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Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
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This work aims to evaluate the capability of the theory of critical distances (TCD) to predict the static 
failure of U-notched AISI 420 martensitic stainless steel specimens with different geometric features 
under pure bending loading. Theoretical estimates of the stress intensity factor during fracture onset 
were calculated according to the line (LM) and point methods (PM), which consider the characteristic 
length L, inherent strength σ0, and notch tip radius ρ. Initially, L and σ0 were determined on the basis 
of the material’s properties (i.e., fracture toughness KIc and ultimate tensile strength σu,t), resulting in 
imprecise estimates. Conversely, L and σ0 determined using the appropriate analysis of linear–elastic 
stress fields ahead of notches with different sharpness provided highly accurate predictions. The 
microscopic study of fractured specimens ensured better comprehension of the results. Moreover, the 
accurate values of L and σ0 were used to predict the failure of V-notched specimens.
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1. Introduction
On-service failure of a component or equipment 

consists of an extremely undesirable occurrence in any 
industrial field, which can result in loss of human life, 
environmental pollution, and extensive material damage. 
Thus, failure prediction techniques have an important 
role in the assessment of flaws (i.e., cracks, bulges, 
dents, and corrosion) and support the correct design of 
geometric features. Dimensional or shape variations, 
keyways, and notches are examples of geometric features 
that concentrate stresses around its apices during loading, 
consequently becoming the most probable regions of 
crack onset1.

In the past century, many investigations have proposed 
accurate methods for failure prediction of engineering 
materials in the presence of cracks and evaluation of the 
detrimental effects of notches on the general strength of 
components with different geometric attributes2. Despite the 
existence of well-established and standardized methods for 
failure prediction, considering different types of damages, 
researchers continue the search for rapid, inexpensive, and 
reliable methods. Among the currently discussed alternatives, 
the theory of critical distances (TCD) deserves special attention 
because of the simplicity of its mathematical formalization 
and accurate results obtained for different materials (i.e., 
ceramics, polymers, metals, and composites), geometries, 
and loading modes.

The present study evaluates the capability of TCD 
to predict the failure of U-notched AISI 420 specimens 
loaded under four-point bending and assesses the failure 
of V-notched specimens under bending loading and tensile 
stress. The microscopic analysis of fractured specimens leads 
to a comprehensive understanding of the results obtained.

2. Literature Review

2.1 Theory of critical distances
TCD employs four methods to predict failure in the 

vicinity of local stress concentrators through the analysis of 
linear–elastic stress fields. The four methods directly related 
to TCD are line method (LM), point method (PM), area 
method, and volume method, which commonly use a basic 
parameter called characteristic length L for failure prediction2. 
In the late 1930s, Neuber3 first proposed a methodology 
for evaluating high-cycle fatigue based on a length scale 
parameter. Neuber determined that the effective stress that 
leads to failure is the average elastic stress ahead of a stress 
raiser over a material-dependent length. This initial approach 
resulted in the LM. A few years later, Peterson4 presented 
the PM, which is a simplification of Neuber’s proposal. 
According to Peterson’s proposal, the failure of a notched 
material under high-cycle fatigue occurs when the elastic 
stress reaches a critical value at a characteristic distance 
from the stress concentrator apex. After these initial works, 
a breakthrough in the theoretical formulation of TCD was 
achieved when Whitney and Nuismer5 linked continuum 
mechanics to linear–elastic fracture mechanics (LEFM), 
deriving an equation that estimates the characteristic length 
L as a function of material plane strain fracture toughness 
KIc. Whitney and Nuismer5 evaluated the stress distribution 
in laminated composite specimens containing through-
thickness circular holes and straight cracks by conducting 
uniaxial tensile tests.

More recently, Taylor6-8 reassessed the original formulations 
of TCD methods, providing a new interpretation based on 
several papers of different authors, which encompass a wide 
range of materials, loading modes, and fracture behavior. 
Taylor’s work prompted novel research on TCD methods9,10, 
which elicited new and diverse data from different materials, *e-mail: marcelo.osiqueira@pq.uenf.br
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corroborating the capability of TCD to provide accurate 
predictions under diverse conditions.

Despite the results of recent studies, the reasons why 
TCD works so well for different materials are continuously 
discussed. Taylor7 stated that theories used to predict failure 
can be organized in a spectrum, which has in one extreme 
continuum mechanics theories (i.e., LEFM) and in the other 
extreme micro-mechanistic approaches (i.e., Ritchie-Knott-
Rice model). Given this spectrum, TCD is in the middle and 
becomes slightly closer to the first extreme once it is utilized 
to modify LEFM. In TCD the presence of mechanisms 
that occur in the microstructural level is denoted by the 
characteristic length parameter L.

In addition to this general effort to understand the 
mechanisms related to TCD, a specific issue arises and 
continues to intrigue researchers, i.e., if TCD is based on 
principles related to LEFM, then why does it obtain accurate 
results for materials with elastic–plastic behavior? Although 
accurate results are obtained, this question stands open in 
the conclusion of many studies, either in the case of small-
scale11 or large-scale12,13 plastic deformation.

