Abstract
The early development of Markiana nigripinnis is described by morphological characters, pigmentation, and morphometry. Larvae were obtained through semi-natural breeding, collected, fixed, and identified according to their development. Eighty individuals with standard lengths ranging from 3.1 to 24.3 mm were analyzed. Larvae are poorly developed at hatching, with a relatively large yolk sac and finfold. At the preflexion stage, the eyes are pigmented, the mouth and anus are functional, the yolk is completely absorbed, and the pectoral fin bud emerges. At flexion, the first rays of the caudal, anal, and dorsal fins become evident. The pelvic fin bud emerges only at the postflexion stage, in addition to the complete absorption of the finfold. Pigmentation is distributed throughout the body, with a greater concentration on the top of the head, around the mouth, and at the base of the caudal fin. The myomere total number ranged from 34 to 49 (16–23 preanal, and 18–27 postanal). Juveniles show morphological characteristics like adults. The fins ray number are pectoral: 11–13, pelvic: 5–7, dorsal: 8–11, caudal: 16–27, and anal 30–47. The morphometric relationships reveal variations in growth along the early ontogeny of the species.
Keywords:
Fish; Ichthyoplankton; Juvenile; Lambari-do-campo; Larvae
Resumo
O desenvolvimento inicial de Markiana nigripinnis foi descrito considerando os caracteres morfológicos, a pigmentação e a morfometria. Indivíduos foram obtidos por meio de reprodução seminatural, coletados, acondicionados, fixados e identificados conforme seu período e estágio de desenvolvimento. Foram analisados 80 indivíduos com comprimento padrão variando de 3,1 a 24,3 mm. As larvas são pouco desenvolvidas à eclosão, com saco vitelino relativamente grande e presença de membrana embrionária. Em pré-flexão, os olhos estão pigmentados, a boca e o ânus são funcionais, o vitelo é completamente absorvido e surge o botão da nadadeira peitoral. Em flexão, os primeiros raios das nadadeiras caudal, anal e dorsal tornam-se evidentes. O botão da nadadeira pélvica aparece somente em pós-flexão, além da completa absorção da nadadeira embrionária. A pigmentação se distribui pelo corpo todo, com maior concentração no topo da cabeça, ao redor da boca e na base da nadadeira caudal. O número total de miômeros variou de 34 a 49 (16–23 pré e 18–27 pós-anal). Os juvenis apresentaram características morfológicas semelhantes ao adulto. O número de raios das nadadeiras é peitoral: 11–13, pélvica: 5–7, dorsal: 8–11, caudal: 16–27 e anal 30–47. As relações morfométricas revelam variações no crescimento ao longo da ontogenia inicial da espécie.
Palavras-chave:
Ictioplâncton; Juvenil; Lambari-do-campo; Larvas; Peixes
INTRODUCTION
The Neotropical region is home to a high diversity of freshwater fish, with a rapid and ascending rate of description, going from approximately 5,000 valid species in 2003 (Reis et al., 2003Reis RE, Kullander SO, Ferraris Jr., CJ, editors. Check list of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003.), to 6,080 species in 2020 (Albert et al., 2020Albert JS, Tagliacollo VA, Dagosta F. Diversification of Neotropical freshwater fishes. Ann Rev Ecol Evol Syst. 2020; 51:27–53. https://doi.org/10.1146/annurev-ecolsys-011620-031032
https://doi.org/10.1146/annurev-ecolsys-...
) and estimates that exceed 8,000 species (Ribeiro et al., 2011Ribeiro AC, Lima FCT. Biogeografia dos peixes de água doce da América do Sul. In Carvalho CJB, Almeida E, editors. Biogeografia da América do Sul: padrões e processos. São Paulo: Editora Roca; 2011. p.261–77.; Reis et al., 2016Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA. Fish biodiversity and conservation in South America: fish biodiversity and conservation. J Fish Biol. 2016; 89(1):12–47. https://doi.org/10.1111/jfb.13016
https://doi.org/10.1111/jfb.13016...
). The order Characiformes is the dominant group among the South American freshwater fish and is characterized by a body covered with scales, pelvic fins usually located well behind the insertion of the pectoral fins, soft fin rays, and, generally, the presence of an adipose fin (Britski et al., 2007Britski HA, Silimon KZS, Lopes BS. Peixes do Pantanal - manual de identificação. Brasília: EMBRAPA, 2007.; Nelson et al., 2016; Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
). In this order, the family Characidae has 1,244 valid species, of which 221 have been described in the last decade, being among the ray-finned fish with the highest number of species (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
; Fricke et al., 2022Fricke R, Eschmeyer WN, Van der Laan R. Eschmeyer’s catalog of fishes: genera, species, references [Internet]. San Francisco: California Academy of Science; 2022. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
http://researcharchive.calacademy.org/re...
). Species belonging to this family show a wide geographic distribution, from the southwestern United States to northern Patagonia, Argentina, in addition to being especially diverse in tropical South America, including small species ranging in size from 8 to 20 cm to large species over 1 meter (Marinho, 2017Marinho MMF. Comparative development in Moenkhausia pittieri and Paracheirodon innesi (Ostariophysi: Characiformes) with comments on heterochrony and miniaturization in the Characidae. J Fish Biol. 2017; 91(3):851–65. https://doi.org/10.1111/jfb.13384
https://doi.org/10.1111/jfb.13384...
; Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
; Ferreira et al., 2021Ferreira KM, Mirande JM, Quagio-Grassiotto I, Santana JCO, Baicere-Silva CM, Menezes NA. Testing the phylogenetic hypotheses of Stevardiinae Gill, 1858 in light of new phenotypic data (Teleostei: Characidae). J Zool Syst Evol Res. 2021; 59(8):2060–85. https://doi.org/10.1111/jzs.12517
https://doi.org/10.1111/jzs.12517...
).
The genus Markiana was proposed by Eigenmann, (1903)Eigenmann CH. New genera of South American fresh-water fishes, and new names for some old genera. Smithsonian Misc Collect. 1903; 45:144–48. for the previously described Tetragonopterus nigripinnis (Perugia, 1891), with only two known species: Markiana geayi (Pellegrin, 1909), restricted to the Orinoco River basin (Reis et al., 2003Reis RE, Kullander SO, Ferraris Jr., CJ, editors. Check list of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003.) and Markiana nigripinnis (Perugia, 1891). It has a disjunct geographic distribution and is considered incertae sedis (Lima et al., 2003Lima FCT, Malabarba LR, Buckup PA, Silva JFP, Vari RP, Harold A et al. Characidae, genera incertae sedis. In: Reis RE, Kullander SO, Ferraris Jr., CJ, editors. Check List of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003. p.106–69.); however, there are proposals that Markiana is closely related to some species, such as Astyanax abramis (Jenyns, 1842), Astyanax asuncionensis Géry, 1972 (synonym of Astyanax lacustris (Lütken, 1875) and Astyanax lineatus (Perugia, 1891), and may also be considered a sister species to Hyphessobrycon poecilioides Eigenmann, 1913 (Baicere-Silva et al., 2011Baicere-Silva CM, Benine RC, Quagio-Grassiotto I. Markiana nigripinnis (Perugia, 1891) as a putative member of the subfamily Stevardiinae (Characiformes: Characidae): spermatic evidence. Neotrop Ichthyol. 2011; 9(2):371–76. https://doi.org/10.1590/S1679-62252011005000020
https://doi.org/10.1590/S1679-6225201100...
; Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
). Research has been conducted on sperm ultrastructure (Baicere et al., 2011), molecular data (Oliveira et al., 2011Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol. 2011; 11(275). https://doi.org/10.1186/1471-2148-11-275
https://doi.org/10.1186/1471-2148-11-275...
; Thomaz et al., 2015Thomaz AT, Arcila D, Ortı G, Malabarba LR. Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits. BMC Evol Biol. 2015; 15(146). https://doi.org/10.1186/s12862-015-0403-4
https://doi.org/10.1186/s12862-015-0403-...
), combined morphological and molecular data (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
) and cytogenetic analysis (Monteiro et al., 2022Monteiro ABGF, Takagui FH, Baldissera JNC, Jerep FC, Giuliano-Caetano L. Classical and molecular cytogenetics of Markiana nigripinnis (Pisces - Characiformes) from brazilian Pantanal: a comparative analysis with cytotaxonomic contributions. Biologia. 2022; 77:2371–82. https://doi.org/10.1007/s11756-022-01091-x
https://doi.org/10.1007/s11756-022-01091...
), suggesting the addition of M. nigripinnis among the Characidae in the subfamily Stervardiinae. Also known as tetra (lambari do campo in Portuguese), M. nigripinnis is found in the basins of the Paraná, Paraguai, and Mamoré rivers, present in the main channel and perennial and temporary lakes (Súarez et al., 2013Súarez YR, Ferreira FS, Tondato KK. Assemblage of fish species associated with aquatic macrophytes in Porto Murtinho Pantanal, Mato Grosso do Sul, Brazil. Biota Neotrop. 2013; 13(2):182–89. https://doi.org/10.1590/S1676-06032013000200017
https://doi.org/10.1590/S1676-0603201300...
