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One of the major paradigms in ecology is the understanding of processes and 
patterns related to the structure of biological communities. Reef ecosystems, with 
their high productivity, habitat heterogeneity, and fish diversity provide a model 
for studying these processes. We sampled four sites three times during the season 
associated with the California Current and two times associated with the North 
Equatorial Current using video-transects on the coast of Zihuatanejo, Guerrero, 
Mexico to determine the relationship between the habitat characteristics and the 
structure of the fish assemblage. We recorded a total of 26 families and 54 species 
and estimated fish richness and abundance. In addition to measuring local water 
variables such as temperature (°C), salinity (PPT), pH and dissolved oxygen 
(O2%), we determined habitat heterogeneity by processing photographs of the 
substrate and calculated rugosity using the tape chain. Oxygen and temperature 
were the variables associated to sea water conditions that differentiated the 
sampled sites. The fish community structure presented high correlations with 
temperature, salinity, and dissolved oxygen, followed by the heterogeneity 
components such as rugosity and substrate diversity. Our results showed that 
seasonal changes in water conditions and physical components in the coast of 
Zihuatanejo promotes changes in the fish community.

Keywords: California current, Ixtapa -Zihuatanejo bay, North equatorial current, 
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Fish assemblage in reefs of the Mexican Pacific

Uno de los principales paradigmas en ecología es el entendimiento de procesos 
y patrones relacionados con la estructura de las comunidades biológicas. Los 
ecosistemas de arrecifes, con su alta productividad, heterogeneidad de hábitat 
y diversidad de peces, proporcionan un modelo para estudiar estos procesos. 
Muestreamos cuatro sitios tres veces durante la temporada asociada a la Corriente 
de California y dos veces asociada a la Corriente Ecuatorial Norte utilizando 
video-transectos en la costa de Zihuatanejo, Guerrero, México para determinar 
la relación entre las características del hábitat y la estructura de la comunidad 
de peces. Registramos un total de 26 familias y 54 especies, y estimamos la 
riqueza y abundancia de peces. Además de medir variables locales del agua como 
temperatura (°C), salinidad (PPT), pH y oxígeno disuelto (O2%), determinamos 
la heterogeneidad del hábitat procesando fotografías del sustrato y calculamos 
la rugosidad usando una cadena. El oxígeno y la temperatura fueron las 
variables asociadas a las condiciones del agua de mar que diferenciaron los sitios 
muestreados. La estructura de la comunidad de peces presentó altas correlaciones 
con la temperatura, salinidad y oxígeno disuelto, seguido por los componentes 
de la heterogeneidad como rugosidad y diversidad del sustrato. Nuestros 
resultados mostraron que los cambios estacionales en las condiciones del agua 
y los componentes físicos en la costa de Zihuatanejo promueven cambios en la 
estructura de la comunidad de peces.

Palabras clave: Bahía de Ixtapa -Zihuatanejo, Cambios estacionales, Complejidad 
física, Corriente de California, Corriente Ecuatorial del Norte.

INTRODUCTION

In the last decades, understanding the effects of heterogeneous habitats loss on living 
organisms has been a key goal of conservation management to maintain ecological 
processes and diversity at different scales (e.g., Levey, 1988; Finch, 1989; Greenberg 
et al., 1995; Willig et al., 2003). Heterogeneity, defined as the relative abundance of 
different structural components of the habitat (e.g., different kinds and sizes of rocks, 
vegetation, and sedimentation) is related with species richness and abundance in 
biological communities, and facilitates species coexistence (MacArthur, Wilson, 1967; 
McCoy, Bell, 1991). 