2.2 AISI 420 stainless steel
AISI 420 selected for this work is martensitic stainless 

steel used for industrial applications and typically has a 
carbon content between 0.15wt% and 0.40wt%. Moderate 
corrosion resistance is achieved with the addition of 12wt% 
to 14wt% chromium14.

Similar to other martensitic stainless steels, AISI 420 is 
generally supplied in the spheroidized condition, i.e., its 
microstructure consists of a ferrite matrix and uniformly 
distributed coarse carbides. Common thermal processing of 
this steel includes annealing, austenitizing, oil quenching, 
and tempering15. According to the heat treatment history, the 
final microstructure may contain different percentages of 
martensite, metallic carbides (MxCy), and retained austenite 
over a ferritic matrix. As a consequence of many possible 
microstructural compositions, a wide range of mechanical 
properties can be obtained, enabling several applications 
for this material, such as valve parts, turbine blades, cutting 
tools, pressure vessels, dental and surgical instruments, and 
plastic molding. Despite the improvement of toughness 

through tempering, in some cases, AISI 420 is applied in 
the annealed or as-quenched condition15-17.

2.3 Linear–elastic stress field ahead of blunted cracks
In this work, the stress field ahead of a U-notch will be defined 

according to Creager and Paris’s original equations18 for Mode 
I opening, which are based on LEFM. These authors presented 
equations describing the stress field ahead of a blunted crack to 
analyze the arresting effect over a stress corrosion crack because 
of the blunting of the crack tip associated with the dissolution 
phenomenon. Figure 1 depicts the coordinate system used by 
the authors, of which the origin is located behind the crack tip 
at a distance r0 = ρ/2, where ρ is the blunted crack root radius.

Given that a blunted crack is geometrically similar to a 
notch, Creager and Paris’s18 approach yields an approximate 
prediction of the stress field for notches with root radius ρ. 
Equation 1 expresses the stress field for a specific condition 
where θ = 0 is considered because the stress field of interest 
is located right ahead of the notch tip.
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In Equation 1, ,U
IK ρ  is the Mode I stress intensity factor for 

a U-notch with root radius ρ and r is the distance from the 
origin in the adopted coordinate system.

Failure Criteria—Point and Line Methods
The present work investigates two criteria associated 

with TCD, i.e., PM and LM. Figure 2 illustrates the working 
principles of these methods.

In Figure 2, L is the characteristic length of the material 
and a basic parameter of TCD and σ0 is the inherent strength 
of the material. Characteristic length applied to static loading 
can be calculated using Equation 212, where KIc is the plane 
strain fracture toughness. This relation is derived from the 
study of Whitney and Nuismer5.
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As previously mentioned, PM states that static failure 
occurs when the effective stress σeff ahead of the notch tip 

Figure 1. Coordinate system considered by Creager and Paris18.
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exceeds the inherent strength of the material σ0 at a distance 
L/2 from the tip (Figure 2a). Equation 3 expresses the 
mathematical formalization of PM12.

( ), eff 0
L0 r 2θθσ σ θ σ= = = =  (3)

For PM, two conditions characterize fracture onset, i.e., 
(1) the notch stress intensity factor reaches a critical value, 
i.e., , ,U U

I IcK Kρ ρ= , and (2) σeff = σ0 at r = ρ/2 + L/2 given 
the coordinate system adopted. On the basis of these two 
conditions, we can rewrite Equation 1 as Equation 4.
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In Equation 4,  .theor
cK  is the theoretical prediction of the 

stress intensity factor during crack onset as a function of root 
radius ρ, characteristic length L, and inherent strength σ0.

In the case of LM, the effective stress is determined by 
averaging the linear–elastic stresses over a line ahead of the 
notch tip. Failure occurs when the effective stress σeff exceeds 
the inherent strength of the material σ0 at a distance 2L from 
the tip (Figure 2b). Equation 5 expresses the mathematical 
formalization of LM12.
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Given that Equation 1 expresses the stress field as ( ),0 rσ θ = , 
Equation 5 can be integrated from −ρ/2 to (ρ/2 + 2L), resulting 
in Equation 6 after extracting the stress intensity factor.
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Similar to PM, .theor
cK  is the theoretical prediction of the 

stress intensity factor during crack onset as a function of root 
radius ρ, characteristic length L, and inherent strength σ0.

2.4 Characteristic length and inherent strength
In previous studies, Whitney and Nuismer5 stated that 

the same value of characteristic length L yielded good fitting 
for both conditions evaluated, i.e., circular holes in quasi-
isotropic glass/epoxy and straight cracks in graphite/epoxy, 
with the specimens having different laminated constructions. 
At that moment, they determined that L could be constant for 
various laminates, geometric discontinuities, and material 
systems. After considerable research, current results indicate 
that characteristic length varies with the material and 
failure processes. L is usually associated with the material 
microstructural features, such as grain size, as observed in 
cases of brittle fracture in engineering ceramics and steel7.

