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The family Characidae is the most diverse group of fishes in the Neotropics 
with challenging systematics. The three genera Carlana, Parastremma, and 
Rhoadsia, formerly considered the subfamily Rhoadsiinae, are now included in 
the subfamily Stethaprioninae. Previous phylogenetic analyses did not include 
all genera of Rhoadsiinae, specifically Parastremma. Here, we estimated the 
phylogenetic relationships and divergence times of the genera of Rhoadsiinae 
(the Rhoadsia clade) relative to the most representative genera of the Characidae. 
We used six molecular markers from the mitochondrial and nuclear genome to 
estimate the phylogeny and divergence times. We confirmed the monophyly of 
the Rhoadsia clade. Furthermore, we estimated that the Central American genus 
Carlana and the western Colombian genus Parastremma diverged approximately 
13 Mya (95% HPD 8.36–18.11), consistent with the early-closure estimates of 
the Isthmus of Panama (~15 Mya). The genus Rhoadsia, endemic to Western 
Ecuador and Northern Peru, was estimated to originate at around 20 Mya (95% 
HPD 14.35–25.43), consistent with the Andean uplift (~20 Mya).
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Divergence times of the Rhoadsia clade

La familia Characidae es el grupo más diverso de peces en el Neotrópico con 
una sistemática compleja. Los tres géneros Carlana, Parastremma y Rhoadsia, 
antes considerados en la subfamilia Rhoadsiinae, ahora se consideran dentro de la 
subfamilia Stethaprioninae. Los análisis filogenéticos publicados no incluyen todos 
los géneros de Rhoadsiinae, específicamente Parastremma. Aquí, estimamos las 
relaciones filogenéticas y los tiempos de divergencia de los géneros de Rhoadsiinae 
(el clado Rhoadsia) en relación con los géneros más representativos de Characidae. 
Utilizamos seis marcadores moleculares del genoma mitocondrial y nuclear para 
estimar la filogenia y el tiempo de divergencia. Confirmamos la monofilia del 
clado Rhoadsia. Además, estimamos que el género centroamericano Carlana y el 
género colombiano occidental Parastremma divergieron aproximadamente hace 
13 millones de años (95% HPD 8.36–18.11), lo que es consistente con recientes 
estimaciones del cierre del Istmo de Panamá (~15 millones de años). Se estimó que 
el género Rhoadsia, endémico del oeste de Ecuador y el norte de Perú, se originó 
hace alrededor de 20 millones de años (95% HPD 14.35–25.43), consistente con 
el levantamiento de los Andes (~20 millones de años).

Palabras clave: Biogeografía, Filogenia, Peces de agua dulce, Sistemática, 
Stethaprioninae.

INTRODUCTION

The Family Characidae is the most diverse family of fishes in the Neotropics (Albert, 
Reis, 2011; Fricke et al., 2022). Due to its great diversity, species of this large group are 
classified into various subfamilies. However, classifying the species into subfamilies is 
still challenging and constantly changing as new information becomes available. The 
use of molecular markers in combination with morphology has helped clarify a lot of 
the uncertainty within Characidae. That is the case of the former subfamily Rhoadsiinae 
with the three genera Rhoadsia Fowler, 1911, Parastremma Eigenmann, 1912, and 
Carlana Strand, 1928 (Cardoso, 2003) (here also referred as the Rhoadsia clade). However, 
more recent total-evidence phylogenetic analysis prompted the reclassification of this 
group into a larger subfamily Stethaprioninae (Mirande, 2019), which is consistent with 
phylogenomic evidence (Betancur-R. et al., 2019). 