; Tondato et al., 2013Tondato KK, Fantin-Cruz I, Pedrollo OC, Súarez YR. Spatial distribution of fish assemblages along environmental gradients in the temporary ponds of Northern Pantanal, Brazil. J Limnol. 2013; 72(1):95102. https://doi.org/10.4081/jlimnol.2013.e8
https://doi.org/10.4081/jlimnol.2013.e8...
; Severo-Neto et al., 2015Severo-Neto F, Tencatt LFC, Costa-Pereira R, Tavares LER. Fishes from Baía da Medalha, southern Pantanal, Brazil: a 20 years review. Biota Neotrop. 2015; 15(2):e20140116. http://dx.doi.org/10.1590/1676-06032015011614
http://dx.doi.org/10.1590/1676-060320150...
; Froehlich et al., 2017Froehlich O, Vilela MJA, Cavalarro MR, Cordeiro LM. Inventário da ictiofauna no Complexo Aporé-Sucuriú. In: Pagoto TCS, Souza R, editors. Biodiversidade do Complexo Aporé-Sucuriú: subsídios à conservação e ao manejo do cerrado. Campo Grande: EDUFMS; 2006. p.91–102.; Gimênes Júnior, Rech, 2022Gimênes Junior H, Rech R, editors. Guia ilustrado dos peixes do Pantanal e entorno. Campo Grande: Julien Design; 2022. Available from: https://www.imasul.ms.gov.br/wp-content/uploads/2022/11/Montagem-livro-Peixes-VERSAO-FINAL-MARCO-2022-ISBN97865-81066-05-5-ONLINE_FINAL-1.pdf
https://www.imasul.ms.gov.br/wp-content/...
).Silva FKS, Cajado RA, Oliveira LS, Santos Z, Santos JA, Silva LVF et al. Early development of Prochilodus nigricans Spix & Agassiz, 1829 (Characiformes: Prochilodontidae) in captivity. Aquac Res. 2022; 53(12):4540–55. https://doi.org/10.1111/are.15951
https://doi.org/10.1111/are.15951...
Markiana nigripinnis is characterized by teeth with sharp cusps, a single set of teeth in the dentary and two sets in the premaxillary, and an herbivorous feeding habit with a trend to omnivory, and a diet composed of plant origin items, such as roots, fruits, seeds, and fibers (Resende et al., 1998Resende EK, Pereira RAC, Almeida VLL. Peixes herbívoros da planície inundável do rio Miranda, Pantanal, Mato Grosso do Sul, Brasil. Corumbá, MS: EMBRAPA; 1998.; Costa-Pereira et al., 2011Costa-Pereira R, Severo-Neto F, Yule TS, Tinti-Pereira AP. Fruit-eating fishes of Banara arguta (Salicaceae) in the Miranda River floodplain, Pantanal wetland. Biota Neotrop. 2011. 11(4):373–76. http://www.biotaneotropica.org.br/v11n4/en/abstract?short-communication+bn03011042011
http://www.biotaneotropica.org.br/v11n4/...
; Gimênes Júnior, Rech, 2022Gimênes Junior H, Rech R, editors. Guia ilustrado dos peixes do Pantanal e entorno. Campo Grande: Julien Design; 2022. Available from: https://www.imasul.ms.gov.br/wp-content/uploads/2022/11/Montagem-livro-Peixes-VERSAO-FINAL-MARCO-2022-ISBN97865-81066-05-5-ONLINE_FINAL-1.pdf
https://www.imasul.ms.gov.br/wp-content/...
). Moreover, as they live in tropical environments with an average water temperature ranging from 20 to 26 °C, they are easily raised in aquariums, as they do not require the use of heaters (Géry, 1977Géry J. Characoids of the world. Neptune City: TFH Publications; 1977.; Schäfer, 2009Schäfer F. Markiana nigripinnis [Internet]. Aquarium Glaser GmbH - Alle Rechte vorbehalten. 2009. Available from: https://www.aquariumglaser.de/en/fish-archives/markiana_nigripinnis_en/
https://www.aquariumglaser.de/en/fish-ar...
). Another feature that attracts interest from aquarists is the long orange-colored anal fin, a character rarely found in other species of ornamental fish (Schäfer, 2009Schäfer F. Markiana nigripinnis [Internet]. Aquarium Glaser GmbH - Alle Rechte vorbehalten. 2009. Available from: https://www.aquariumglaser.de/en/fish-archives/markiana_nigripinnis_en/
https://www.aquariumglaser.de/en/fish-ar...
; Gimênes Júnior, Rech, 2022Gimênes Junior H, Rech R, editors. Guia ilustrado dos peixes do Pantanal e entorno. Campo Grande: Julien Design; 2022. Available from: https://www.imasul.ms.gov.br/wp-content/uploads/2022/11/Montagem-livro-Peixes-VERSAO-FINAL-MARCO-2022-ISBN97865-81066-05-5-ONLINE_FINAL-1.pdf
https://www.imasul.ms.gov.br/wp-content/...
). Furthermore, it is important to highlight that this is the first record of the reproduction of this species in captivity, and there is no published information on the basic aspects of its biology, even though it is a species exploited by aquarists. Currently, M. nigripinnis is included in the list of freshwater fish allowed to be caught, through the Instrução Normativa MAPA/SAP 10/2020 (Ministério da Agricultura, Pecuária e Abastecimento); however, to date, there are no revisions to this list, which highlights the urgency of information to provide subsidies for its maintenance.
During the early ontogeny of fish, several metamorphic processes lead to the differentiation of specific structures, highlighting the importance of these studies in understanding the mortality/survival process and recruitment of species, in addition to providing subsidies for correct identification of larvae in the natural environment (Suiberto et al., 2009Suiberto MR, Galuch AV, Bialetzki A, Nakatani K. Ontogenetic shifts in the digestive tube and diet of Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae). Acta Limnol Bras. 2009; 21(4):465–72.; Zacardi, Bittencourt, 2017Zacardi DM, Bittencourt SCS. Morphological characterization of fish larvae captured in the estuarine complex of the Pará and Paracauarí Rivers (Pará State - Brazil). Acta Fish Aquat Res. 2017; 5(2):78–102.; Stevanato, Ostrensky, 2018Stevanato DJ, Ostrensky A. Ontogenetic development of tetra Astyanax lacustris (Characiformes: Characidae). Neotrop Ichthyol. 2018; 16(2):e170073. https://doi.org/10.1590/1982-0224-20170073
https://doi.org/10.1590/1982-0224-201700...
). Despite the large number of species in the family Characidae, little is known about the aspects of early ontogeny. According to a survey carried out by Reynalte-Tataje et al., (2020)Reynalte-Tataje DA, Lopes CA, Massaro MV, Hartmann PB, Sulzbacher R, Santos JA et al. State of the art of identification of eggs and larvae of freshwater fish in Brazil. Acta Limnol Bras. 2020; 32(6). https://doi.org/10.1590/S2179-975X5319
https://doi.org/10.1590/S2179-975X5319...
, only 2.6% of species have their early development described in the literature, and this number is even lower when considering minute species with little or no commercial interest. Therefore, this study contributed to the knowledge of the early ontogeny of the family Characidae in the Neotropical region, through the description of larvae and juveniles of M. nigripinnis bred in captivity, considering morphological, pigmentation and morphometric aspects, as well as analyzing changes in growth patterns, testing the hypothesis of differential development during the species’ early ontogeny.
MATERIAL AND METHODS
Sampling sites.Markiana nigripinnis adults were collected in the Miranda River basin and transported to the Laboratório de Ictiologia do IMASUL (Instituto de Meio Ambiente do Mato Grosso do Sul), located in the municipality of Campo Grande, state of Mato Grosso do Sul, Brazil, where they were acclimatized to aquarium conditions for about 20 minutes, to reduce the stress caused by management and habitat change (Krishnakumar et al., 2020Krishnakumar A, Anton ESP, Jayawardena UA. Water hardness influenced variations in reproductive potential of two freshwater fish species; Poecilia reticulata and Betta splendens. BMC Res Notes. 2020; 13(542). https://doi.org/10.1186/s13104-020-05382-x
https://doi.org/10.1186/s13104-020-05382...
; Jones et al., 2022Jones M, Alexander ME, Snellgrove D, Smith P, Bramhall S, Carey P et al. How should we monitor welfare in the ornamental fish trade? Rev Aquac. 2022; 14(2):770–90. https://doi.org/10.1111/raq.12624
https://doi.org/10.1111/raq.12624...
), and later transferred to their respective storage tanks.