With regard to inherent strength σ0, precise estimates 
and its meaning, particularly when working with metallic 
materials, need to be obtained. Indeed, for ceramics and 
composite materials, many studies2,10 support the finding that 
inherent strength σ0 is equal to ultimate tensile strength σu,t. 
This assumption is valid for classic brittle and quasi-brittle 
materials, which exhibit small-scale plastic deformation before 
failure. Conversely, for materials that exhibit medium-scale 
or large-scale plastic deformation, ultimate tensile strength 
does not represent a good estimate of inherent strength. This 
finding is true for metallic materials and certain groups of 
polymers. For these materials, σ0 usually reaches values up 
to 10 times greater than σu,t

7.
Theoretical background indicates that inherent strength 

σ0 has no physical meaning because it is an elasticity-based 
parameter in a region where actual stresses are gradually 
modified by plasticity, general damage, and several nonlinear 
phenomena. Indeed, a better comprehension of the meaning 
of σ0 is necessary, although current studies confirm that, for 
materials that exhibit extensive plasticity before failure, 
σ0 reaches values significantly greater than σu,t.

Despite the lack of a more precise understanding of L 
and σ0, researchers believe that the most accurate technique 
for determining these properties is testing specimens of the 
same material with at least two different geometric features 
and analyzing the stress fields during crack onset12,13. 
The following steps summarize how L and σ0 are obtained 
using PM:

1. The test specimens are prepared with different 
sharpness, i.e., one sharp and the other blunt.

2. Finite element models of the tested specimens are 
built and failure loads are applied to analyze the 
stress field ahead of the notch tip.

3. Stress field curves related to each notch type are 
plotted in the same graph and the point where 
the curves intersect is identified. According to 
the mathematical formalization of PM, this point 
represents L/2 and σ0.

Figure 2. Graphical representation of the working principles of 
(a) PM and (b) LM.
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Figure 3 depicts the procedure. For LM, the procedure 
is complex and requires the calculation of the area under the 
stress field curves (Equation 5) to determine the value of r, 
for which the area of both curves present the same value. 
The value of r represents 2L according to LM.

3. Calculation Procedures

3.1 Failure criteria evaluation
In this study, the capability of the considered methods to 

predict failure will be assessed by comparing the theoretical 
stress intensity factor with the experimental stress intensity 
factor.

The theoretical stress intensity factor .theor
cK  will be 

determined using Equation 4 or 6 according to PM or LM, 
respectively. First, σu,t will be considered an initial estimate 
of σ0, whereas L will be calculated according to Equation 2, 
which defines L uniquely as a function of fracture toughness 
and ultimate tensile strength, i.e., material’s properties. 
Afterward, L and σ0 will be directly obtained from the plotted 
curves by linear–elastic stress field analysis, as illustrated in 
Figure 3. In this case, the material’s properties are unnecessary.

The experimental stress intensity factor .exp
cK  will be 

computed using Equation 1 given that the stress σθθ developed 
at the notch tip (r = ρ/2) during crack onset. To obtain the 
value of σθθ, the failure loads of the tested specimens will 
be applied in the finite element models.

Equation 7 expresses the error considered for the desired 
comparison.
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3.2 Failure assessment of V-notched specimens
As previously mentioned, the values of σ0 and L that 

successfully estimated the failure of U-notched bending 
specimens will be used to evaluate the failure of uniaxially 
loaded V-notched rounded specimens machined with the 
same AISI 420. Papers in the literature show that, for the 
same material with the same thermal treatment history, 
σ0 and L can be applied to failure prediction, regardless of 
the loading mode and specimen geometry8,13.

Ayatollahi and Torabi19 investigated brittle fracture in 
rounded-tip V-notched specimens loaded under three-point and 
four-point bending. Meanwhile, Torabi20 evaluated the load-
bearing capacity of bolts with V-shaped threads. Both works 
used the analytical approach proposed by Filippi et al.21 for 
describing the local stress field ahead of rounded-tip V-notched 
specimens and obtained good predictions. In the present 
work, the theoretical stress intensity factor for LM and PM 
will be calculated according to the formulas present in the 
aforementioned studies.

Meanwhile, the experimental stress intensity factor 
will be computed as the mean value (from the notch tip up 
to a distance equal to ηρ, where η = 0.4) to eliminate the 
weak dependence on the notch tip distance. Lazzarin and 
Filippi22 proposed this correction because of the oscillating 
values observed for the stress intensity factor ahead of the 
notch tip as a consequence of the approximate analytical 
solution for blunted V-notches given that it satisfies the 
boundary conditions only at the notch tip and at a certain 
distance from it.

For the sake of simplicity, equations involved in V-notch 
failure assessment are not discussed here but can be found 
in articles in the literature19-22.

4. Materials and Methods
Table 1 presents the chemical composition of AISI 

420 used in this study, determined using the SpectroMaxx 
optical emission spectrometer. The values obtained are 
consistent with the ASTM A240-17 standard specification 
for AISI 420.

AISI 420 was supplied as a hot-rolled plate with thickness 
of 16 mm in the annealed condition. Plates were cut out and 
machined into specimens for the tensile, toughness, and 
four-point bending tests. All specimens were machined with 
the largest dimension parallel to the rolling direction of the 
purchased plate. For notched specimens, this means that the 
notch opening direction was parallel to rolling direction.