The subfamilial recognition and membership of the Rhoadsia clade have shifted over 
time. For example, the Rhoadsia clade includes the genus Rhoadsia with two species 
recognized, R. minor Eigenmann & Henn, 1914 and R. altipinna Fowler, 1911, the genus 
Carlana with its only species C. eigenmanni (Meek, 1912), and the genus Parastremma 
with three species, P. album Dahl, 1960, P. pulchrum Dahl, 1960, and P. sadina Eigenmann, 
1912. Cardoso (2003) defined the group as having a single series of teeth in the premaxilla 
when young and a two series when reaching adulthood (except for Carlana which does 
not develop an outer series). Adult specimens have two conical teeth in their outer 
series and five multicuspid teeth in their inner series. Mirande (2009, 2010) proposed 
the inclusion of Nematocharax in the subfamily Rhoadsiinae sensu Cardoso (2003), based 
on morphological phylogenetic analyses. The characters that unified the four genera 
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were the form of teeth of inner premaxillary row with cusps aligned in straight series, 
without anterior concavity and five or more cusps of anterior maxillary teeth (Mirande, 
2010). By contrast, a more recent phylogeny based on combined morphological and 
molecular data showed that these four genera are not monophyletic. That hypothesis 
recovered Nematocharax Weitzman, Menezes & Britski, 1986 closer to the polyphyletic 
genus Moenkhausia Eigenmann, 1903 (Mariguela et al., 2013; Mirande, 2019), a group 
of medium size fish (~12 cm) widely distributed in the Amazon basin and adjacent 
drainages, which were classified as part of a tribe Stethaprionini. On the other hand, the 
genera Rhoadsia and Carlana were closer to species like Pseudochalceus kyburzi Schultz, 
1966 and Nematobrycon palmeri Eigenmann, 1911 (Mirande, 2019) mainly found in 
the northwestern South America; together, these were classified as members of a tribe 
Rhoadsiini. Other members of this Rhoadsiini tribe can also be found in the Amazon 
basin and Southeast Brazil. Consequently, these genera are now within the much 
larger subfamily Stethaprioninae (Mirande, 2019). Although Parastremma was generally 
assumed to be within the Rhoadsia clade with Rhoadsia and Carlana, Parastremma has not 
been formally included in a phylogeny until recently, where it was used as an outgroup 
of populations of Rhoadsia sp. along with Carlana (Cucalón et al., 2022). However, 
Cucalón et al. (2022) did not sample other characid taxa to test the monophyly of the 
Rhoadsia clade, nor did they perform a fossil-calibrated divergence time analysis to 
estimate when members of the group diverged from each other. 

In this study, we investigated the phylogenetic relationships and divergence time 
of the Rhoadsia clade (Rhoadsiinae sensu Cardoso, 2003) relative to other members 
of the family Characidae, with the intension to provide a better understanding of the 
evolutionary history of the Rhoadsia clade within the Characidae. 

MATERIAL AND METHODS

Data collection. Sequences for representative taxa within families of Characoidei (sans 
Crenuchoidea) were retrieved from GenBank using phylogenies estimated in Mirande 
(2019) and Terán et al. (2020) as guides to maximize phylogenetic diversity. Most 
extensive sampling was done within the family Characidae to achieve representative 
sampling of most clades within the subfamilies. In addition, clades outside of Characidae 
were represented with up to 6 species per family. We retrieved sequences representing 
three mitochondrial markers, 16S Ribosomal RNA (16S) (~600 bp), Cytochrome 
Oxidase I (COI) (~600 bp), and Cytochrome b (Cytb) (~600 bp), and up to three nuclear 
markers, Myosin Heavy Chain 6 (Myh6) (~1000 bp), Recombination Activating 
1 (RAG1) (~1200 bp), and Recombination Activating 2 (RAG2) (~1200 bp), when 
available from GenBank. These markers were chosen since they are commonly used for 
phylogenetic reconstructions and were the most frequently available across taxa. Genes 
available from different individuals were chosen arbitrarily for each species, however 
whenever possible genes coming from the same individual were selected to reduce the 
likelihood of contamination (see Tab. S1). Mitochondrial genes were obtained from 
complete mitogenomes when available using a custom script (available from: https://
doi.org/10.6084/m9.figshare.21367089.v1). The mitochondrial genes Cytb and COI of 
species of Rhoadsiinae sensu Cardoso (2003) were retrieved from Cucalón et al. (2022), 
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including Rhoadsia altipinna, R. minor, Parastremma sadina, and Carlana eigenmanni. Other 
genes like 16S, RAG1 and RAG2 were amplified in the laboratory. We used primers 
reported from others studies for 16S (Palumbi, 1996), RAG1 (López et al., 2004; Li, 
Ortí, 2007; Oliveira et al., 2011), and RAG2 (Oliveira et al., 2011; this study) (see Tab. 
S2). The polymerase chain reaction (PCR) was carried out using the following volumes: 
For a 15 µl reaction we used 7.5 µl of GoTaq® master mix (www.promega.com), 0.3 
µl of each primer at 10 µM (Tab. S2), 2 µl of DNA template, and complemented the 
reaction with molecular grade water. We performed a nested PCR for RAG1, and 
RAG2, and a regular PCR for the 16S, with the following thermocycler protocol. For 
the first PCR nested and the regular PCR, one cycle of denaturation for 1 min at 95°C, 
30 cycles of denaturation at 95°C for 1 min, annealing (50–52°C) (Tab. S2), extension 
at 72°C for 2 min, and one cycle of final extension at 72°C for 10 min. The second PCR 
nested was similar as the first PCR except it ran for 35 cycles.