For the reproduction process, six sexually mature matrices (two females and four males) were selected. Sexing and determination of maturity stages were carried out through the observation of the presence of bone processes in mature males, where there is the formation of spikes on the anal-fin rays, by a touch analysis of their roughness. These matrices were placed in two polyethylene tanks, 480 liters each, fed daily with flock feed at the end of the day, and exposed to the open air so that in each tank there were two males and one female. Some environmental variables were monitored so that the water temperature remained at an average of 26.0 ºC, the water conductivity at 82 μS.cm-1, slightly acidic pH (6.5), and ammonia (NH3/NH+4) and nitrogen dioxide (NO2) indices at 0.00 mg.L and 0.05 mg.L, respectively. In this environment, some macrophytes were inserted to simulate a natural spawning habitat. All tanks were covered with a 0.5 mm mesh screen to control sun exposure and avoid the presence of predators.
The environment was monitored three times a day (early morning, noon and late afternoon), to observe behaviors suggesting spawning, such as the movement of fish close to macrophytes (Andrade, Yasui, 2003Andrade DR, Yasui GS. Natural and artificial breeding management and its importance in fish production in Brazil. Rev Bras Repr Anim. 2003; 27(2):166–72. ; Rotta, 2004Rotta MA. Aspectos biológicos e reprodutivos para a criação da Tuvira (Gymnotus sp.) em cativeiro. Corumbá: EMBRAPA; 2004.). As soon as the presence of eggs in the tanks was observed, matrices were taken and collections began immediately. However, it was not possible to collect eggs at the exact moment of spawning, making it impossible to fully describe this period of development; because of this, it was only possible to collect larvae and juveniles, which are described in this study. Larvae were fed with Artemia spp. and juveniles with flock feed.
From November to December 2020, five individuals were collected daily at nine in the morning, whenever possible, for 30 days, which coincided with the end of the species’ early development. Individuals were caught with the aid of a 0.5 mm mesh sieve, and in all samples obtained, eugenol (4-allyl-2-methoxyphenol; 0.00005 mL/L) was previously added (according to the CONCEA Euthanasia Practice Guideline; Resolução Normativa MCTI/CONCEA No 28, November 13, 2015), as a euthanasia method. Then, the samples were fixed using 4% formalin, buffered with calcium carbonate (1 g CaCO3 in 1000 mL formalin) (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.) and transferred to containers labeled with the sample code and collection date. After completing the collections, the material was transported to the Laboratório de Ecologia e Peixes de Água Doce, at the Universidade Federal do Mato Grosso do Sul (UFMS), Brazil, where meristic and morphometric analyses were performed.
Analyses. Individuals were classified according to developmental stages into larval (yolk-sac, preflexion, flexion, and postflexion stages) and juvenile periods, according to Ahlstrom, Moser, (1976)Ahlstrom EH, Moser HG. Eggs and larvae of fishes and their role in systematic investigations and in fisheries. Rev Trav Inst Pêches Marit. 1976; 40(3):379–98. Available from: https://archimer.ifremer.fr/doc/1976/publication-1996.pdf
https://archimer.ifremer.fr/doc/1976/pub...
, modified by Nakatani et al., (2001)Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001. using a stereomicroscope. Thus, the description of each period or stage was based on the developmental stage and the occurrence of the main morphological events, and illustrations were made using a camera lucida and a digital camera attached to the stereomicroscope, considering the individuals that best represented the early development. Individuals used in the research were deposited in the Fish Collection of the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) of the Universidade Estadual de Maringá (UEM), Maringá, Paraná (NUP 24104).
For morphometric characterization of the early development, morphometric variables (mm) were obtained using the protocol described by Costa et al., (2016)Costa ADA, Garcia DAZ, Claro-García A, Balconi APR, Miranda DCC, Leme GLA, Pine MB, Souza A, Bialetzki A, Orsi ML. Metodologia de coleta, triagem e identificação de ovos, larvas e juvenis. In: Orsi ML, Almeida FS, Swarça AC, Bialetzki A, editors. Ovos, larvas e juvenis dos peixes da bacia do rio Paranapanema: uma avaliação para a conservação. Assis: Triunfal Gráfica e Editora; 2016. p.34–36.. For this, a Zeiss Discovery V20 stereomicroscope was used, with image capture to obtain the following variables: total length (TL), standard length (SL), snout length (SnL), eye diameter (ED), head length (HL), head depth (HD), body depth (BD) and distances snout-pectoral fin (SnP), snout-pelvic fin (SnV), snout-dorsal fin (SnD) and snout-anal fin (SnA). For meristic characterization, the total, preanal, and postanal myomeres number were counted whenever possible. Pectoral, pelvic, dorsal, anal, and caudal fin rays were also counted, following Nakatani et al., (2001)Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.. Larvae were stained with a 1% methylene blue solution (1g methylene blue in 100 mL distilled water) (Lima et al., 2021Lima DLG, Cajado RA, Silva LVF, Maia JLS, Zacardi DM. Descrição morfológica do desenvolvimento inicial de Brycon amazonicus (Characiformes, Bryconidae) do Baixo Amazonas, Pará. Biota Amaz. 2021; 11(1):60–67. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p60-67
http://dx.doi.org/10.18561/2179-5746/bio...
) to facilitate the visualization of some structures, such as the embryonic membrane, myomeres and pelvic fin bud.
For the analyses of body ratios, morphometric variables were expressed as percentages of the standard length and head length throughout development. Body ratios for body depth, head length, and eye diameter were established using criteria suggested by Leis, Trnski, (1989)Leis JM, Trnski T. The larvae of Indo-Pacific shore fishes. Honolulu: University of Hawaii Press; 1989..
To test possible ontogenetic variations throughout the development of the species, morphometric variables (response variables) were plotted against the standard and head length (explanatory variables) and their ratios described by different regression models (Kováč et al., 1999Kováč V, Copp GH, Francis MP. Morphometry of the stone loach, Barbatula barbatula: do mensural characters reflect the species’ life history thresholds? Environ Biol Fishes. 1999; 56:105–15.). Initially, the hypothesis that the development of body ratios is continuous isometric was tested using simple linear regression. With the hypothesis of continuous isometry, alternative hypotheses of gradual allometry (quadratic regression) or discontinuous isometry (piecewise linear regression, which is marked by breakpoints that indicate different growth rates) were tested. The selection of the best model for each morphometric variable relative to body and head size was tested by F-tests (Sokal, Rohlf, 1981Sokal RR, Rohlf FJ. Biometry. The principles and practice of statistics in biological research. San Francisco: W. H. Freeman and Company; 1981.). The significance level adopted for the analyses was p< 0.05.
RESULTS
Eighty individuals were analyzed, 10 in the yolk-sac stage, 22 in preflexion, 19 in flexion, 20 in postflexion and 9 juveniles. The description of each period and stage is presented below and illustrated in Fig. 1. Results regarding the morphometric and meristic variables are listed in Tab. 1. The main morphological events during the early development of M. nigripinnis are summarized in Fig. 2.
Minimum (Min), maximum (Max), mean (X) values and standard deviation (SD) (mm) for morphometric variables, body relations (%) and meristic counts in larvae and juveniles of Markiana nigripinnis. YS = yolk-sac larvae, PF = preflexion stage, FL = flexion stage, FP = postflexion stage, J = juveniles, AF = absent fin, NV = not visible, TL = total length, SL = standard length, SnL = snout length, ED = eye diameter, HL = head length, HD = head depth, BD = body depth, SnP = distances snout-pectoral fin, SnV = snout-pelvic fin, SnD = snout-dorsal fin, and SnA = snout-anal fin.
Larval development. Yolk-sac larvae (Fig. 1A; Tab. 1) (1st and 2nd day): The standard length ranged from 3.1 to 3.8 mm SL (mean ± SD = 3.5 mm ± 0.3). Early development is altricial, that is, are poorly developed at hatching. Larvae at this stage have an unflexed notochord, a relatively large yolk sac, occupying approximately 1/3 of the body, and an adhesive organ on the top of the head. The mouth and anus are closed and not functional. The anal opening is located over the middle region of the body. The operculum is not formed, as well as the nostrils. The swim bladder is visible but not inflated. Eyes are spherical and show some pigmentation at about 3.6 mm SL. Also, at 3.6 mm SL, some dendritic chromatophores can be seen in the ventral region and the distal portion of the yolk sac. The finfold surrounds the body from the upper medial region to the posterior end of the yolk sac. The pectoral fin bud is visible at about 3.8 mm SL. Total number of myomeres range from 34 to 37 (16 to 18 pre- and 18 to 19 postanal).
Preflexion stage (Fig. 1B; Tab. 1) (days 2–11): The standard length ranged from 3.8 to 5.1 mm SL (mean ± SD = 4.4 mm ± 0.4). At this stage, the notochord is straight and visible. The mouth is open and in the terminal position, the yolk sac is still present, and the adhesive organ is fully absorbed; the eyes are spherical and fully pigmented. The intestine is functional (presence of Artemia spp., in 4.3 mm SL larvae), and the anal opening is located over the middle region of the body. The inflated swim bladder is visible through transparency. Pigmentation is composed of punctate chromatophores irregularly distributed in the upper part of the head, in the body and the region of the digestive tract. At this stage, it is already possible to visualize the formation of the operculum and the nostrils, which are simple. The finfold is visible surrounding the entire body, as well as the pectoral bud. Total number of myomeres range from 35 to 37, with 16–17 pre- and 19–20 postanal.