Tensile tests were performed according to the ASTM E8-
16 standard specification23 using small-size specimens with 
rounded section and the following dimensions: overall length 
100 mm, length of reduced section 36 mm, and diameter of 
reduced section 6 mm. Tests for the determination of fracture 
toughness KIc were performed according to the ASTM E399-
17 standard specification24 using compact tensile specimens 
C(T) with W = 25.4 mm and B = 12.7 mm.

Specimens used in the four-point bending test were 
machined with the length of 130 mm and two different 
sections, i.e., 14 mm × 14 mm and 14 mm × 7 mm. U-notches 
with the radii of 0.17 and 1 mm were prepared using electro-
erosion as well as V-notches with the radii 0.17 mm and 60° 
opening. In the four-point bending tests, load and support 
spans of 50 and 100 mm were used, respectively.

V-notched specimens with circular cross-section and 
loaded under tensile stress were machined from the same 
plate of bending specimens, respecting also the same rolling 
orientation.

Figure 4 depicts general dimensions of the notched 
specimens which are summarized in Table 2, including the 
number of tested specimens.

Figure 3. Linear–elastic stress versus distance curve for notches 
with different features.
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Table 3 presents the parameters necessary to compute 
the stress intensity factor for V-notched specimens22.

After machining, the specimens were preheated at 600°C 
for 15 min and austenitized at 1,150°C for 30 min. Afterward, 

the specimens were oil quenched and then tempered at 390°C 
for 30 min, followed by furnace cooling. Austenitization was 
performed in a neutral salt bath to prevent decarburization16. 
Heating rates were established at 0.35°C/min.

Table 1. Chemical composition of the purchased AISI 420 (in wt%).

Fe C Cr Mn P S Si Ni Mo
85.7 0.367 12.790 0.459 0.013 <0.001 0.349 0.126 0.013

V Nb Cu Al Co Pb Sn W
0.067 0.027 0.020 0.019 0.014 <0.03 <0.01 <0.01

Table 2. General dimensions of the tested specimens.

U-NOTCHED PLATE

Thickness t
(mm)

Notch Tip
Radius ρ

(mm)

Notch Depth d
(mm)

Number of
Tested Specimens

7
0.17

5

5
1 5

14
0.17 4

1 5
V-NOTCHED PLATE (60°)

Thickness t
(mm)

Notch Tip
Radius ρ

(mm)

Notch Depth d
(mm)

Number of
Tested Specimens

7
0.17 5

5
14 5

V-NOTCHED ROUNDED BAR

Angle (2α)
Notch Tip
Radius ρ

(mm)

Ligament b
(mm)

Number of
Tested Specimens

60° 0.39 3.08 4
90° 0.59 3.68 3

Table 3. Parameters for stress intensity factor—V-notched.

V-NOTCHED PLATE (60°)
Angle (2α) Tip Radius ρ (mm) q r0 (mm) λ1 μ1 χb1 χc1 χd1 ω1 ηθθ(0)

60° 0.17 1,667 0.068 0.512 −0.406 1.312 3.283 0.096 0.970 0.970
V-NOTCHED ROUNDED BAR

Angle (2α) Tip Radius ρ (mm) q r0 (mm) λ1 μ1 χb1 χc1 χd1 ω1 ηθθ(0)
60° 0.39 1.667 0.156 0.512 −0.406 1.312 3.283 0.096 0.970 0.969
90° 0.59 1.500 0.196 0.545 −0.345 1.841 2.506 0.105 0.810 0.810

Figure 4. Geometry of specimens tested specimens (dimensions in millimeters).
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The specimens were machined before heat treatment, 
except the notches, which were generated afterward to 
prevent distortion and microcrack development due to 
thermal stresses.

The Rockwell C hardness (HRC) of the specimens 
was evaluated using the Panambra Pantec RBS durometer. 
Measurements were performed with 150 kgf of applied load 
during 6s over polished specimens.

Finite element analysis (FEA) was conducted using the 
commercial software Ansys. Linear–elastic models were 
prepared and a plane stress state was considered. Elements 
around the notch tip were properly refined because it was 
necessary to obtain a stress versus distance curve that departs 
from the notch apex with small increments. In this area, an 
element size of 2 µm was employed.

Accurate measurements of the radii of the notches 
and the general features of fractured specimens were also 
performed using the Olympus LEXT OLS4000 3D confocal 
laser microscope.

Samples for microstructural characterization were 
grited with abrasive silicon carbide waterproof paper up 
to 1200 grit and polished with alumina powder with the 
particle size of 1 µm in water suspension. Afterward, the 
samples were etched electrolytically with 10wt% oxalic 
acid. To ensure better comprehension of the microstructure 
of the samples, after obtaining the images, the samples 
were once more grited, polished, and etched with Vilella’s 
reagent (1 g of picric acid, 5 mL of HCl, and 95 mL of 
ethyl alcohol).

Scanning electron microscopy images were obtained 
using the Shimadzu SuperScan SSX-550 for microstructural 
characterization and fractographic analysis.