Alignment. Each gene was aligned independently using MAFFT version 7.453 
(Katoh, Standley, 2013) using the option –auto recommended when unsure which 
alignment strategy to use based on data size. Then, the aligned genes were concatenated 
and converted to NEXUS format for further analyses using the tool AMAS (Alignment 
Manipulation And Summary) (Borowiec, 2016).

Phylogenetic analysis. We used Maximum Likelihood (ML) to reconstruct 
the phylogeny of the Rhoadsia clade relative to the family Characidae. Species from 
the other families within Characoidei (sans Crenuchoidea) were used as outgroup 
taxa. The ML analysis was carried out using IQ-TREE2 v. 2.0.6 (Minh et al., 2020), 
using a partitioned model (Chernomor et al., 2016), with 1000 iterations of ultrafast 
bootstrap (Hoang et al., 2017). To determine the best partitioned substitution model for 
phylogenetic analysis, we implemented ModelFinder (Kalyaanamoorthy et al., 2017) to 
simultaneously estimate each gene’s best-fit substitution model and best-fit alignment 
partitioning model scheme (option --merge). ModelFinder selects the best-fit model 
that minimizes the Bayesian Information Criterion (BIC) score. We enforced the 
relationship of some of the deep nodes based on phylogenomic results from Betancur-R 
et al. (2019) as followed: Chalceidae + Characidae, sister to Alestoidea and Erythrinoidea 
+ Curimatoidea. The ML tree was edited for visualization using the R packages phytools 
v1.0-1 (Revell, 2012) and ggtree v3.2.1 (Yu et al., 2017).

Divergence time estimation. Divergence times among clades were estimated 
using BEAST version 2.6.4 (Bouckaert et al., 2019). We constrained the analysis using 
a starting tree with estimated divergence time based on the penalized likelihood (PL) 
method (Cole et al., 2014) implemented in the software treePL (Smith, O’meara, 2012) 
following Maurin (2020). We used the rooted ML tree generated from IQ-TREE as 
the input tree for treePL and calibrated the nodes using 13 calibration nodes used in 
Kolmann et al. (2021). See Tab. S3 for detailed information about the node calibration 
including, taxa calibrated, mean age, minimum and maximum age, fossil species 
name, and tips (i.e., species in the tree) used to inform treePL which node to calibrate. 
Most parameters were set through the program BEAUti version 2.6.4 (Bouckaert et 
al., 2019) included in the BEAST2 package. The parameters were as followed: We 
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assumed that all genes had the same molecular clock and tree topology by linking the 
“Clock” and “Tree” model for all partitions. The “Site model” was left unliked across 
partitions to use the best-fit substitution model. The substitution model was estimated 
using ModelFinder (Kalyaanamoorthy et al., 2017) from IQTREE2 v. 2.0.6 (Minh et 
al., 2020) using the option “TESTONLY” to exclude testing of the free rate model 
(assumed by default), since this is not currently implemented in BEAST2. The option 
“--merge” was also set to estimate the best substitution model scheme to optimize the 
number of parameters used during the analysis. The molecular clock model was set as an 
uncorrelated relaxed clock log-normal to allow for rate heterogeneity across branches. 
We used the birth-death (Gernhard, 2008) model tree prior and calibrated the nodes of 
the phylogeny using prior settings following the 13 calibration fossils used in Kolmann 
et al. (2021) (Tab. S3). For details on fossil calibration and rationale see materials and 
methods described in Kolmann et al. (2021). The prior distribution for each calibration 
was set as exponential to account for increasing uncertainty at further points in the past, 
except for the root node that was uniform distribution, following Kolmann et al. (2021). 
To fix the tree topology during the Markov Chain Monte Carlo (MCMC) chain, we 
modified the XML file by removing the lines that contained the operators “wide-
exchange,” “narrow-exchange,” “subtree-slide,” and “Wilson-balding” following the 
instruction from the BEAST2 website (www.beast2.org). We ran the analysis with 100 
million MCMC iterations, sampling every 5000 generations. The log file was inspected 
in Tracer (Rambaut et al., 2014) for convergence of the MCMC. We summarized the 
maximum clade credibility (MCC) tree discarding 10% burn-in in TreeAnnotator from 
the BEAST package version 2.6.3 (Bouckaert et al., 2019). The time calibrated (i.e., 
MCC tree) and ML trees were visualized in FigTree (Rambaut, 2016). We used the R 
package MCMCtreeR (Puttick, 2019) to visualize the posterior ages distribution of the 
MCC tree.