Flexion stage (Figs. 1C–D; Tab. 1) (days 11–22): The standard length of larvae varies between 6.1 and 8.3 mm SL (mean ± SD = 7.0 mm ± 0.7). This stage is characterized by the flexion of the notochord final section, which remains visible through transparency. The mouth is terminal, and the eyes remain spherical. At this stage, the yolk sac is fully absorbed. The swim bladder and the operculum are visible; the nostrils are still simple. Pigmentation becomes continuous, with punctate chromatophores mainly on the top of the head and around the mouth and irregularly distributed throughout the body. It is also possible to see pigment lines in the dorsal, ventral, and lateral regions. At the base of the caudal fin, these chromatophores are distributed along the rays and initiate the formation of a macula. At this stage, the finfold still involves part of the body; it is possible to visualize the hypural boards and the appearance of the first rays of the caudal and dorsal fin at 7.3 mm and 8.3 mm SL, respectively, in addition to the delineation of the anal fin. The pectoral bud remains without rays. The myomere total numbers vary from 37 to 42 (17 to 20 pre- and 20 to 24 postanal).
Postflexion stage (Figs. 1E–F; Tab. 1) (days 22–30): The standard length ranges from 8.3 to 12.3 mm SL (mean ± SD = 10.1 mm ± 0.9). The notochord and swim bladder are visible only at the beginning of the stage, due to the loss of transparency with the development of the musculature. The mouth remains terminal. The nostril becomes double. Pigmentation occurs from dendritic and punctate chromatophores, irregularly distributed throughout the larval body, but also forming longitudinal lines in the dorsal, ventral, and lateral regions, with a greater concentration on the top of the head and around the mouth, as well as in the peduncle and at the base of the caudal fin, where there is the formation of a conspicuous macula. The finfold is almost completely absorbed, with a remnant observed ventrally, close to the anal region. The pelvic fin bud is visible, and the first rays are formed from 10.4 mm SL. The pectoral fin is the last to develop, not showing a complete formation of rays at this stage; there is also the formation of the adipose fin (11 mm SL), and the caudal fin is forked. The sequence of fin formation, including ray segmentation, is caudal, dorsal, anal, pelvic, and pectoral. The total number of myomeres varies from 42 to 49 (17 to 22 pre- and 23 to 27 postanal); however, due to the development of the musculature, the visualization of myomeres starts to be compromised. The ranges of the number of rays at this stage are caudal = 19–24, dorsal = 10–11, anal = 30–47, and pelvic = 5–7.
Juvenile development. This period starts on the 30th day after the hatching of the eggs. Nine individuals with standard length ranging from 12.1 to 24.2 mm SL (mean ± SD = 18.6 mm ± 3.5) were analyzed (Fig. 1G; Tab. 1). Individuals have a terminal mouth, fully pigmented eyes, double nostrils, median anal in the middle region of the body, and scales distributed throughout the body, mainly in the region of the digestive tract. Pigmentation spreads throughout the body, concentrated in the upper portion. In the ventral portion, pigments become more disorganized and random. At the top of the head and the base of the caudal fin, there are the highest concentrations of dendritic and punctate chromatophores, a conspicuous macule between the peduncle and the base of the caudal fin rays. Small chromatophores can be seen between the dorsal, anal, and caudal fin rays, but in the latter, two regions without pigmentation are observed in the middle of the lower and upper rays. All fins are completely formed, and the numbers of rays are caudal = 20–27(dorsal lobe = 9–12, ventral lobe = 11–15), dorsal = 11–12, anal = 43–47, pelvic = 6–7 and pectoral = 11–13.
Early development of Markiana nigripinnis; A. Yolk-sac larvae (3.6 mm SL) (arrow indicates adhesive organ), B. Preflexion larvae (5.1 mm SL), C. Early flexion larvae (7 mm SL), D. Flexion larvae (8.3 mm SL), E. Early postflexion larvae (12.3 mm SL), F. Postflexion larvae (17 mm SL), G. Juvenile (17.6 mm SL); scale bars = 1 mm.
Morphological events summary observed during the early development of Markiana nigripinnis.
Morphometric relations. Morphometric variables, as a function of standard length, showed changes in their proportions throughout ontogeny. Regarding body height, it ranged from long to moderate, as well as head length, from small to moderate. The pectoral, pelvic, and dorsal snout-fin distances also increased in proportion throughout development, except the snout-anal-fin distance, which maintained a similar ratio during development (Tab. 1).
When we analyzed the ratios as a function of head length, we observed that the eye diameter remained large throughout development. For head height, we observed a considerable variation during development, unlike snout length (Tab. 1).
Growth analyses. Regarding the growth patterns between the morphometric variables, we verified that the HL, the BD, SnP, and SnA, all related to the SL (Tab. 2; Fig. 3A–D), were better represented by the piecewise linear regression model, as well as HD and ED, both related to HL (Tab. 2; Figs. 4A–B). Thus, growth started similarly; however, after a certain size of the body or head (breakpoint), there was a sudden change in this pattern.
Snout length (SnL) relative to HL (Tab. 2; Fig. 4C) and SnV related to SL (Tab. 2; Fig. 3E) were best represented by linear regression, while the SnD related to SL (Tab. 2; Fig. 3F) was the only one best represented by a quadratic regression model, with negative allometric growth (Tab. 2).
Morphometric relationships (mm) between A. Standard length and head length, B. Standard length and body depth, C. Standard length and snout-pectoral fin length, D. Standard length and snout-anal fin length, E. Standard length and snout-pelvic fin length, F. Standard length and snout-dorsal fin length during the early development of Markiana nigripinnis.
Morphometric relationships (mm) between A. Head length and head depth, B. Head length and eye diameter, C. Head length and snout length during the early development of Markiana nigripinnis.
Linear, quadratic, and piecewise regression statistics for the morphometric variables relative to the head length and standard length of larvae and juvenile of Markiana nigripinnis. R²= coefficient of determination, L = linear regression, Q = quadratic regression, S = piecewise regression, BM = best model, BP = breakpoint, N = number of individuals analyzed; bold values presented p < 0.05.
DISCUSSION
In this study, we described the early development of the tetra M. nigripinnis, a small characid occurring in the Paraguai River basin. Thus, like other minute species of this family (Galuch et al., 2003Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
; Anjos, Anjos, 2006Anjos HDB, Anjos CR. Biologia reprodutiva e desenvolvimento embrionário e larval do cardinal tetra, Paracheirodon axelrodi Schultz, 1956 (Characiformes: Characidae), em laboratório. Bol Inst Pesca. 2006; 32(2):151–60.; Çelik et al., 2012Çelik I, Çelik P, Cirik Ş, Gürkan M, Hayretdağ S. Embryonic and larval development of black skirt tetra (Gymnocorymbus ternetzi, Boulenger, 1895) under laboratory conditions. Aquac Res. 2012; 43(9):1260–75. https://doi.org/10.1111/j.1365-2109.2011.02930.x
https://doi.org/10.1111/j.1365-2109.2011...
; Walter, 2012Walter BE. Early ontogeny of aquarium-raised Moenkhausia sanctaefilomenae (Characiformes: Characidae). Ichthyol Res. 2012; 59:95–103. https://doi.org/10.1007/s10228-011-0257-8
https://doi.org/10.1007/s10228-011-0257-...
; Mattox et al., 2014Mattox GMT, Hoffmann M, Hoffmann P. Ontogenetic development of Heterocharax macrolepis Eigenmann (Ostariophysi: Characiformes: Characidae) with comments on the form of the yolk sac in the Heterocharacinae. Neotrop Ichthyol. 2014; 12(2):353–63. https://doi.org/10.1590/1982-0224-20130107
https://doi.org/10.1590/1982-0224-201301...
; Park et al., 2014Park JM, Kim N-R, Han K-H, Han J-H, Son M-H, Cho J-K. Spawning behavior, egg development, larvae and juvenile morphology of Hyphessobrycon eques (Pisces: Characidae) Characidae fishes. Dev Reprod. 2014; 18(4):241–49. https://doi.org/10.12717/DR.2014.18.4.241
https://doi.org/10.12717/DR.2014.18.4.24...
; Marinho, 2017Marinho MMF. Comparative development in Moenkhausia pittieri and Paracheirodon innesi (Ostariophysi: Characiformes) with comments on heterochrony and miniaturization in the Characidae. J Fish Biol. 2017; 91(3):851–65. https://doi.org/10.1111/jfb.13384
https://doi.org/10.1111/jfb.13384...
; Santos et al., 2017Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
), the species has an altricial development, with poorly developed larvae at hatching, becoming more robust as it develops, and juveniles with morphological characteristics similar to adults.