5. Results and Discussion

5.1 Microstructural characterization
Figures 5 shows the microstructure of the samples 

obtained with backscattered electrons. Aligned carbides 
identified in the images are the result of the hot rolling 
process, characterizing the carbide banding phenomenon25. 
As a result of growth and coalescence during the hot rolling 
process, some carbide particles have a larger dimension than 
other particles. A banded microstructure is characterized by 
dark/light bands, resulting in the variations in the carbide 
size and density, called carbide density banding26. Usually, a 
banded microstructure is described as a segregated structure 
with two different phases aligned approximately parallel 
with the working direction25.

Heat treatment resulted in a microstructure that consists 
of a tempered martensite matrix with undissolved carbides 
dispersed, as shown in Figure 6.

The microstructure of AISI 420 stainless steel after 
quenching and tempering is usually characterized by the 
presence of carbides, tempered martensite and eventually 
retained austenite, although martensite can persist in 
tempering temperature14,15. Depending on the austenitizing 
temperature, δ-ferrite may also be present27,28. Large 
carbides are associated with M7C3, whereas small carbides 
are associated with M23C6

29.

5.2 Mechanical properties
Table 4 presents the mechanical properties of AISI 420. 

For the tensile tests, five specimens were tested. Tensile 
specimens exhibited small necking after rupture, with a 
full flat fracture surface. Figure 7 shows the engineering 
stress–strain curves of the tested specimens.

For the determination of plane strain fracture toughness 
KIc, three specimens yielded valid values according to the 
ASTM E399-1721 standard specification. Strain hardening 
exponent n and strain hardening coefficient K were obtained 

Figure 5. Microstructure of AISI 420 etched with 10wt% oxalic acid.

Figure 6. Microstructure of AISI 420 etched with Vilella’s reagent.

Table 4. Mechanical properties of the tested AISI 420.

σy Yield strength 1159 MPa
E Young’s modulus 197228 MPa

σu,t
Ultimate tensile strength, 

true value 1796 MPa

εu,t True strain at rupture 0.0386 mm/mm
AR% Area reduction 5.60%

n Strain hardening exponent 0.160
K Strain hardening coefficient 3156.6 MPa

KIc
Plane strain fracture 

toughness 35.4 MPa√m

Rockwell C Hardness 51 HRC
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using Method A of the ASTM E646-16 standard specification30. 
The values listed in Table 4 are the average values of the 
individual tests performed.

5.3 Four-point bending test
Table 5 lists the average values of the load-bearing 

capacity of the tested specimens according to the specimen’s 
thickness and notch tip radius ρ. The dispersion of the 
results was considered to be small. The highest value of 
the coefficient of variation was 7.6% for specimens with 
the thickness of 7 mm and ρ = 0.17 mm, whereas the lowest 
value of the coefficient of variation was 2.0% for specimens 
with the thickness of 7 mm and ρ = 1 mm. The coefficient 
of variation (COV) is defined as the ratio of the standard 
deviation to the mean.

The four-point bending results for U-notched specimens 
(Table 5) indicate the linear behavior of the load-bearing 
capacity relative to the thickness because specimens with 
the thickness of 14 mm require two times more force to 
reach failure than specimens with the thickness of 7 mm, 
regardless of the notch tip radius. Similarly, the increase 
in thickness does not affect the stress concentration factor 
defined by the notch tip radius: rupture of specimens with 
the radius of 0.17 mm occurs with approximately 63% of 
the load necessary to break specimens with the radius of 
1 mm, regardless of the thickness. These considerations 
indicate that both thicknesses investigated are under the 
same stress state.

The region around the notch tip of four-point bending 
specimens was checked with a confocal laser microscope 
before and after testing. Checking the notch tip before 
testing aimed to verify the presence of microcracks and 
small damages eventually generated during machining and/
or heat treatment. Meanwhile, verification after fracture 
confirms if cracking started at or close to the notch tip apex. 
The theoretical approach considered in this work18 states that 
elastic stress in the bisector reaches its maximum value at 
the notch tip apex. Therefore, if cracking initiates in other 
locations, then something went wrong, e.g., specific damage 
near the notch tip, localized microstructural differences or 
specimens were placed incorrectly in the testing machine 
(misalignment) which could result in unsymmetrical loading 
and differential stresses.

Verification before testing revealed minor scratches and 
irregularities characteristic of machining and electro-erosion 

but no relevant damage. Verification after testing invalidated 
two tests, indicating misaligned specimens.

Observation of the specimens after rupture also revealed 
that loading stimulated the occurrence of several microcracks, 
as shown in Figure 8. Figure 8a shows two halves of a 
fractured specimen placed side by side with the crack in 
the middle of the image. Crack onset is located at the notch 
apex. Figure 8b shows the sideline of the notch. Both images 
show that microcracks depart from the notch edge and are 
orientated perpendicular to the curvature radius. Progressively, 
microcracks change direction and become perpendicular to 
the principal stress direction. Figure 8c shows the sketch of 
specific regions observed in the bending specimens.

Microcracks were observed in all of the tested specimens 
under four-point bending, without relevant differences. 
Analysis of different specimens indicates that thickness does 
not affect microcrack appearance, unlike the notch tip radius. 
Notch tips with the radius of 0.17 mm lead to a high density 
of microcracks around the notch, whereas notch tips with 
the radius of 1 mm generate cracks with a large aperture.

