact transducers for longitudinal 
and shear waves; and an HS805 TiePie oscilloscope emulator 
plate to obtain and store the echoes for later processing.

To relate results to standard techniques, metallographic 
samples were prepared by common procedures, and Rockwell 
B hardness was measured before and after deforming the 
samples, and after the heat treatments. Five measures were 
taken on each sample for averaging.

3. Results and Discussion

3.1 Effect of cold rolling on wave velocities

After obtaining and storing the ultrasonic signals, the 
times of flight of the waves were measured, quantified as 
the difference between the times of the maxima of the first 
two echoes.

Table 2 shows the propagation velocity values before 
and after rolling the samples; each value corresponds to 
the average of the measurements for each of the 21 points 
marked along the samples before deformation.

Table 2. Averages of the wave velocities and hardness in the rolled samples.

Sample Original 1 2 3 4 5 6 7

Deformation ε (%) 0.0 5.4 12.3 17.9 21.2 30.8 42.0 49.7

v33 (m/s) 5882 5905 5884 5890 5866 5843 5836 5859

v31 (m/s) 3243 3245 3247 3251 3254 3250 3261 3271

v32 (m/s) 3246 3241 3225 3215 3206 3194 3174 3160

H (HRB) 82 90 92 93 94 95 98 101
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on the average values of ν31 and ν32 is shown in Figure 2c. 
For comparison, the dotted lines also shown indicate the 
range of fluctuation of the individual values of ν31 and ν32 
along the 21 points measured on each of the seven samples 
before rolling.

Figure 3 summarizes the effect of cold rolling on the 
difference between average values of Poisson’s ratios (that 
is, the difference between the curves of Figure 2c), and on 
birefringence. It is seen that ∆ν = (ν3̅1 – ν3̅2) increases linearly 
with deformation from -0.0007 to 0.0213. Likewise, the 
average birefringence B, which is barely -0.0011 in the hot 
rolled condition, reflecting its nearly isotropic behavior, 
increases linearly with cold deformation to 0.0346. Equations 
(8) and (9) give the respective relations:

            (8)

Figure 2. Poisson’s ratios measured at 21 locations on samples; 
(a) non-cold rolled and rolled to ε=12.3%; (b) non-cold rolled and 
rolled to ε=42%. (c) Average of Poisson’s ratios ν31 and ν32 versus 
cold deformation (dotted lines indicate the range of fluctuation of 
values of ν31 and ν32 before rolling).
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            (9)

Thus, it is possible to establish a linear relation between 
the difference of Poisson’s ratios and birefringence. Such 
relation is given by:

          (10)
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Figure 3. Effect of deformation on birefringence B and on the 
difference between Poisson’s ratios ∆ν = (ν3̅1 – ν3̅2).

3.2.1 Relationship to hardness

Average values of hardness for the samples are shown in 
Table 2. The average value for the original hot rolled plate 
was 82 (HRB). As expected, hardness increases with cold 
rolling, and from the data in Table 2 is seen that it does it 
linearly as deformation increases between 5.4 and 49.7%. 
The resultant relation is given by Equation (11), where, H 
stands for hardness.

        (11)

As a consequence, both birefringence and the difference 
of Poisson’s ratios are linearly related to hardness. The 
respective relations are given by:

          (12)

          (13)

Therefore, it is possible to estimate precisely the level 
of deformation as well as the hardness achieved by rolling 
from measurements of the time of flight of shear waves 
for birefringence, and of longitudinal and shear waves for 
Poisson’s ratios.
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3.3 Effect of heat treatment on poisson’s ratio and 
birefringence

For high levels of deformation, Figures 4 and 5 show 
that the heat treatments to which the rolled samples were 
subjected tend to return the values of Poisson’s ratio to the 
original values, which are shown by the dotted lines that 
indicate the range of fluctuation of the ratios, both ν31 and 
ν32, considering the 21 points measured on each of the seven 
samples before rolling. However, at 900º C (Figures 4a and 
4b), it is seen that regardless of treatment time, between 17.9% 
and 30.8% deformations, the ν31 curves show a maximum, 
shifting even more from the original values. This implies 
that the material behaves more anisotropically after the heat 
treatment within that deformation range.

would recrystallize below curve A1, followed by a partial 
transformation above curve A1 and a total transformation 
above curve A3. Then, on cooling the γ → α and γ → α 
+ cementite transformations would occur. The onset of 
recrystallization and the recrystallized fraction depend on 
both the degree of deformation applied and the time at the 
recrystallization temperature. For low levels of deformation, 
the α → γ → α transformations could take place without prior 
recrystallization. If so is the case, the deformed α structure 
(αDEF) can be expected to be transformed into deformed γ 
(γDEF) upon heat treatment, and then on cooling it would 
transform back into αDEF.

Then, graphs a and b of Figure 4 suggest that up to 21.2% 
deformation, at 900 ºC the αDEF → γDEF → αDEF transformation 
cycle may take place, whether the heat treatment lasts 15 
or 30 minutes. 