The yolk-sac larval stage was considered a very rapid period (maximum 48 hours). Larvae initially had eyes without pigmentation, but before the end of the stage, they were partially pigmented, similar to that found by Oliveira et al. (2012)Oliveira FG, Bialetzki A, Gomes LC, Santin M, Taguti TL. Desenvolvimento larval de Brycon hilarii (Characiformes, Characidae). Iheringia Sér Zool. 2012; 102(1):62–70. https://doi.org/10.1590/S0073-47212012000100009
https://doi.org/10.1590/S0073-4721201200...
when evaluating a Bryconidae species, Brycon hilarii (Valenciennes, 1850). Visual sensitivity is extremely necessary since the gradual development of this sensory system soon after hatching has a direct impact on the ability of individuals to perceive a threat or food, which is a determinant of the vertical distribution of larvae (Fuiman, 1983Fuiman LA. Growth gradients in fish larvae. J Fish Biol. 1983; 23(1):117–23. https://doi.org/10.1111/j.1095-8649.1983.tb02886.x
https://doi.org/10.1111/j.1095-8649.1983...
). Additionally, features such as a notochord visible by transparency, an intestine with medium length and embryonic membrane (finfold) surrounding the body from the upper medial region to the posterior end of the yolk sac, are characteristics found in another Characidae, A. lacustris (Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
). At this stage, we also observed the emergence of the pectoral fin bud, as for the Characidae, Paracheirodon innesi (Myers, 1936), Moenkhausia pittieri Eigenmann, 1920 (Marinho, 2017Marinho MMF. Comparative development in Moenkhausia pittieri and Paracheirodon innesi (Ostariophysi: Characiformes) with comments on heterochrony and miniaturization in the Characidae. J Fish Biol. 2017; 91(3):851–65. https://doi.org/10.1111/jfb.13384
https://doi.org/10.1111/jfb.13384...
) and A. lacustris (Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
).
From the moment the digestive system becomes functional and the larvae acquire the ability to swim, the shift from endogenous to exogenous feeding occurs, since after the depletion of the yolk sac, these individuals can survive only for a short period (Fuiman, 1983Fuiman LA. Growth gradients in fish larvae. J Fish Biol. 1983; 23(1):117–23. https://doi.org/10.1111/j.1095-8649.1983.tb02886.x
https://doi.org/10.1111/j.1095-8649.1983...
; Stevanato, Ostrensky, 2018Stevanato DJ, Ostrensky A. Ontogenetic development of tetra Astyanax lacustris (Characiformes: Characidae). Neotrop Ichthyol. 2018; 16(2):e170073. https://doi.org/10.1590/1982-0224-20170073
https://doi.org/10.1590/1982-0224-201700...
). For M. nigripinnis, the intestine becomes functional at the preflexion stage, where the presence of Artemia spp. was observed, but at this stage there are still remnants of yolk, which is fully absorbed only in flexion, thus enabling this complete transition. The position of the mouth is related to the type of food acquisition; in M. nigripinnis, the mouth is terminal, without changes during ontogeny, indicating that these larvae feed directly in the water column (Bemvenuti, Fischer, 2010Bemvenuti MA, Fischer LG. Peixes: morfologia e adaptações. Cad Ecol Aquát. 2010; 5(2):31–54. ). However, this is a characteristic that varies within the family and subfamily, as Galuch et al., (2003)Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
and Santos et al., (2020)Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
described for the Stervadiinae Piabarcus stramineus (Eigenmann, 1908) and Characidae A. lacustris, respectively, an initially subterminal mouth with a shift to a terminal during early ontogeny, possibly related to changes in behavior and/or food items.Azevedo MA. Reproductive characteristics of characid fish species (Teleostei, Characiformes) and their relationship with body size and phylogeny. Iheringia Sér Zool. 2010; 100(4):469–82. https://doi.org/10.1590/S0073-47212010000400020
https://doi.org/10.1590/S0073-4721201000...
During larval development, individuals become able, for the first time, to move in space, interact with biotic and abiotic components and actively influence their survival in various ways, due to the development of their musculature and fins (Fuiman, 1983Fuiman LA. Growth gradients in fish larvae. J Fish Biol. 1983; 23(1):117–23. https://doi.org/10.1111/j.1095-8649.1983.tb02886.x
https://doi.org/10.1111/j.1095-8649.1983...
). Fins of fish are intended to provide propulsion, stability, maneuver and defense, and their shape and position are regulated by the principles of hydrodynamics, based on different body shapes and swimming speeds (Bemvenuti, Fischer, 2010Bemvenuti MA, Fischer LG. Peixes: morfologia e adaptações. Cad Ecol Aquát. 2010; 5(2):31–54. ). Generally, Characiformes have the development fins in the following order: caudal, dorsal, anal, pelvic, and pectoral (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.; Galuch et al., 2003Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
), similar to that observed for M. nigripinnis. The adipose fin appears at the postflexion, as described for the Stervadiinae, P. stramineus (Galuch et al., 2003Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
), the Characidae, Moenkausia cf. gracilima (Santos et al., 2017Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
), and Paracheirodon innesi (Marinho, 2017Marinho MMF. Comparative development in Moenkhausia pittieri and Paracheirodon innesi (Ostariophysi: Characiformes) with comments on heterochrony and miniaturization in the Characidae. J Fish Biol. 2017; 91(3):851–65. https://doi.org/10.1111/jfb.13384
https://doi.org/10.1111/jfb.13384...
). As there is a transition from undulating locomotion to caudal locomotion, both the dorsal located posteriorly and the adipose remain symmetrically opposed to the anal and function as stabilizing rudders, while the pelvic and pectoral fins, which appear posteriorly, serve to control the vertical course during movement locomotion (Breda et al., 2005Breda L, Oliveira EF, Goulart E. Ecomorfologia de locomoção de peixes com enfoque para espécies neotropicais. Acta Sci Biol Sci. 2005; 27(4):371–81. https://doi.org/10.4025/actascibiolsci.v27i4.1271
https://doi.org/10.4025/actascibiolsci.v...
; Bemvenuti, Fischer, 2010Bemvenuti MA, Fischer LG. Peixes: morfologia e adaptações. Cad Ecol Aquát. 2010; 5(2):31–54. ).
Given the importance of characterizing pigmentation for identifying larvae and considering that each species has a distinct pattern, with the size and location of melanophores being genetically determined (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.; Andrade et al., 2014Andrade FF, Makrakis MC, Lima AF, Assumpção L, Makrakis S, Pini SFR. Desenvolvimento embrionário, larval e juvenil de Hemisorubim platyrhynchos (Siluriformes, Pimelodidae) da bacia do rio Paraná. Iheringia Sér Zool. 2014; 104(1):70–80. https://doi.org/10.1590/1678-4766201410417080
https://doi.org/10.1590/1678-47662014104...
), there was an increasing pigmentation, with pattern variation throughout the development of M. nigripinnis. The small amount or absence of pigmentation right after hatching shows a pelagic behavior; however, the intensification of these chromatophores during development occurs when individuals begin to explore littoral zones (e.g., covered areas by macrophytes) (Nakatani, 1997Nakatani K. Ecologia de ovos e larvas de peixes. In: Vazzoler AEAM, Agostinho AA, Hahn NS, editors. A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. Maringá: EDUEM; 1997. p.281–306.; Sanches et al., 2001Sanches PV, Baumgartner G, Bialetzki A, Suiberto MR, Gomes FDC, Nakatani K et al. Caracterização do desenvolvimento inicial de Leporinus friderici (Osteichthyes, Anostomidae) da bacia do rio Paraná, Brasil. Acta Sci Biol Sci. 2001; 23(2):383–89.; Iquematsu et al., 2022Iquematsu MS, Cunha ER, Bialetzki A. The dynamism fish-plant association: ontogenetic variations in assemblage attributes in neotropical floodplain lakes. Ecol Freshw Fish. 2022; 32(1):120–32. https://doi.org/10.1111/eff.12674
https://doi.org/10.1111/eff.12674...
), as expected for the analyzed species.
At the yolk-sac stage, the presence of dendritic chromatophores in the distal part of the yolk sac was evident, as observed for A. lascustris (Stevanato, Ostrensky, 2018Stevanato DJ, Ostrensky A. Ontogenetic development of tetra Astyanax lacustris (Characiformes: Characidae). Neotrop Ichthyol. 2018; 16(2):e170073. https://doi.org/10.1590/1982-0224-20170073
https://doi.org/10.1590/1982-0224-201700...
; Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
). From the flexion stage, there is the development of the macula in the caudal fin, which is characteristic of the species, and an increase of pigments in the body, forming longitudinal lines, in addition to the generalized distribution throughout the body. These results demonstrate a pigmentation with a different pattern than that observed in Stevardiinae, Bryconamericus iheringii (Boulenger, 1887), whose pigmentation is present in a few dendritic clusters in the head region, ventral region and above the anal fin, and anteriorly to the caudal fin (Orsi et al., 2016Orsi ML, Almeida FS, Swarça AC, Claro-Garcia A, Vianna NC, Garcia DAZ et al. Ovos, larvas e juvenis dos peixes da bacia do rio Paranapanema: uma avaliação para conservação. Assis: Triunfal Gráfica e Editora; 2016.). This was also observed by Galuch et al., (2003)Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
for the species P. stramineus in a different pattern, which presents a pigmentation concentrated on the top of the head and diffused throughout the body, indicating that the pigmentation observed in M. nigripinnis, including the macula on the caudal peduncle, are characteristics that aid in identification within the subfamily.