5.4 Fracture appearance
Figure 9 shows the fracture surfaces of four tested 

specimens. In each image, both sides of a broken specimen 
placed side by side are shown. The fracture appearance is 
typical of brittle fracture.

Figure 10 shows the image of the fractured surface obtained 
using a scanning electron microscope with a magnification 
of 50×. The borderline between the end of the notch and the 
beginning of the cracked surface, as well as the cracking 
direction, is illustrated. In this image, a fracture typical of 
brittle mechanism can be identified. Indeed, during the four-
point bending test, rupture of specimens occurred suddenly, 
without visible crack growth or plastic deformation.

A detailed examination of two selected regions of the 
fracture, i.e., one near the notch tip (approximately 175 µm) 
and the other far from the notch tip (approximately near the 
fracture surface center), was conducted. To ensure better 
comprehension, the length corresponding to 175 µm is 
marked in Figure 10. Figure 11 depicts the general features 
of the regions observed.

Although macroscopic evaluation of the fracture surface 
of bending specimens indicates brittle fracture (Figure 9), 
microscopic analysis allows additional considerations. 
Figure 11a shows the fracture surface in region near the crack 

Figure 7. Engineering stress–strain curves of the tested specimens.

Table 5. Average load-bearing capacity of the tested specimens.

U-NOTCHED PLATE
Thickness (mm) ρ = 1 mm COV ρ = 0.17 mm COV

7 23221 N 2.0% 14819 N 7.6%
14 46921 N 5.0% 29604 N 2.7%

V-NOTCHED PLATE (60°)
Thickness (mm) ρ = 0.17 mm COV

7 15547 N 12.6%
14 32642 N 7.6%

V-NOTCHED ROUNDED BAR
Angle (2α) ρ COV

60° 0.39 mm 20559 N 8.6%
90° 0.59 mm 26998 N 5.6%
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Figure 8. Microcracks in the region around the notch tip of the specimen with the thickness of 7 mm and notch tip radius of 1 mm: 
(a) notch tip apex, 216×; (b) notch tip sideline, 430×; (c) sketch indicating the observed regions.

Figure 9. Fracture surface: (a) thickness of 14 mm and radius of 1 mm, (b) thickness of 14 mm and radius of 0.17 mm, (c) thickness of 
7 mm and radius of 1 mm, and (d) thickness of 7 mm and radius of 0.17 mm.
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tip, while Figure 11b presents a region away from crack tip. 
In both studied regions, a predominance of microvoids is 
observed where dimples can be distinguished. This examination 
indicates that the fracture results of microvoid coalescence 
can be characterized as a fully ductile fracture.

The fracture analysis results are consistent with the tensile 
test results. A small area reduction (5.6%) is observed, although 
the engineering stress–strain curve behavior indicates the 
occurrence of yielding. In this case, yielding occurs as a result 

of localized plasticity around the rupture region. Thus, the 
material can be characterized as exhibiting small-scale yielding.

5.5 Failure criteria application
Table 6 shows the theoretical predictions of the stress 

intensity factor according to Equations 4 and 6 for PM and LM, 
respectively. In this case, characteristic length L was computed 
according to Equation 2, using KIc obtained on the basis of the 
ASTM E399-17 standard specification and considering ultimate 
tensile strength σu,t of the material as an initial estimate for σ0.

The average values of the failure loads determined in the 
four-point bending test (Table 5) were applied in the finite 
element models to determine the critical stress at the notch 
tip, which is considered the stress during crack onset. Then, 
the stresses obtained were applied in Equation 1, resulting 
in the experimental stress intensity factors .exp

cK  for each 
thickness and notch tip radius, as presented in Table 7.

Table 8 shows the errors according to the specimen’s 
thickness and notch tip radius calculated using Equation 7. 

Figure 10. Fracture surface observed using a scanning electron 
microscope with a low magnification (50×).

Figure 11. Scanning electron microscopy images of the fracture 
surface near (a) and far (b) from the notch tip in two different 
specimens (magnification of 3000×).

Table 6. Theoretical predictions of Kc
theor. (MPa√m) for the tested 

specimens under bending loading.

ACCORDING TO THE EQUATION 2
METHOD

Tip radius PM LM
1 mm 56.5 61.5

0.17 mm 34.5 41.0
ACCORDING TO THE GRAPHICAL ANALYSIS

METHOD
Thickness | Tip radius PM LM
t = 7 mm | ρ = 1 mm 185.2 184.8

t = 7 mm | ρ = 0.17 mm 112.0 112.5
t = 14 mm | ρ = 1 mm 187.4 186.8

t = 14 mm | ρ = 0.17 mm 112.1 112.8

Table 7. Experimental values of Kc
exp (MPa√m) for U-notched 

specimens.

Tip radius
Specimen Thickness

7 mm 14 mm
ρ = 1 mm 186.2 188.1

ρ = 0.17 mm 112.7 112.7

Table 8. Percentage error for U-notched stress intensity factor 
prediction.