At 1000 ºC, on the other hand, the αDEF → γDEF → αDEF 
transformation cycle is valid only for 15 minutes of heat 
treatment. Apparently, as time at 1000 ºC is increased all the 
γ grains would adopt a gray texture, giving rise to α grains 
without a preferred orientation. The same would happen with 
30.8% deformation at the two heat treatment temperatures. 
The analysis suggests that for 42% deformation at 900 ºC 
(Figures 4a and 4b) the αDEF → γDEF → αDEF cycle still takes 
place in a time of 15 minutes, however, at a temperature of 
1000 ºC (Figures 5a and 5b) there would be recrystallization 
prior to the α → γ transformation. A 49.70% deformation is 

Figure 4. Effect of heat treatment on Poisson’s ratio ν31 and ν32 in 
rolled samples. (a) 900 °C, 15 min.; (b) 900 °C, 30 min. (Dotted lines 
indicate the range of fluctuation of values of ν31 and ν32 before rolling).

The tests carried out at 1000 ºC (Figures 5a and 5b) 
show a behavior similar to the previous one, but only for a 
time of 15 minutes of treatment (Figure 5a). It is also seen 
that for deformations lower than 17.9% and greater than 
30.8%, ν31 and ν32 are practically identical.

Therefore, only for the treatment at 1000 ºC for 30 
minutes (Figure 5b), the samples, regardless of the degree 
of deformation to which they were subjected, return to a 
practically isotropic behavior.

Those results may be explained as follows: it would be 
expected that a cold-deformed ASTM A-36 steel sample, 
when heated above the upper critical temperature curve, 

Figure 5. Effect of heat treatment on Poisson’s ratio ν31 and ν32 in 
rolled samples. (a) 1000 °C, 15 min.; (b) 1000 °C, 30 min. (Dotted 
lines indicate the range of fluctuation of the individual values of ν31 
and ν32 among the 21 points measured on each sample before rolling).
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Figure 7. a) Sample rolled to 21.2%, and annealed at 900 ºC, 30 
min.; b) sample rolled to 49.7%, and annealed at 1000 ºC, 30 min.

apparently sufficient to produce some degree of recrystallization 
prior to the α → γ transformation, because it is seen that 
the values tend toward those of the isotropic material. This 
practically 100% isotropic symmetry is achieved after 30 
minutes at 1000 ºC for all degrees of deformation, as shown 
in Figure 5b, where Poisson’s ratios tend to 0.286, a value 
slightly higher than the range of the original samples from 
the hot rolled material.

As could be expected, the behavior of birefringence 
to the heat treatments is similar to that of Poisson’s ratio.

3.4 Hardness and metallographic analysis

The micrographs shown in this section were taken at a 
magnification of 500X. Figure 6a belongs to a material in 
its original state, showing an equiaxial ferrite plus pearlite 
microstructure, typical of an ASTM A-36 steel. Figure 6b 
shows a micrograph of a rolled sample at a medium degree 
of deformation, where, as expected, no significant change 
is seen in the orientation of the grains. As is well known, 
more sophisticated techniques, such as DRX and EBDS, 
are required to detect such changes. However, the results 
obtained by ultrasound clearly show that it is possible, in a 
nondestructive mode, to detect the increased orthotropy at 
even the lowest degrees of deformation.

Figure 6. a) Material in its original state; b) sample rolled to 21.2%. 

Figures 7a and 7b show that after the heat treatments 
there is a slight difference in ferritic grain size compared 
to the original sample (Figure 6a), and that in the sample 
treated at higher temperature there is the presence of colonies 
of thicker pearlite.

The hardness of all the heat-treated samples fluctuated 
randomly between 77 and 82 (HRB), with no relation to 
the temperature or time of treatment, showing a decrease 
of the hardness down to values lower in most cases than the 
average value obtained for the original plate.

The previous hardness results and the metallographic 
analysis show that those procedures do not allow following 
up the process of modification of anisotropy caused by 
the heat treatment applied to the cold-rolled samples. In 
contrast, the determination of birefringence or Poisson’s 
ratio by ultrasonic methods allows these modifications to 
be distinguished precisely.

4. Conclusions

The main conclusions obtained from this work are the 
following:

• The mapping of Poisson’s ratio on the ASTM A-36 
steel showed it to be nearly isotropic.

• It was shown experimentally that the effect of 
deformation by cold rolling on wave velocity, 
birefringence, and Poisson’s ratio is to shift the 
obtained data from their initial values in proportion 
to the degree of deformation applied.

• The above means that both birefringence and 
Poisson’s ratio make it possible to determine the 
degree of cold deformation and the hardness of 
the materials studied by means of simple linear 
relationships.

• The effect of the heat treatment in the austenitic 
field on cold-rolled samples depends on the degree 
of deformation and on the temperature and time 
of treatment. Medium levels of deformation, low 
temperature and shorter austenization time tend 
to shift the values of birefringence and Poisson’s 
ratio from the original values of the material before 
the deformation; high levels of deformation, high 
temperatures, and longer austenization tend to return 
those values to the original ones of the material 
before its deformation.

It can be concluded, therefore, that even though the 
times of flight of the waves measured in different positions 
show a random dispersion, it is feasible to use Poisson’s 
ratio as well as birefringence, both measured by ultrasound, 
as a simple and nondestructive method to follow up the 
anisotropy changes in rolled plates due to cold rolling and 
to post rolling heat treatments.
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