Another important feature for identification is the myomere number (Snyder, 1979Snyder DE. Myomere and vertebrae counts of the North America cyprinids and catostomids. In: Hoyt RD, editor. Proceedings of Third Symposium on Larval Fish. Western Kentucky University: Bowling Gree; 1979.). When compared with other species, M. nigripinnis presents a value of 34 to 49 myomeres (16 to 23 pre- and 18 to 27 postanal), against 35 to 40 (16 to 21 pre- and 17 to 22 postanal) P. stramineus (Galuch et al., 2003Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
), 28 to 40 (13 to 20 pre- and 14 to 18 postanal) A. lacustris (Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
) and 32 to 37 (17 to 19 pre- and 15–18 postanal) for Astyanax altiparanae Garutti & Britski, 2000 (synonym of A. lacustris) (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.), all characids, and can be considered in the identification of larvae of this species.
In addition to myomeres, the number of fin rays may allow the distinction of orders or families (Ré, 1999Ré PMAB. Ictioplâncton estuarino da península Ibérica (Guia de identificação de ovos e estados larvares planctônicos). Lisboa: Universidade de Lisboa; 1999.), in which the anal fin is the one that most distinguishes M. nigripinnis from other Characidae, as it presents a variation of 43–47 rays, against 20 to 23 of P. stramineus (Galuch et al., 2003Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
https://doi.org/10.4025/actascibiolsci.v...
), 21–23 of Moenkhausia cf. gracilima (Santos et al., 2017Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
), 17–23 of Aphyocharax cf. anisitsi (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.), 20–24 of H. marginatus (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.), 27–29 of A. lacustris (Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
). With this, these characters can be parameters used to assist in the identification of the larvae of this species in the natural environment.
Markiana nigripinnis larvae showed morphometric variations throughout their ontogeny, with a long to moderate body, and small to moderate head, changes like those found in P. stramineus (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.). Concerning eye diameter, our results showed large eyes in all stages, corroborating what was observed for A. lacustris (Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
) and contrasting the increase in eye size (moderate to large) in the larval development of P. stramineus (Nakatani et al., 2001Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.). This suggests that during ontogeny there is no change in the type of feeding since Santos et al., (2017)Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
also described a moderate to large diameter during the development of Moenkausia cf. gracilima, suggesting a change in feeding, a fact that is common during the early development of some species. Large eyes at late development (postflexion) have also been reported for Stervadiinae, B. iheringii (Orsi et al., 2016Orsi ML, Almeida FS, Swarça AC, Claro-Garcia A, Vianna NC, Garcia DAZ et al. Ovos, larvas e juvenis dos peixes da bacia do rio Paranapanema: uma avaliação para conservação. Assis: Triunfal Gráfica e Editora; 2016.).
These results, along with the snout length and high depth of the head during development, suggest that the increment and growth of structures led to the need for the expansion of the body and head to moderate. Taguti et al., (2009)Taguti TL, Kipper D, Bialetzki A, Sanches PV, Makrakis MC, Baumgartner G et al. Early development of Pyrrhulina australis Eigenmann & Kennedy, 1903 (Characiformes, Lebiasinidae). Biota Neotrop. 2009; 9(4):59–65. https://doi.org/10.1590/S1676-06032009000400006
https://doi.org/10.1590/S1676-0603200900...
examined the early development of Pyrrhulina australis Eigenmann & Kennedy, 1903 and suggested that the change in the body from long to moderate is a consequence of the development of the musculature and the digestive tract, being linked to environmental conditions, such as competition and food capture that would accelerate this body development. Furthermore, head growth is probably due to the formation of the brain part of the larvae, which leads to the diversification of motor and sensory skills and the development of the gill apparatus and the onset of exogenous feeding (Blaxter, 1988Blaxter JHS. Pattern and variety in development. In: Hoar WS, Randall DJ, editors. Fish physiology: the physiology of developing fish. Eggs and larvae. London: Academic Press; 1988. p.1–58. ). Thus, our results indicate that the characteristics are related to the strategy for survival in their habitat during their development, showing changes in morphology, large eyes, and pigmented body to search for food while camouflaging below marginal aquatic plants.
The species growth pattern may be related to a greater morphophysiological demand (Oliveira et al., 2020Oliveira CC, Suzuki MAL, Oliveira LS, Zacardi DM. Description of the initial development and temporal distribution of Microphilypnus tapajosensis larvae and juveniles in a reservoir in the Eastern Amazon. Ciênc Nat. 2020; 42:e49. https://doi.org/10.5902/2179460X41542
https://doi.org/10.5902/2179460X41542...
). The growth models observed between the snout length and head length, and pre-pelvic distance and standard-length relationships suggest negative allometric growth (b < 1), as well as the quadratic regression found for the snout-dorsal fin distance and standard length (Oliveira et al., 2020Oliveira CC, Suzuki MAL, Oliveira LS, Zacardi DM. Description of the initial development and temporal distribution of Microphilypnus tapajosensis larvae and juveniles in a reservoir in the Eastern Amazon. Ciênc Nat. 2020; 42:e49. https://doi.org/10.5902/2179460X41542
https://doi.org/10.5902/2179460X41542...
; Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
). Variables that present abrupt growth, that is, with breakpoints, are considered significant if associated with some morphological, physiological and/or survival event (Kováč et al., 1999Kováč V, Copp GH, Francis MP. Morphometry of the stone loach, Barbatula barbatula: do mensural characters reflect the species’ life history thresholds? Environ Biol Fishes. 1999; 56:105–15.; Taguti et al., 2009Taguti TL, Kipper D, Bialetzki A, Sanches PV, Makrakis MC, Baumgartner G et al. Early development of Pyrrhulina australis Eigenmann & Kennedy, 1903 (Characiformes, Lebiasinidae). Biota Neotrop. 2009; 9(4):59–65. https://doi.org/10.1590/S1676-06032009000400006
https://doi.org/10.1590/S1676-0603200900...
; Santos et al., 2017Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
). For M. nigripinnis, eye diameter, head depth, body depth, and snout-pectoral fin and snout-anal fin distances showed this type of relationship, suggesting that in this interval, during the flexion stage, most remodeling of the external form of the body occurs, in addition to the onset of exogenous feeding (Taguti et al., 2009Taguti TL, Kipper D, Bialetzki A, Sanches PV, Makrakis MC, Baumgartner G et al. Early development of Pyrrhulina australis Eigenmann & Kennedy, 1903 (Characiformes, Lebiasinidae). Biota Neotrop. 2009; 9(4):59–65. https://doi.org/10.1590/S1676-06032009000400006
https://doi.org/10.1590/S1676-0603200900...
; Santos et al., 2017Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
), which indicates the period of major metamorphosis of the species. It is possible to verify the presence of breakpoints for similar species, such as Moenkausia cf. gracilima (Santos et al., 2017Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al. Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
https://doi.org/10.1590/S2179-975X10116...
) that has a similar development when we observe the eye diameter and snout-pectoral fin, as well as for Astyanax lacustris (Santos et al., 2020Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
https://doi.org/10.1111/are.14746...
) where it is possible to verify the size related to head depth and body depth.
In summary, this study is a pioneer in the description of the early ontogeny of a small characid, through semi-natural breeding, with matrices from the Paraguai River basin. Our findings contribute to information about the early development of the tetra M. nigripinnis, helping reduce the existing knowledge gap on the life history of fish in the Neotropical region, especially of the family Characidae. Furthermore, it contributes information that may support aquaculture production and conservation measures for the region.
ACKNOWLEDGEMENTS
The authors thank the Laboratório de Ictiologia do IMASUL for providing the facilities for the experiment, especially Carla L. K. Dias, for assisting in collections and Frederico A. B. Vasconcelos, for being responsible for feeding the larvae. We also thank Márcia S. Iquematsu, for helping with the statistical analyses, and Wladimir M. Domingues, for helping with Fig. 1. Also, to the Universidade Federal do Mato Grosso do Sul and the Nupélia/UEM for the structure to carry out the meristic and morphometric analyses.
REFERENCES
- Ahlstrom EH, Moser HG. Eggs and larvae of fishes and their role in systematic investigations and in fisheries. Rev Trav Inst Pêches Marit. 1976; 40(3):379–98. Available from: https://archimer.ifremer.fr/doc/1976/publication-1996.pdf
» https://archimer.ifremer.fr/doc/1976/publication-1996.pdf - Albert JS, Tagliacollo VA, Dagosta F. Diversification of Neotropical freshwater fishes. Ann Rev Ecol Evol Syst. 2020; 51:27–53. https://doi.org/10.1146/annurev-ecolsys-011620-031032
» https://doi.org/10.1146/annurev-ecolsys-011620-031032 - Andrade DR, Yasui GS. Natural and artificial breeding management and its importance in fish production in Brazil. Rev Bras Repr Anim. 2003; 27(2):166–72.