ACCORDING TO THE EQUATION 2
ERROR

Thickness | Tip radius PM LM
t = 7 mm | ρ = 1 mm 229.8% 202.7%

t = 7 mm | ρ = 0.17 mm 226.4% 174.8%
t = 14 mm | ρ = 1 mm 233.2% 205.8%

t = 14 mm | ρ = 0.17 mm 226.5% 174.9%
ACCORDING TO THE GRAPHICAL ANALYSIS

ERROR
Thickness | Tip radius PM LM
t = 7 mm | ρ = 1 mm 0.54% 0.77%

t = 7 mm | ρ = 0.17 mm 0.63% 0.17%
t = 14 mm | ρ = 1 mm 0.34% 0.72%

t = 14 mm | ρ = 0.17 mm 0.58% -0.04%
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The high values strongly indicate that ultimate tensile strength 
σu,t does not represent a good estimate of inherent strength 
σ0. This is probably related to localized plastic deformation 
around the notch tip and extensive presence of microcracks 
detected in bending specimens after failure (Figure 8). 
The cracking phenomenon promotes energy dissipation as 
a consequence of localized plastic deformation around the 
crack front and generation of free surfaces31. Therefore, 
countless microcracks detected in bending specimens 
served as energy-dissipating elements in such a way that 
high loads were necessary to reach a critical value of the 
stress intensity factor and promote failure. Indeed, for brittle 
and quasi-brittle materials, microcrack development can be 
considered a toughening mechanism.

As previously explained, several authors have stated 
that the most accurate way to determine L consists of 
analyzing the stress field ahead of the notch tip. Thus, 
Figures 12 and 13 show the stress fields calculated using 
FEA for PM and LM, respectively.

Figures 12a and 13a present the analysis of specimens 
with the thickness of 7 mm, whereas Figures 12b and 13b 
present the analysis of specimens with the thickness of 
14 mm. The values obtained for L and σ0 for each method 
and thickness are indicated in the same figures.

For PM, in Figure 12, the dashed lines indicate L and 
σ0 in the intersection of the stress field curves of specimens 
with different stress raisers. Given that LM has a different 
mathematical formalization, in Figure 13, the dashed lines 
indicate the distance 2L ahead of the notch tip for which 

the area under stress field curves reaches the same value. 
The ratio between this area and 2L yields the σ0 value. This 
is the reason why the dashed lines for LM do not lie over 
any specific point of the curves.

The values for inherent strength σ0 do not exhibit a 
significant variation regardless of the method used or 
specimen thickness. The average value of 5878 MPa is the 
most representative value.

Conversely, characteristic distance L assumes different 
values according to the method, i.e., 115 µm for PM and 
78 µm for LM. For the same method, thickness variation 
from 7 mm to 14 mm shows no influence.

Table 6 also shows the theoretical prediction of .theor
cK  

calculated using L and σ0 obtained from stress field analysis 
applied in Equations 4 and 6. Table 8 presents the errors 
calculated using Equation 7. The percentage errors are lower 
than ±1%, indicating accurate prediction, which enables a 
consistent evaluation of the material during crack onset and 
prediction of failure, without using the mechanical properties 
previously obtained from standardized tests.

TCD is sensitive to complex phenomena that occur 
around the notch tip, even when these phenomena are not 
limited to a small region and microcracks are detected in 
the specimens investigated. In the present work, despite the 
small-scale yielding observed, microcracks are distributed 
over a large area, indicating that the nonlinear zone is large. 
This issue is remarkable because TCD is based on linear–
elastic assumptions and, theoretically, does not consider 
nonlinear effects, such as plasticity and damage, except if 

Figure 12. Stress field analysis according to PM: (a) thickness of 
7 mm and (b) thickness of 14 mm.

Figure 13. Stress field analysis according to LM: (a) thickness of 
7 mm and (b) thickness of 14 mm.
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the nonlinear zone is limited to a small region compared with 
the dimension of the body7. Creager and Paris’s equation 
also has a linear–elastic framework.

5.6 Discussing σ0 and L
The values of σ0 obtained using stress field analysis and 

highlighted in Figures 12 and 13 are approximately 3.3 times 
greater than the ultimate tensile strength σu,t. Despite σu,t 
usually representing a good estimate for σ0 when dealing 
with brittle and quasi-brittle materials, the present material 
is an exception because of the extensive occurrence of 
microcracks. The accurate prediction obtained using stress 
field analysis reinforces the idea that σ0, despite having 
no physical meaning, is a suitable representation of local 
material strength when plastic deformation or damage is not 
actually modeled12. In other words, σ0 can depict, through 
linear–elastic representation, nonlinear effects, such as 
small-scale yielding and widespread microscopic cracking 
that occur during crack onset.