RESULTS

Sampling and phylogenetic analysis. Sequences for a total of 211 species of the 
Characoidei group were obtained for the phylogenetic reconstruction. The total 
length of the concatenated sequence alignment after trimming was 8276 bp. Accession 
number of the gene sequences used including the ones obtained from this study for the 
Rhoadsia clade can be found in Tab. S1. The best scheme substitution models selected 
by ModelFinder for the ML method allowing the incorporation of the free rate model 
were GTR+F+R5 (16S), GTR+F+I+G4 (COI), GTR+F+I+G4 (Cytb), and TIM2e+R5 
(Myh6, RAG1, RAG2). For the Bayesian divergence time analysis (without allowing 
for free rate model), the best substitution model scheme was GTR+F+I+G4 (16S), 
GTR+F+I+G4 (COI), GTR+F+I+G4 (Cytb), and TIM2e+I+G4 (Myh6, RAG1, RAG2). 
The MCMC run reached stationarity with ESS greater than 200. 

Phylogenetic relationships of the Rhoadsia clade. The ML tree placed the 
Rhoadsia clade (ultrafast bootstrap [BS]: 100) within the subfamily Stethaprioninae (Fig. 
1). Rhoadsia was reconstructed as monophyletic (BS: 100), and this clade was sister to a 
highly supported clade formed by Carlana eigenmanni and Parastremma sadina (BS: 100). 
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The closest relative to the Rhoadsia clade was the species Pseudochalceus kyburzi (BS: 
100). That clade was sister of Nematobrycon palmeri (BS: 99) and followed by Inpaichthys 
kerri Géry & Junk, 1977 (BS: 83). Refer to Fig. S4 for full ML tree and BS support values 
for all nodes.

FIGURE 1 | Maximum likelihood phylogeny (left) of representative members of family Characidae and Bayesian chronogram (right) of the 

subfamily Stethaprioninae. Only species names of the subfamily Stethaprioninae are displayed in both trees (full trees in Figs. S4 and S5). 

Nodes with ultrafast bootstrap support ≥95 are shown with a black dot (left). The nodes on the time tree depict the posterior distribution 

of the age estimates (right). Abbreviations of geological ages left to right, top to bottom: Ne = Neogene, Q = Quaternary, P = Paleocene, Eo = 

Eocene, Ol = Oligocene, Mi = Miocene, P = Pliocene.
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The divergence time of members of the Rhoadsia clade. Based on the Bayesian 
estimation, the genus Rhoadsia diverged from its sister clade, including the Central 
American Carlana and Colombian Parastremma, about 19.72 Mya (95% HPD 14.35–
25.43). The genera Carlana and Parastremma diverged about 13.02 Mya (95% HPD 
8.36–18.11). Refer to Fig. S5 for full maximum clade credibility tree with 95% HPD 
for all nodes.

DISCUSSION

We herein inferred the phylogenetic relationships and divergence times of the Rhoadsia 
clade (Rhoadsiinae sensu Cardoso, 2003), based on six molecular markers from the 
mitochondrial and nuclear genome. The phylogenetic relationships of Rhoadsia and 
Carlana to other characids were consistent with previous reports (Mirande, 2019; Terán 
et al., 2020). The three genera of the Rhoadsia clade — Rhoadsia, Carlana, and Parastremma 
— showed a monophyletic relationship (Fig. 1) within the subfamily Stethaprioninae. 
Of this group, the divergence time of the genus Rhoadsia was estimated to be 19.72 Mya 
(95% HPD 14.35–25.43), while Carlana and Parastremma were estimated at about 13.02 
Mya (95% HPD 8.36–18.11). 