- Andrade FF, Makrakis MC, Lima AF, Assumpção L, Makrakis S, Pini SFR. Desenvolvimento embrionário, larval e juvenil de Hemisorubim platyrhynchos (Siluriformes, Pimelodidae) da bacia do rio Paraná. Iheringia Sér Zool. 2014; 104(1):70–80. https://doi.org/10.1590/1678-4766201410417080
» https://doi.org/10.1590/1678-4766201410417080 - Anjos HDB, Anjos CR. Biologia reprodutiva e desenvolvimento embrionário e larval do cardinal tetra, Paracheirodon axelrodi Schultz, 1956 (Characiformes: Characidae), em laboratório. Bol Inst Pesca. 2006; 32(2):151–60.
- Azevedo MA. Reproductive characteristics of characid fish species (Teleostei, Characiformes) and their relationship with body size and phylogeny. Iheringia Sér Zool. 2010; 100(4):469–82. https://doi.org/10.1590/S0073-47212010000400020
» https://doi.org/10.1590/S0073-47212010000400020 - Baicere-Silva CM, Benine RC, Quagio-Grassiotto I Markiana nigripinnis (Perugia, 1891) as a putative member of the subfamily Stevardiinae (Characiformes: Characidae): spermatic evidence. Neotrop Ichthyol. 2011; 9(2):371–76. https://doi.org/10.1590/S1679-62252011005000020
» https://doi.org/10.1590/S1679-62252011005000020 - Bemvenuti MA, Fischer LG. Peixes: morfologia e adaptações. Cad Ecol Aquát. 2010; 5(2):31–54.
- Blaxter JHS. Pattern and variety in development. In: Hoar WS, Randall DJ, editors. Fish physiology: the physiology of developing fish. Eggs and larvae. London: Academic Press; 1988. p.1–58.
- Breda L, Oliveira EF, Goulart E. Ecomorfologia de locomoção de peixes com enfoque para espécies neotropicais. Acta Sci Biol Sci. 2005; 27(4):371–81. https://doi.org/10.4025/actascibiolsci.v27i4.1271
» https://doi.org/10.4025/actascibiolsci.v27i4.1271 - Britski HA, Silimon KZS, Lopes BS. Peixes do Pantanal - manual de identificação. Brasília: EMBRAPA, 2007.
- Çelik I, Çelik P, Cirik Ş, Gürkan M, Hayretdağ S. Embryonic and larval development of black skirt tetra (Gymnocorymbus ternetzi, Boulenger, 1895) under laboratory conditions. Aquac Res. 2012; 43(9):1260–75. https://doi.org/10.1111/j.1365-2109.2011.02930.x
» https://doi.org/10.1111/j.1365-2109.2011.02930.x - Costa ADA, Garcia DAZ, Claro-García A, Balconi APR, Miranda DCC, Leme GLA, Pine MB, Souza A, Bialetzki A, Orsi ML. Metodologia de coleta, triagem e identificação de ovos, larvas e juvenis. In: Orsi ML, Almeida FS, Swarça AC, Bialetzki A, editors. Ovos, larvas e juvenis dos peixes da bacia do rio Paranapanema: uma avaliação para a conservação. Assis: Triunfal Gráfica e Editora; 2016. p.34–36.
- Costa-Pereira R, Severo-Neto F, Yule TS, Tinti-Pereira AP. Fruit-eating fishes of Banara arguta (Salicaceae) in the Miranda River floodplain, Pantanal wetland. Biota Neotrop. 2011. 11(4):373–76. http://www.biotaneotropica.org.br/v11n4/en/abstract?short-communication+bn03011042011
» http://www.biotaneotropica.org.br/v11n4/en/abstract?short-communication+bn03011042011 - Eigenmann CH. New genera of South American fresh-water fishes, and new names for some old genera. Smithsonian Misc Collect. 1903; 45:144–48.
- Ferreira KM, Mirande JM, Quagio-Grassiotto I, Santana JCO, Baicere-Silva CM, Menezes NA. Testing the phylogenetic hypotheses of Stevardiinae Gill, 1858 in light of new phenotypic data (Teleostei: Characidae). J Zool Syst Evol Res. 2021; 59(8):2060–85. https://doi.org/10.1111/jzs.12517
» https://doi.org/10.1111/jzs.12517 - Fricke R, Eschmeyer WN, Van der Laan R. Eschmeyer’s catalog of fishes: genera, species, references [Internet]. San Francisco: California Academy of Science; 2022. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
» http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. - Froehlich O, Vilela MJA, Cavalarro MR, Cordeiro LM. Inventário da ictiofauna no Complexo Aporé-Sucuriú. In: Pagoto TCS, Souza R, editors. Biodiversidade do Complexo Aporé-Sucuriú: subsídios à conservação e ao manejo do cerrado. Campo Grande: EDUFMS; 2006. p.91–102.
- Fuiman LA. Growth gradients in fish larvae. J Fish Biol. 1983; 23(1):117–23. https://doi.org/10.1111/j.1095-8649.1983.tb02886.x
» https://doi.org/10.1111/j.1095-8649.1983.tb02886.x - Galuch AV, Suiberto MR, Nakatani K, Bialetzki A, Baumgartner G. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci. 2003; 25(2):335–43. https://doi.org/10.4025/actascibiolsci.v25i2.2021
» https://doi.org/10.4025/actascibiolsci.v25i2.2021 - Géry J. Characoids of the world. Neptune City: TFH Publications; 1977.
- Gimênes Junior H, Rech R, editors. Guia ilustrado dos peixes do Pantanal e entorno. Campo Grande: Julien Design; 2022. Available from: https://www.imasul.ms.gov.br/wp-content/uploads/2022/11/Montagem-livro-Peixes-VERSAO-FINAL-MARCO-2022-ISBN97865-81066-05-5-ONLINE_FINAL-1.pdf
» https://www.imasul.ms.gov.br/wp-content/uploads/2022/11/Montagem-livro-Peixes-VERSAO-FINAL-MARCO-2022-ISBN97865-81066-05-5-ONLINE_FINAL-1.pdf - Iquematsu MS, Cunha ER, Bialetzki A. The dynamism fish-plant association: ontogenetic variations in assemblage attributes in neotropical floodplain lakes. Ecol Freshw Fish. 2022; 32(1):120–32. https://doi.org/10.1111/eff.12674
» https://doi.org/10.1111/eff.12674 - Jones M, Alexander ME, Snellgrove D, Smith P, Bramhall S, Carey P et al How should we monitor welfare in the ornamental fish trade? Rev Aquac. 2022; 14(2):770–90. https://doi.org/10.1111/raq.12624
» https://doi.org/10.1111/raq.12624 - Kováč V, Copp GH, Francis MP. Morphometry of the stone loach, Barbatula barbatula: do mensural characters reflect the species’ life history thresholds? Environ Biol Fishes. 1999; 56:105–15.
- Krishnakumar A, Anton ESP, Jayawardena UA. Water hardness influenced variations in reproductive potential of two freshwater fish species; Poecilia reticulata and Betta splendens BMC Res Notes. 2020; 13(542). https://doi.org/10.1186/s13104-020-05382-x
» https://doi.org/10.1186/s13104-020-05382-x - Leis JM, Trnski T. The larvae of Indo-Pacific shore fishes. Honolulu: University of Hawaii Press; 1989.
- Lima DLG, Cajado RA, Silva LVF, Maia JLS, Zacardi DM. Descrição morfológica do desenvolvimento inicial de Brycon amazonicus (Characiformes, Bryconidae) do Baixo Amazonas, Pará. Biota Amaz. 2021; 11(1):60–67. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p60-67
» http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p60-67 - Lima FCT, Malabarba LR, Buckup PA, Silva JFP, Vari RP, Harold A et al Characidae, genera incertae sedis. In: Reis RE, Kullander SO, Ferraris Jr., CJ, editors. Check List of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003. p.106–69.
- Marinho MMF. Comparative development in Moenkhausia pittieri and Paracheirodon innesi (Ostariophysi: Characiformes) with comments on heterochrony and miniaturization in the Characidae. J Fish Biol. 2017; 91(3):851–65. https://doi.org/10.1111/jfb.13384
» https://doi.org/10.1111/jfb.13384 - Mattox GMT, Hoffmann M, Hoffmann P. Ontogenetic development of Heterocharax macrolepis Eigenmann (Ostariophysi: Characiformes: Characidae) with comments on the form of the yolk sac in the Heterocharacinae. Neotrop Ichthyol. 2014; 12(2):353–63. https://doi.org/10.1590/1982-0224-20130107
» https://doi.org/10.1590/1982-0224-20130107 - Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
» https://doi.org/10.1111/cla.12345 - Monteiro ABGF, Takagui FH, Baldissera JNC, Jerep FC, Giuliano-Caetano L. Classical and molecular cytogenetics of Markiana nigripinnis (Pisces - Characiformes) from brazilian Pantanal: a comparative analysis with cytotaxonomic contributions. Biologia. 2022; 77:2371–82. https://doi.org/10.1007/s11756-022-01091-x
» https://doi.org/10.1007/s11756-022-01091-x - Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC et al Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM; 2001.