Marine ecosystems harbor high diversity and different levels of heterogeneity related 
with high ecological dynamics at different temporal and spatial scales (Bowen et al., 
2013). Temporal variation is related to seasonal changes influenced by storms, hurricanes, 
dry-rain cycles, etc., which in turns modify sea water conditions (Androulidakis et al., 
2015). Moreover, in marine ecosystems, reefs are defined as heterogeneous and complex 
structures providing different types of substrates for the establishment of algae and 
animals enhancing biological diversity related to productivity and energy flux (Thomson 
et al., 1979; Chiappa-Carrara et al., 2019). Reefs cover ~284,300 km2 worldwide (1.2% 
of the continental plateau and 0.09% of the oceanic area; Spalding et al., 2001; Spalding, 
Brown, 2015) and harbor ~25% of the total marine fauna including one third of the fish 
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species that present specific biotic interactions (Paulay, 1997; García-Charton, Pérez-
Ruzafa, 2001). Even though these habitats cover a small area, the ecological functions 
they provide are also related to maintaining the diversity of hot spots and processes 
that occur on the mainland (e.g., protection to the coastlines). Furthermore, reef areas 
are used to promote touristic activities and sustain local fisheries (Moberg, Folke, 1999; 
Calderón-Aguilera et al., 2017). 

In the last two decades, reefs have undergone an increase in the rate of degradation 
related to overfishing, pollution, habitat modification, introduction of non-native 
species, and global warming, resulting directly and indirectly in the loss of coral cover 
and heterogeneity of these habitats (Jackson et al., 2001; Hughes et al., 2017). One 
important component in the reef functioning are fishes, which in most cases have a 
high relation and specific biological interactions within these habitats in at least one 
stage along their life history (Thomson et al., 1979; Arreola-Robles, Elorduy-Garay, 
2002). Therefore, many factors are related to the abundance, richness, and structure 
of the fish assemblages in these marine habitats, such as: temporal variation, habitat 
heterogeneity, seasonal changes related to ocean currents, shelter availability, feeding 
resources, foraging areas (Allen, Robertson, 1994; Dominici-Arosemena, Wolff, 2006). 
Fish assemblage structure and reefs heterogeneity are highly correlated, therefore, 
the loss of heterogeneity results in low refuge availability and reduction of areas for 
foraging and reproduction, which in turns increases susceptibility to predation and 
fisheries (Rogers et al., 2014; Arias-Godínez et al., 2019; Lowe et al., 2019). 

In the Mexican Pacific coast, fish diversity is mainly related to the habitat 
heterogeneity associated with the topography and historical geology of this coastline 
(Glynn, Morales, 1997; López-Pérez et al., 2012). This coast is the region with the 
highest rate of endemism per unit area worldwide with 71% of endemic fish species 
(Robertson, Allen, 2015). Furthermore, the differences in the reef heterogeneity and 
seasonal dynamics due to the influence of currents in this area provide an excellent 
study model to understand and evaluate hypotheses related to habitat heterogeneity that 
sustains and promotes high biodiversity.

One of the paradigms in ecology postulates that habitat heterogeneity presents a 
positive relation with species richness and biodiversity, which in turn triggers temporal 
and spatial changes in the assemblage structure, allowing coexistence through niche 
differentiation, and mediating competition and predation pressure by seasonal and 
daily dynamics (MacArthur, Levins, 1967; MacArthur, Wilson, 1967; Stubbs, Wilson, 
2004; Mason et al., 2008; Morin, 2011). In this study, we investigated how the substrate 
diversity and rugosity as components of habitat heterogeneity, and seasonal changes of 
the seawater conditions due to marine currents (water temperature, salinity, dissolved 
oxygen) influence the structure (abundance, richness, and species composition) of the 
reef fish assemblages in the bays of Ixtapa and Zihuatanejo. We hypothesized that sites 
with greater habitat heterogeneity and higher seasonal changes in water conditions 
would harbor a more diverse assemblage in terms of species richness and fish abundance.

https://www.ni.bio.br/
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Fish assemblage in reefs of the Mexican Pacific