Relationships of the Rhoadsia clade and closest relative within the subfamily 
Stethaprioninae. The phylogenetic relationships of the Rhoadsia clade were consistent 
with the most recent phylogeny of the group based on morphological and molecular 
data (Mirande, 2019; Terán et al., 2020). In this study, we added Parastremma sadina to 
the analysis. The genus Parastremma with three valid species, P. album, P. pulchrum, and 
P. sadina (the latter analyzed here) has been previously designated within Rhoadsiinae 
sensu Cardoso (2003) based on morphology but without formal phylogenetic analysis 
(Cardoso, 2003; Mirande, 2010; Jimenez-Prado et al., 2015). The genus Parastremma is 
endemic to the Chocó-Darien ecoregion in Colombia (DoNascimiento et al., 2017). 
The phylogeny presented here shows Parastremma sadina sister to the monotypic Carlana 
from Central America, corroborating its place within the Rhoadsia clade (Fig. 1). The 
genus Carlana with its only species Carlana eigenmanni has been regarded previously 
as a junior synonym of Rhoadsia by some authors (Eigenmann, Myers, 1921; Géry, 
1977) while other authors associated Carlana with the subfamily Cheirodontinae after 
observing that Carlana was the only member of the Rhoadsia clade keeping a single 
tooth series in the premaxilla in adult fish as opposed to a double series (Fink, Weitzman, 
1974). However, this trait appears to be a homoplasy.

The genus Rhoadsia contains two recognized species, R. minor, and R. altipinna. This 
genus is endemic to drainages from the Pacific slope of the Andean mountains from 
northern Ecuador to northern Peru, an area known for being highly threatened (Aguirre 
et al., 2021). The most distinctive characteristic of Rhoadsia is a dark spot located on 
the side of the body below the insertion of the dorsal fin (Jimenez-Prado et al., 2015). 
Although their taxonomic status as two species have being questioned by some authors 
(Géry, 1977), recent studies based on molecular markers showed the two species appear 
to differ genetically and are allopatrically distributed (Aguirre et al., 2016; Cucalón et al., 
2022), although their body form varies similarly along the altitudinal gradient (Malato et 
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al., 2017; Aguirre et al., 2019). Nevertheless, the taxonomic distinction within the genus 
Rhoadsia might still require further study using a more integrative approach. 

The genera Rhoadsia, Carlana, and Parastremma analyzed here formed a monophyletic 
Rhoadsia clade nested within a broader clade including Pseudochalceus kyburzi, 
Nematobrycon palmeri, and Inpaichthys kerri with high support (BS: 83) (Fig. 1). This clade 
is also recovered in Mirande (2019) as one of the subclades within the tribe Rhoadsiini 
sensu Mirande (2019). A similar clade is observed in Terán et al. (2020), but including 
Grundulus bogotensis (Humboldt, 1821). However, the relationships of the Rhoadsia 
clade to other genera, such as Pseudochalceus Kner, 1863, Nematobrycon Eigenmann, 
1911, and Inpaichthys Géry & Junk, 1977, are incongruent and weakly supported in our 
study (Fig. 1), Mirande (2019), and Terán et al. (2020). Both Mirande (2019) and Terán 
et al. (2020) recover the aforementioned clade sister to a clade including Hollandichthys 
Eigenmann, 1909, Rachoviscus Myers, 1926, Thayeria Eigenmann, 1908, and Bario 
Myers, 1940 (among other species). We found the latter genus sister to a clade including 
mostly Astyanax Baird & Girard, 1854 (BS: 48), and this sister to the clade formed by the 
Rhoadsia clade, Pseudochalceus, Nematobrycon, and Inpaichthys (BS: 57). Also, Betancur-R 
et al. (2019) inferred a phylogeny for Characoidei based on genomic data, where Rhoadsia 
cf. altipinna and Inpaichthys kerri (the only members of this clade they included) did not 
form a clade; rather they recovered Rhoadsia cf. altipinna sister to Grundulus bogotensis 
while Inpaichthys kerri in a clade closer to Hollandichthys multifasciatus (Eigenmann & 
Norris, 1900), Rachoviscus crassiceps Myers, 1926, Hemigrammus ocellifer (Steindachner, 
1882), Bario steindachn eri (Eigenmann, 1893), and Thayeria obliqua Eigenmann, 1908. 
Hence, the relative placements of Grundulus bogotensis and Inpaichthys kerri were 
inconsistent with Mirande (2019), Terán et al. (2020), and our phylogeny. 