Table 8 shows that both PM and LM criteria using 
graphical analysis resulted in accurate predictions of the 
stress intensity factor during crack onset. Therefore, the 
criterion that presents the correct value of L needs to be 
determined. As shown in Figures 12 and 13, the values 
of 115 and 78 µm can be estimated for L using PM and 
LM, respectively. Reviewing previously published works, 
Taylor7 stated that PM provides better predictions of failure 
when cleavage is the dominant micro-mechanism, whereas 
LM has better results for micro-mechanisms involving 
nucleation and coalescence of microvoids. Conversely, 
although the tested AISI 420 had presented a fracture resulting 
to the coalescence of microvoids, similar errors, observed 
for both methods, did not allow to conclude which one is 
more appropriate in this case. A comparison between the 
L estimated and the grain size of the tested material could 
contribute to this discussion, but the different etching reagents 
and methodologies applied14,15 did not accurately reveal prior 
austenite grain boundaries, preventing grain size estimate 
accordingly. Further measurements of the microstructural 
features are necessary to explore possible correlations with L.

5.7 Evaluation of V-notched specimens
Thus far, the procedure presented is widely used by 

several authors to assess the capability of TCD to predict 
failure. Otherwise, it can be simply considered a calibration 
procedure; for instance, (1) test specimens with different 
stress raisers, (2) obtain L and σ0, (3) calculate the theoretical 
prediction of Kc for the same specimens, (4) calculate the 
experimental Kc using the failure loads, (5) compute the 
error, and (6) evaluate the results. When successful, the 
results indicate that mathematical equations present the 
appropriate formulation. Thus, in the present work, values 
of L and σ0 successfully obtained by testing U-notched 
plates under bending loading are used to assess the failure 
of V-notched plates under bending loading and V-notched 
rounded bars under tensile stress.

Table 5 also shows the average rupture load for V-notched 
specimens, whereas Table 9 lists the values of the theoretical 
predictions and experimental results of the stress intensity 
factor and errors obtained for both V-notched specimens 
under bending loading (plates) and tensile stress (rounded 
bar). The stress intensity factor was calculated following 
the proposed correction of Lazzarin and Filippi22. .exp

cK  is 
the mean value of the stress intensity factor from the notch 
tip up to a distance equal to ηρ. Differences in .exp

cK  reach 
3.66% (t = 7 mm) and 3.46% (t = 14 mm) for plates and 
4.88% (2α = 60°) and 5.90% (2α = 90°) for rounded bars.

With errors up to 9.51%, failure prediction of V-notched 
specimens was successful, although smaller errors were 
observed for U-notched specimens, which can be related to 
mathematical simplifications assumed to calculate the stress 
intensity factor for V-notches22. Table 5 also shows that the 
increase in thickness from 7 mm to 14 mm did not result in 
a proportional increase in the force necessary to promote 
failure, i.e., proportionally, specimens with 14 mm required 
5% more force to fracture, which is probably associated with 
the variations in the triaxiality degree.

At first glance, failure prediction of V-notched specimens 
under tensile stress did not show remarkable results, particularly 
considering that negative error values indicate that failure 

Table 9. Assessing V-notched specimen failure.

V-NOTCHED PLATE (2α = 60°; ρ = 0.17 mm)

Thickness (mm) Method
MPa.m(1-λ1)

Kc
theor.

MPa.m(1-λ1)
Kc

exp

MPa.m(1-λ1)
Error

%

7
LM 122.3

122.6
0.21

PM 118.5 3.44

14
LM 122.4

129.8
6.07

PM 118.6 9.51
V-NOTCHED ROUNDED BAR

Angle (2α) Tip radius ρ
mm Method Kc

theor.

MPa.m(1-λ1)
Kc

exp

MPa.m(1-λ1)
Error

%

60° 0.39
LM 144.2

116.8
-19.02

PM 138.0 -15.37

90° 0.59
LM 215.4

157.7
-26.77

PM 207.1 -23.83
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occurs at lower values of the stress intensity factor than the 
prediction considered. Although the literature presents better 
results for failure prediction of V-notched specimens, i.e., up 
to 7%20, error estimates falling within the ±20% interval are 
considered successful13,32. Moreover, L and σ0 used in failure 
prediction of V-notched specimens under tensile stress were 
obtained from tests of U-notched specimens under bending 
loading and, as previously stated, notched AISI 420 under 
bending loading exhibited numerous microcracks, which 
did not occur in specimens under tensile stress.

6. Conclusions
σu,t and KIc obtained using standard tests with tensile 

specimens did not result in appropriate values of L and σ0, 
which were unable to properly estimate the critical stress 
intensity factor for U-notched specimens under bending 
at failure.

Significant errors were associated with the presence of 
nonlinear phenomena, such as localized plastic deformation 
and, mainly, extensive microcracking. The microscopic 
evaluation of fracture was proven to be important for 
understanding the results.

Otherwise, σ0 and L determined from stress field analysis 
of U-notched specimens under bending loading (based on the 
conceptual formulation of PM and LM) enabled accurate failure 
prediction with errors lower than ±1%. Stress field analysis 
was proven to be able to consider nonlinear phenomena.

Similarly, σ0 and L were used to predict the failure 
of V-notched specimens, with the results for plates under 
bending successfully obtained. However, poor predictions of 
V-notched rounded bars under tensile stress were obtained, 
which can be related to the absence of microcracks in 
specimens under tensile stress.

The results highlight that exploratory studies intended to 
assess the applicability of TCD in predicting failure should be 
supported by a comprehensive evaluation of fracture features.
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