MATERIAL AND METHODS

Location and site characteristics. The bays of Ixtapa and Zihuatanejo are located at 
300 m asl in the coast of the state of Guerrero in the southwest of the Mexican Tropical 
Pacific coast (Carranza et al., 1975). The shores in these bays present high variation 
in depth and are constituted of igneous, metamorphic, volcanic and limestones. The 
constant influence of tropical storms and upwellings causes reef to form mainly on rocks 
and boulders rather than on coral structures in contrast to the Caribbean reefs (Centeno-
García et al., 2008). We sampled four rocky sites: Playa las Gatas (LG; 17°37’24.0”N 
101°33’13.3”W) is located south of the bays of Ixtapa and Zihuatanejo, and regarding 
the short distance to human settlements, presents high impact by direct sewage 
discharge and tourism activities since 1990. This site presents 6–7 m in depth and reef 
range 1–2 m high (from the bottom); Zacatoso (ZC; 17°39’16.1”N 101°37’18.4”W) is 
1 km east of the shore of the bay of Ixtapa, the reef at this site is found at 5–10 m depth 
with heights of 4–7 m. This reef presents low degree of deterioration or anthropogenic 
impact even when is near to touristic resorts and a marine harbor; Caleta de Chon (CH; 
17°36’55.1”N 101°33’17.8”W) is located 1.5 km south-east of the Zihuatanejo shore, 
the reef in this area presents heights of 2–3 m, and is composed mainly by Pocillopora 
spp. found at 7–8 m depth. This site presents high rates of sedimentation related to 
coastal erosion since 2010 and; Playa Manzanillo (MZ; 17°37’07.1”N 101°31’21.4”W) 
is a relatively well-conserved ~40 ha rocky reef covered of corals (1–5 m high) at 2–7 m 
depth, located 4 km from the bay of Zihuatanejo (Nava, Ramírez-Herrera, 2012; Nava 
et al., 2014; 2021) (Fig. 1). 

FIGURE 1 | Geographic location of the Ixtapa and Zihuatanejo bays in the Pacific Coast of Mexico and 

sampling sites.

https://www.ni.bio.br/
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The coast of the State of Guerrero belongs to the Eastern Pacific Warm Pool 
(EPWP), with a continuous flow of warm water from June-December related to the 
North Equatorial Current (hereafter NEC). The water temperature in this period 
ranges from 27–30°C and decreases to 19–26°C in January-May due to the presence 
of the California Current (hereafter CC), which is mainly constituted of cold-water 
masses from north to south along the Pacific Ocean (Wang, Enfield, 2001; Fiedler, 
Talley, 2006; Kessler, 2006; Kamikuri et al., 2009). Based on the above mentioned, we 
performed the field trips to record temporal variations in fish and site characteristics. 
Two field trips were performed in March and April 2019, and one in February 2020, 
which corresponded to CC; and two field trips were performed in June and December 
2019, which corresponded to NEC.

During each field trip we recorded data on fish assemblages and habitat variables 
using SCUBA diving techniques. In each field trip, three underwater transects (with 
three replications) of 30 m length each (3 m wide) were performed in each site 
perpendicularly to the coastline using a metric rope and an underwater compass. We 
performed a total of 27 transects in each site under the influence of CC (3 field trips x 3 
transects x 3 replications) and 18 for each site under the influence of NEC (2 field trips 
x 3 transects x 3 replications). All sites had up to 7–10 m in depth, and physicochemical 
variables of the sea water were recorded along each transect every 10 m, and at three 
different depths between ~0.5–9 m using a multiparametric sonde (YSI EXO2; YSI 
Inc., Yellow Springs, OH, U.S.A). The variables were temperature (°C), salinity (PPT), 
pH and dissolved oxygen (O2%).