It is worth noting that Grundulus bogotensis, which appears sister to Inpaichthys kerri 
in Terán et al. (2020) and sister to Rhoadsia cf. altipinna in Betancur-R et al. (2019), in 
this study, is placed in a different clade in congruence with Mirande (2019), sister to 
other members of the tribe Grundulini sensu Mirande (2019), although with relatively 
low ultrafast bootstrap support (BS = 87) (Fig. 1; Fig. S4). Other studies based on 
morphology have placed Grundulus Valenciennes, 1846 closest to Spintherobolus 
(Román-Valencia et al., 2010), although this hypothesis seems less likely. Recent studies, 
including molecular data, place Spintherobolus Eigenmann, 1911 close to the base of 
Characidae in a separate subfamily Spintherobolinae (Oliveira et al., 2011; Betancur-R 
et al., 2019; Mirande, 2019; Terán et al., 2020; this study - Fig. S4) and hardly ever sister 
to Grundulus. The subfamilial placement of some clades of the Characidae still seems to 
represent a challenge based on the discrepancies observed across studies which are often 
accompanied with low support.

The genus Nematocharax, a Brazilian freshwater fish that was previously thought 
to be closely related to the Rhoadsia clade (Weitzman et al., 1986; Mirande, 2009, 
2010), has shown to be problematic in regards to its systematics due to morphological 
similarities with various characid genera (Weitzman et al., 1986). Weitzman et al. (1986) 
suggested the potential relationship of Nematocharax with the Rhoadsia clade due to 
the compressed, relatively deep body, long dorsal fin, and fully toothed maxilla, which 
are characteristics found in the Rhoadsia clade. The phylogenetic relationship was then 
supported in Mirande (2010), uniting Nematocharax with members of the Rhoadsia clade 
by the form of the teeth of the inner premaxillary tooth row with cusps aligned in 
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straight series and without anterior concavity and five or more cusps in the anterior 
maxillary teeth. However, the designation of Nematocharax as a member of the Rhoadsia 
clade was challenged after the inclusion of the nuclear and mitochondrial markers 
into the phylogeny, placing Nematocharax sister to species of the polyphyletic genus 
Moenkhausia (Mariguela et al., 2013; Mirande, 2019; this study).

 
Major historical processes associated with the divergence of the Rhoadsia 

clade. The high levels of endemism found in Western Ecuador have been attributed to 
species isolation due to the uplift of the Andes estimated at 20 Mya (Schaefer, 2011). In 
addition, the effect of the uplift of the Andes has been investigated on the diversification 
of birds (Benham, Witt, 2016; Hazzi et al., 2018) and plants (Luebert, Weigend, 2014). 
More recently, it has been associated with the high diversity of the freshwater fish family 
Characidae in South America (Melo et al., 2022) and South American freshwater fishes 
in general (Cassemiro et al., 2021). Freshwater fishes are especially prone to diversify 
after such geological events due to their limitation to move outside their river systems. 
The subfamily Stethaprioninae has being previously estimated to have diversified close 
to 30 Mya (Melo et al., 2022). Other species-rich families like Trichomycteridae and 
Loricariidae (Siluriformes) are associated with major geological events in South America 
including multiple marine transgressions and regressions as well as mountain formations 
between 55–10 Mya (Cassemiro et al., 2021). The origin of the genus Rhoadsia seems 
consistent with these estimations, showing a time of divergence from its closest relative 
(14–25 Mya) (Fig. 1), within the range of the formation of the Andes (Schaefer, 2011). 