- Nakatani K. Ecologia de ovos e larvas de peixes. In: Vazzoler AEAM, Agostinho AA, Hahn NS, editors. A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. Maringá: EDUEM; 1997. p.281–306.
- Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G et al Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol. 2011; 11(275). https://doi.org/10.1186/1471-2148-11-275
» https://doi.org/10.1186/1471-2148-11-275 - Oliveira CC, Suzuki MAL, Oliveira LS, Zacardi DM. Description of the initial development and temporal distribution of Microphilypnus tapajosensis larvae and juveniles in a reservoir in the Eastern Amazon. Ciênc Nat. 2020; 42:e49. https://doi.org/10.5902/2179460X41542
» https://doi.org/10.5902/2179460X41542 - Oliveira FG, Bialetzki A, Gomes LC, Santin M, Taguti TL. Desenvolvimento larval de Brycon hilarii (Characiformes, Characidae). Iheringia Sér Zool. 2012; 102(1):62–70. https://doi.org/10.1590/S0073-47212012000100009
» https://doi.org/10.1590/S0073-47212012000100009 - Orsi ML, Almeida FS, Swarça AC, Claro-Garcia A, Vianna NC, Garcia DAZ et al Ovos, larvas e juvenis dos peixes da bacia do rio Paranapanema: uma avaliação para conservação. Assis: Triunfal Gráfica e Editora; 2016.
- Park JM, Kim N-R, Han K-H, Han J-H, Son M-H, Cho J-K. Spawning behavior, egg development, larvae and juvenile morphology of Hyphessobrycon eques (Pisces: Characidae) Characidae fishes. Dev Reprod. 2014; 18(4):241–49. https://doi.org/10.12717/DR.2014.18.4.241
» https://doi.org/10.12717/DR.2014.18.4.241 - Ré PMAB. Ictioplâncton estuarino da península Ibérica (Guia de identificação de ovos e estados larvares planctônicos). Lisboa: Universidade de Lisboa; 1999.
- Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA. Fish biodiversity and conservation in South America: fish biodiversity and conservation. J Fish Biol. 2016; 89(1):12–47. https://doi.org/10.1111/jfb.13016
» https://doi.org/10.1111/jfb.13016 - Reis RE, Kullander SO, Ferraris Jr., CJ, editors. Check list of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003.
- Resende EK, Pereira RAC, Almeida VLL. Peixes herbívoros da planície inundável do rio Miranda, Pantanal, Mato Grosso do Sul, Brasil. Corumbá, MS: EMBRAPA; 1998.
- Reynalte-Tataje DA, Lopes CA, Massaro MV, Hartmann PB, Sulzbacher R, Santos JA et al State of the art of identification of eggs and larvae of freshwater fish in Brazil. Acta Limnol Bras. 2020; 32(6). https://doi.org/10.1590/S2179-975X5319
» https://doi.org/10.1590/S2179-975X5319 - Ribeiro AC, Lima FCT. Biogeografia dos peixes de água doce da América do Sul. In Carvalho CJB, Almeida E, editors. Biogeografia da América do Sul: padrões e processos. São Paulo: Editora Roca; 2011. p.261–77.
- Rotta MA. Aspectos biológicos e reprodutivos para a criação da Tuvira (Gymnotus sp.) em cativeiro. Corumbá: EMBRAPA; 2004.
- Sanches PV, Baumgartner G, Bialetzki A, Suiberto MR, Gomes FDC, Nakatani K et al Caracterização do desenvolvimento inicial de Leporinus friderici (Osteichthyes, Anostomidae) da bacia do rio Paraná, Brasil. Acta Sci Biol Sci. 2001; 23(2):383–89.
- Santos JA, Iquematsu MS, Soares CM, Galdioli EM, Silva KF, Teixeira VA et al Temporal distribution and early development of Moenkausia cf. gracilima (Lucena & Soares, 2016) (Osteichthyes, Characidae) in the upper Paraná River, Brazil. Acta Limnol Bras. 2017; 29:e109. https://doi.org/10.1590/S2179-975X10116
» https://doi.org/10.1590/S2179-975X10116 - Santos JA, Soares CM, Bialetzki A. Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res. 2020; 51(10):4030–42. https://doi.org/10.1111/are.14746
» https://doi.org/10.1111/are.14746 - Schäfer F Markiana nigripinnis [Internet]. Aquarium Glaser GmbH - Alle Rechte vorbehalten. 2009. Available from: https://www.aquariumglaser.de/en/fish-archives/markiana_nigripinnis_en/
» https://www.aquariumglaser.de/en/fish-archives/markiana_nigripinnis_en/ - Severo-Neto F, Tencatt LFC, Costa-Pereira R, Tavares LER. Fishes from Baía da Medalha, southern Pantanal, Brazil: a 20 years review. Biota Neotrop. 2015; 15(2):e20140116. http://dx.doi.org/10.1590/1676-06032015011614
» http://dx.doi.org/10.1590/1676-06032015011614 - Silva FKS, Cajado RA, Oliveira LS, Santos Z, Santos JA, Silva LVF et al Early development of Prochilodus nigricans Spix & Agassiz, 1829 (Characiformes: Prochilodontidae) in captivity. Aquac Res. 2022; 53(12):4540–55. https://doi.org/10.1111/are.15951
» https://doi.org/10.1111/are.15951 - Snyder DE. Myomere and vertebrae counts of the North America cyprinids and catostomids. In: Hoyt RD, editor. Proceedings of Third Symposium on Larval Fish. Western Kentucky University: Bowling Gree; 1979.
- Sokal RR, Rohlf FJ. Biometry. The principles and practice of statistics in biological research. San Francisco: W. H. Freeman and Company; 1981.
- Stevanato DJ, Ostrensky A. Ontogenetic development of tetra Astyanax lacustris (Characiformes: Characidae). Neotrop Ichthyol. 2018; 16(2):e170073. https://doi.org/10.1590/1982-0224-20170073
» https://doi.org/10.1590/1982-0224-20170073 - Súarez YR, Ferreira FS, Tondato KK. Assemblage of fish species associated with aquatic macrophytes in Porto Murtinho Pantanal, Mato Grosso do Sul, Brazil. Biota Neotrop. 2013; 13(2):182–89. https://doi.org/10.1590/S1676-06032013000200017
» https://doi.org/10.1590/S1676-06032013000200017 - Suiberto MR, Galuch AV, Bialetzki A, Nakatani K. Ontogenetic shifts in the digestive tube and diet of Bryconamericus stramineus Eigenmann, 1908 (Osteichthyes, Characidae). Acta Limnol Bras. 2009; 21(4):465–72.
- Taguti TL, Kipper D, Bialetzki A, Sanches PV, Makrakis MC, Baumgartner G et al Early development of Pyrrhulina australis Eigenmann & Kennedy, 1903 (Characiformes, Lebiasinidae). Biota Neotrop. 2009; 9(4):59–65. https://doi.org/10.1590/S1676-06032009000400006
» https://doi.org/10.1590/S1676-06032009000400006 - Thomaz AT, Arcila D, Ortı G, Malabarba LR. Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits. BMC Evol Biol. 2015; 15(146). https://doi.org/10.1186/s12862-015-0403-4
» https://doi.org/10.1186/s12862-015-0403-4 - Tondato KK, Fantin-Cruz I, Pedrollo OC, Súarez YR. Spatial distribution of fish assemblages along environmental gradients in the temporary ponds of Northern Pantanal, Brazil. J Limnol. 2013; 72(1):95102. https://doi.org/10.4081/jlimnol.2013.e8
» https://doi.org/10.4081/jlimnol.2013.e8 - Walter BE. Early ontogeny of aquarium-raised Moenkhausia sanctaefilomenae (Characiformes: Characidae). Ichthyol Res. 2012; 59:95–103. https://doi.org/10.1007/s10228-011-0257-8
» https://doi.org/10.1007/s10228-011-0257-8 - Zacardi DM, Bittencourt SCS. Morphological characterization of fish larvae captured in the estuarine complex of the Pará and Paracauarí Rivers (Pará State - Brazil). Acta Fish Aquat Res. 2017; 5(2):78–102.
ADDITIONAL NOTES
-
HOW TO CITE THIS ARTICLE
Souza MBV, Tondato-Carvalho KK, Gimênes Junior H, Bialetzki A. Early ontogeny of tetra Markiana nigripinnis (Characiformes: Characidae). Neotrop Ichthyol. 2023; 21(2):e220114. https://doi.org/10.1590/1982-0224-2022-0114
Edited-by
Publication Dates
-
Publication in this collection
10 July 2023 -
Date of issue
2023
History
-
Received
6 Dec 2022 -
Accepted
26 May 2023