Rugosity of the reef bottom at each site was determined by the tape-chain method 
considering each 30 m transect, following Saleh (1993) and Friedman et al. (2012), 
where surface rugosity (SR) is the ratio obtained once the chain is placed over the 
undulating substrate (Dchain) and the total length of the chain (Lchain). The bottom 
substrate of each site was classified based on the percentage of rock, coral, sand, and 
rubble (pebbles and dead coral), using a 1 m2 PVC quadrant with an underwater digital 
camera (GoPro Hero 8 black; aspect ratio of 4:3) fixed in the center facing downward. 
Photographs of the substrate were taken from 1.5 m at two meters intervals, on each 
lateral of the 30 m transect (15 photographs on the right side and 15 on the left side). 
As the photographs presented a concave distortion inherent to the camera lens, image 
correction was performed using the software Adobe Photoshop CC 2020 (v. 21.0.3 for 
windows) with the distort tool, using the PVC quadrant as reference; in each image, the 
four squares were fixed and “distorted” until a straight squared was obtained. Once the 
images were corrected, we used the software ImageJ (v. 1.52a) to obtain the percentage 
of substrate type by 1 m2.

We recorded fish abundance and richness for each 30 m transects using the 
underwater video-transect technique with an underwater digital camera (GoPro Hero 
8 black at 1080 p resolution). To standardize the sampling effort and enhance transect 
homogeneity while recording, the technic proposed by Ramos et al. (2010) and Safuan 
(2015) was followed. Based on preliminary dives, the recording velocity along the 
transect was set to ~6 m/min and the wide of the image captured ~3 m. The camera 
was set to a rig and an underwater compass was attached and used as spirit level to 
maintain a horizontal line while filming. To maintain the distance between the camera 
and the bottom (~1.5 m), a rope with a 0.1 kg lead weight was attached to the rig. 

https://www.ni.bio.br/
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Video recordings were reviewed five times using the software Adobe Premier Pro 2020, 
the mean abundance obtained from the five revisions was used in the analyses, and 
taxonomic and trophic guild identification was following Robertson, Allen (2015). 

Data analyses. We performed Principal Component Analysis (PCA) based on 
correlation matrices to determine environmental gradients and similarities among 
sites regarding habitat variables. Prior to these analyses multiple correlations were 
used to identify redundant variables and avoid collinearity. This analysis simplifies 
multidimensional spaces avoiding loss of information related to the different variables 
(McCune et al., 2002). The Shannon-Wiener index (H’) was used as measure of substrate 
diversity (H’=∑pilog2pi; pi = proportion of each substrate type; García-Charton, Pérez-
Ruzafa, 2001). Seasonal differences among abiotic variables related to the marine 
currents (CC vs. NEC) and among sites (CH, LG, ZC and MZ), were tested using one-
way analysis of variance (ANOVA). Prior to ANOVA, data represented by proportions 
were arcsine transformed, continuous variables were Log10 transformed, and normality 
and homoscedasticity tests were performed (Shapiro-Wilk’s and Bartlett respectively; 
p ≤ 0.05). For variables that did not meet normality and/or homoscedasticity, non-
parametric ANOVAs were considered. For variables with significant differences 
between seasons and among sites, paired comparisons were performed (e.g., Tukey-
Kramer HSD or Wilcoxon test). This was also performed for comparisons among sites 
regarding the H’ index mentioned above.