The genera of the Rhoadsia clade each inhabit adjacent, non-overlapping regions 
(Western Ecuador, Colombia, and Central America). The genus Carlana is found only 
in Central America from Panama to Nicaragua (Cardoso, 2003). The genus Parastremma 
inhabits Colombia’s freshwater rivers on both the Caribbean slope and Pacific slope, and 
is the closest geographically to Rhoadsia from Western Ecuador (Eigenmann, 1912; 
Cardoso, 2003; DoNascimiento et al., 2017). Both Parastremma and Rhoadsia are part 
of the Tumbes-Chocó-Magdalena ecoregion spanning from Southeastern Panama to 
Northwestern Peru, but their species ranges do not overlap. Fish faunas from Western 
Ecuador and Western Colombia are known to differ, potentially indicating independent 
evolutionary histories (Eigenmann, 1921; Aguirre et al., 2017). Eigenmann (1921) 
suggested that Rhoadsia and Parastremma independently dispersed from the east of the 
Andes, although other hypotheses appear equally likely (i.e., north-south or south-north 
origin). It is noteworthy that species like Hoplias microlepis (Günther, 1864), which 
inhabit Western Ecuador like Rhoadsia, are also found in the Chagres River, Panama, 
while absent in Colombia, presenting a disjoint distribution (Eigenmann, 1921; Mattox 
et al., 2014). This may indicate that the subdivision in fish composition observed between 
Western Ecuador, Western Colombia, and Central America does not seem universal for 
all fishes of this region. However, genetic analysis is still needed to determine the level 
of divergence between the two disjunct populations of Hoplias Gill, 1903. 

The genus Parastremma and the Central American genus Carlana diverged ~13 Mya 
(95% HPD 8.36–18.11). This is consistent with recent estimates of an ancient closure of 
the Isthmus of Panama (~15 Mya) and migration patterns of other land and freshwater 
organisms into Central America (Hurt et al., 2009; Bacon et al., 2015a; Thacker, 2017), 
rather than the traditionally accepted closure at 3.5 Mya (reviewed in Coates and 
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Stallard, 2013). Furthermore, dispersal events prior to the full closure of the Isthmus 
of Panama appear to be commonly inferred across taxa (Bermingham, Martin, 1998; 
Thacker, 2017), and the divergence between Carlana and Parastremma seems to be more 
consistent with an early closure of the Isthmus as well (Coates, Stallard, 2013; Bacon 
et al., 2015a; Montes et al., 2015). We also observed a similar divergence time between 
the species Astyanax microlepis Eigenmann, 1913 found exclusively in Colombia and its 
sister clade that includes A. mexicanus (De Filippi, 1853), A. petenensis (Günther, 1864), 
A. nasutus Meek, 1907, and A. nicaraguensis Eigenmann & Ogle, 1907 from North and 
Central America (~20 Mya, 95% HPD 11.79–23.17) (Fig. 1). The timing of the closure of 
the Isthmus of Panama is still an ongoing debate (Bacon et al., 2015a,b; Hoorn, Flantua, 
2015; Montes et al., 2015; O’Dea et al., 2016; Jaramillo et al., 2017; Molnar, 2017) and 
we cannot discard the possibility of the divergence between Carlana and Parastremma 
happening in South America first followed by the dispersal of an ancestral population 
of Carlana into Central America, followed by extinction. Given the Gondwanan origin 
of characiforms (Arroyave et al., 2013), it is safe to assume that the genus Carlana should 
have expanded up into Central America not earlier than 18 Mya at the beginning of the 
Miocene. It has been hypothesized that later geological events like the Pliocene high sea 
stand and the rise of the Central Cordillera might have contributed to the extirpation of 
some species in Central America, allowing others to occupy some new niches favoring 
allopatric speciation and the high endemism found in the lower Mesoamerican region 
(Smith, Bermingham, 2005).

In this study, we include a member of the genus Parastremma in a densely-sampled 
molecular phylogeny of the Characidae for the first time, supporting a relationship sister 
to Carlana and both closely related to Rhoadsia as a clade, supporting the monophyly 
of the Rhoadsia clade. We also estimated the divergence times of the group, with the 
Ecuadorian genus Rhoadsia diverging from its closest relative between 14–25 Mya, 
consistent with the uplift of the Andean Mountains. The Central American Carlana 
and Colombian Parastremma diverged between 8–18 Mya, consistent with the early 
closure hypothesis of the Isthmus of Panama. This study adds knowledge regarding the 
evolutionary history and biogeography of the Rhoadsia clade. 
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