Rarefaction analysis was performed (H = 0; endpoint = 1000; p = 0.05) to evaluate 
sampling effort related to species richness for each site and evenness was obtained 
based on J = H’/ H’max (Pielou, 1966). Beta diversity was calculated as an indicator 
of species turnover using the Whittaker index, and analysis of similarity (ANOSIM) 
based on Bray-Curtis distances with 999 permutations was performed to determine 
statistical differences (Chao, 1984; Magurran, 1988). Due to statistical differences were 
present in similarity/dissimilarity matrices (see results), Permutational multivariate 
analysis of variance (PERMANOVA) using pairwise-adonis test based on Bray-Curtis 
distances (999 permutations) and Bonferroni correction were performed (github.com/
pmartinezarbizu/pairwiseAdonis/blob/master/pairwiseAdonis/R/pairwise.adonis.R). 
Non-metric multidimensional scaling (NMDS) based on ranked Bray-Curtis distance 
was used as an ordination procedure to illustrate differences among fish assemblages. 
This ordination method is not susceptible to problems associated with zero truncation. 
Simultaneously, the dissimilarity matrices were analyzed with a ANOSIM to determine 
statistical differences, and pair comparisons were performed using pairwise-adonis as 
mentioned, and comparisons among the number of fish species by guilds was performed 
by site and marine current. To elucidate segregation/aggregation patterns we used 
a null model of co-occurrence for CC and NEC assemblages using the algorithm 
SIM2 and de C-index in the EcoSimR 1.00 (Gotelli, Ellison, 2013; http://www.uvm.
edu/~ngotelli/EcoSim/EcoSim.html). Simulation with SIM2 is based on fixed rows 
and equiprobable columns and randomizes the occurrence of each species among 
sites. Meanwhile, the C-index allows comparisons among tests by standardizing the 
effect score scaling the results in units of standard deviations. Significant differences 
suggest aggregation of species in the assemblage’s data, while no statistical differences 
suggest segregation of species (Gotelli, 2000). Finally, to determine the relationship 

https://www.ni.bio.br/
https://www.scielo.br/ni


Neotropical Ichthyology, 22(2):e230040, 2024 7/19ni.bio.br | scielo.br/ni

Luis H. Escalera-Vázquez, Francisco Martínez-Servín and Daniel Arceo-Carranza

between seawater conditions and heterogeneity components with the fish assemblages, 
a multiple regression analysis was performed considering the scores obtained in each site 
for the first three PCA axes, the variables statistically different (e.g., pH, depth, dissolved 
oxygen, salinity, and temperature) and the assemblage axes values obtained from 
NMDS. The statistical software used for all the analyses was R (v. 4.1.3, R Development 
Core Team, 2022), through the libraries R: Vegan, EcoSimR 1.00, iNEXT, rich and 
PerformanceAnalytics (Rossi, 2011; Gotelli, Ellison, 2013; Hsieh et al., 2020; Peterson, 
Carl, 2020; Oksanen et al., 2022).

RESULTS

We found a non-normal distribution for all physicochemical variables of seawater: 
temperature (W = 0.786, p < 0.001), pH (W = 0.860, p < 0.001), salinity (W = 0.683, p 
< 0.001), and dissolved oxygen (W = 0.923 p < 0.001) (Shapiro-Wilks test). We found 
significant differences (p <0.05) between sites considering the changes in seawater 
conditions related to the effect of the marine currents. In general, CC (December-
May) showed significantly lower temperatures compared to NEC (June-November; 
x2 =335.0; g.l = 7, p < 0.001). The pH values presented small differences between 
currents, however, these small variations produced significant differences among sites 
and currents (x2 = 801.1, g.l = 7, p < 0.001). Salinity showed significantly higher values 
during CC in comparison to NEC (x2 = 3469.4; g.l = 7, p < 0.001). Dissolved oxygen 
was significantly higher in NEC for all sites, in comparison to CC (x2 = 3188.4, g.l = 
7, p < 0.001; Tab. 1). The PCA explained 98% of the variation in the first component, 
resulting in groups differentiated by seasons related to the influence of the annual ocean 
currents. Regarding the ordination, the first component (PC1) showed high association 
with dissolved oxygen, the second component (PC2) with temperature, and the third 
(PC3) with salinity (Fig. 2; Tab. 2).

TABLE 1 | Sea water conditions (physicochemical variables) of reefs (mean ± standard deviation) with pair comparisons (Kruskal-Wallis p < 

0.05; Wilcoxon, W), in sampling sites regarding seasonality related to the California Current (CC) and the North Equatorial Current (NEC). 

Caleta de chon CC (A), Caleta de Chon NEC (B), Las Gatas CC (C), Las Gatas NEC (D), Manzanillo CC (E), Manzanillo NEC (F), Zacatoso CC (G), 

Zacatoso NEC (H). Letters in parenthesis represent groups for paired comparisons. No significant differences are represented by letters in 

the Tukey-HSD column.

Physicochemical 
Variables of sea 

water

Caleta de Chon Las Gatas Manzanillo Zacatoso

Tukey-HSDCC NEC CC NEC CC NEC CC NEC

(A) (B) (C) (D) (E) (F) (G) (H)

Temperature (°C) 26.40±0.36 29.70±0.23 26.30±0.59 30.00±0.15 26.40±0.08 29.9±0.042 26.9±0.178 29.8±0.039 AC

pH 8.00±0.03 8.00±0.16 7.90±0.04 7.90±0.02 7.90±0.08 7.9±0.073 7.9±0.051 8±0.063 ACG, BDF

Salinity (ppm) 33.80±0.15 33.4±0.02 33.80±0.16 33.40±0.01 33.80±0.15 33.4±0.006 33.8±0.088 33.3±0.004 EG

Dissolved oxygen (%) 109.40±3.87 113.60±1.07 98.00±7.40 112.20±2.61 94.40±6.68 113.3±2.539 101.7±2.509 106.4±1.069 AF, CG, DF

https://www.ni.bio.br/
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FIGURE 2 | Principal component analysis of 

(A) sea water conditions and (B) heterogeneity 

components in sampling sites for the 

California Current (CC) and North Equatorial 

Current (NEC). Sampled sites: Caleta de chon 

(CH), Las Gatas (LG), Manzanillo (MZ), and 

Zacatoso (ZC). Horizontal and vertical scatter 

bars represent 95% of confidence interval.

TABLE 2 | Principal component (PC) analysis of variables of reefs in sampling sites. Bold values represent 

variables highly related with the PC.

Variables PC1 PC2 PC3

Cumulative variance (%) 0.983 0.998 1

Temperature 0.162 -0.966 0.203

pH 0.003 0.028 0.125

Salinity -0.028 0.2 0.971

Dissolved Oxygen (%) 0.986 0.164 -0.006

Cumulative variance (%) 0.625 0.842 0.907

Depth 0.018 0.012 -0.147

Percentage of Sand -0.003 -0.087 0.317

Precentage of Coral 0.085 -0.639 -0.55

Percentage of Rock -0.753 0.453 -0.351

Percentage of Rubble 0.651 0.608 -0.298

Rugosity -0.052 -0.057 -0.053

https://www.ni.bio.br/
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We found normal distribution for depth (W = 0.976, p < 0.268), while the other 
physical variables and the substrate diversity did not fit the model of normality (rugosity 
W = 0.964, p = 0.011; sand W = 0.49, p < 0.001; coral W = 0.555, p < 0.001; rock W = 
0.804, p < 0.001; rubble W = 0.755, p < 0.001; substrate diversity W = 0.94, p < 0.001). 
On the other hand, depth, substrate diversity and rugosity showed homoscedasticity (df 
= 3, p < 0.529; df = 3, p = 0.18; p = 0.101, respectively) unlike sand (df = 3, p < 0.001), 
coral (df = 3, p < 0.001), rock (df = 3, p < 0.001), and rubble coverage (df = 3, p < 0.001). 
CH and ZC are significantly different from LG and MZ (df = 3, F = 14.45, p < 0.001) 
in depth. On the other hand, LG had higher rugosity (x2 = 34.094; df = 3; p <0.001) 
and less substrate diversity (x2 = 29.494, df = 3; p < 0.001) compared to all other sites. 
In addition, we found differences between sites: sand (x2 = 17.90, df = 3, p = 0.0004), 
coral (x2 = 35.09, df = 3, p < 0.001), rock (x2 = 67.82, df = 3, p < 0.001) and rubble (x2 = 
32.04, df = 3, p < 0.001; Tab. 3) (Kruskal-Wallis test). PCA results explained 62% of the 
variation in the first component (PC1), which is highly associated with rock and rubble, 
the second component (PC2) explains 21% corresponding to coral (Tab. 2). It is worth 
mentioning that, in the PCA, LG is the most different site related to lower values in 
variables such as rugosity, sand, coral, rubble and depth, and the highest value of rock 
percentage (Tab. 3). Additionally, the variation in terms of standard deviations suggests 
that LG site was the most seasonally stable in most of the variables in comparison to all 
other sites (Tabs. 1–3; Fig. 2). Rarefaction analysis suggests that based on the sampling 
technique (video transects), the sites with the highest species richness were LG and ZC 
in both seasons with CC and NEC, although in the season with CC, the probability 
of unrecorded species in these sites is high, since rarefaction curves did not reach the 
asymptote (Fig. 3).

Based on video transects, a total of 36,282 individuals of seven orders, 26 families, 41 
genera and 54 fish species were recorded. The families with the highest number of species 
were Labridae (9), Pomacentridae (6), and Haemulidae (4). The richness and abundance 
of the most recorded species was different between season; the most abundant species 
were Thalassoma lucasanum (Gill, 1862), and Stegastes acapulcoensis (Fowler, 1944) (Tab. 
S1). In general, the season with CC presented higher richness (54 species) and relative 

Heterogeneity components Caleta de Chon (A) Las Gatas (B) Manzanillo (C) Zacatoso (D) Wilcoxon-W

Sand % 9.00±0.155 2.90±0.04 17.70±0.203 9.1±0.174 ABC, BD

Coral % 10.40±0.20 0.70±0.01 19.00±0.262 10.5±0.218 AB, AD

Rock % 44.90±0.39 92.70±0.10 25.90±0.312 46±0.406 AC, AD

Rubble % 26.80±0.37 0.00±0.00 30.90±0.366 27.7±0.382 ACD

Rugosity 1.28±0.16 1.50±0.15 1.26±0.10 1.25±0.16 ACD

Depth (m) 8.80±1.51 6.60±2.45 7.10±1.97 10.3±1.788 AD, CB

Substrate diversity (H’) 0.55±0.08 0.49±0.07 0.60±0.063 0.56±0.080 AD, CD

TABLE 3 | Heterogeneity components of reefs (mean ± standard deviation) with pair comparisons (Kruskal-Wallis p < 0.05; Wilcoxon, W), in 

sampling sites. Letters in parenthesis represent groups for paired comparisons. No significant differences are represented by letters in the 

Tukey-HSD column.
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abundance in comparison to NEC (36 species). The current with the highest values of 
evenness was CC (MZ =1; LG = 0.97; ZC = 0.93, and CH = 0.81) in comparison with 
NEC (MZ = 0.72; LG = 0.66; ZC = 0.66, and CH = 0.79). Regarding Beta diversity, a 
turnover of species during both seasons was present, and higher values in CC (CC, R = 
0.51, p = 0.001; NEC, R = 0.41, p = 0.001).

The NMDS of the fish assemblages suggested differences between the two seasons: 
CC presented differences in the composition among sites, since ZC and LG did not 
present shared species. The fish assemblage obtained in NEC, showed greater variation in 
LG and ZC (Fig. 4). The similarity analysis (ANOSIM) confirmed statistical differences 
in the fish assemblages (R = 0.47; p = 0.001), and the paired comparisons obtained from 
the PERMANOVA showed differences among all assemblages by site and season (p > 
0.001). Null model tests indicated segregate patterns of species co-occurrence for CC 
(C-score = 418.72; p = 0.996), and an aggregate pattern for NEC (C-score = 133.77; p < 
0.005). The number of species by guilds showed that the number of carnivorous species 
were greater in all sites in comparison with herbivores, planktivorous and omnivorous 
(Fig. S2). Finally, for the relationship between physicochemical variables of sea water in 
reefs and fish assemblage structure, the results showed that NMDS1 was correlated with 
depth, NMDS2 with the percentage of rock cover, and NMDS3 presented the highest 
correlation values with temperature, dissolved oxygen, and salinity (Tab. 4). 

FIGURE 3 | Rarefaction curves of species richness for the California Current (CC) and North Equatorial Current (NEC) in the sampled sites: 

Caleta de chon (CH), Las Gatas (LG), Manzanillo (MZ), and Zacatoso (ZC). Shaded area represents 95% confidence interval.
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FIGURE 4 | Non-metric multidimensional scaling for fish assemblage data for the California Current (CC) 

and North Equatorial Current (NEC) in the sample sites: Caleta de chon (CH), Las Gatas (LG), Manzanillo 

(MZ), and Zacatoso (ZC). Horizontal and vertical scatter bars represent 95% confidence interval.

Variables MSD1 MDS2 MDS3

Temperature -0.334 -0.119 -0.608

pH 0.024 -0.128 -0.073

Salinity 0.291 0.101 0.593

Oxígeno disuelto (%) -0.342 -0.249 -0.523

CP1-SW -0.343 -0.246 -0.529

CP2-SW 0.059 -0.169 0.257

CP3-SW -0.334 -0.077 -0.553

Depth -0.489 -0.038 0.055

Percentage of Sand 0.170 0.194 0.007

Percentage of Coral 0.099 0.265 0.033

Percentage of Rock 0.047 -0.465 -0.040

Percentage of Rubble -0.129 0.182 -0.003

Rugosity 0.221 -0.264 -0.068

CP1-HC -0.091 0.383 0.024

CP2-HC -0.113 -0.286 -0.046

CP3-HC 0.126 0.056 -0.012

Substrate diversity (H’) -0.026 0.299 0.050

TABLE 4 | Pearson correlation coefficients (r values) of variables of reefs, PC scores (CPx-SW = Sea water 

conditions; CPx-HC = Heterogeneity components of reefs) with NMDS axis.
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DISCUSSION

Since habitat heterogeneity has been proposed as an important factor structuring 
biological communities, in this study we evaluated fish assemblages in four sites 
exhibiting different habitat characteristics as components of heterogeneity. According 
to our hypothesis, the results indicated that fish assemblages were more diverse (species 
richness and abundance) in sites with greater substrate rugosity and higher variation 
in seawater conditions. Specifically, we found that substrates such as coral and rock 
were the most important components related to fish assemblage in the bays of Ixtapa-
Zihuatanejo, and seawater conditions presented changes influenced by marine currents 
(CC and NEC) causing seasonal variations in the studied sites, which in turn were 
related to fish diversity. For instance, the values of evenness and species richness were 
higher in CC for all sites in comparison with NEC. 

Relationship between water conditions and the structure of fish assemblages is 
reported for marine and freshwater environments (e.g., Brind’Amour et al., 2005; Santos 
et al., 2017). The seasonal changes we found in fish assemblage were mostly related to 
temperature, salinity, and dissolved oxygen. In this sense, the Guerrero State presents 
constant but lower temperatures (~27°C) in CC related to a cold mass of water that 
converges and is displaced by Trade Winds (Alvarez-Filip et al., 2006; Barjau et al., 
2012). In addition, the influence of the CC in the sampled sites also produced an increase 
in salinity (~34 ppt), primarily related to the mix of the water column with deeper 
waters during summer and fall; meanwhile pH is reported in ranges of 7.88–8.37, which 
in most cases are inversely related to the quantity of carbon dioxide (CO2), suggesting 
that if pH values drop below 7.0, the presence and abundance of low tolerant species 
will decrease (Fiedler, Talley, 2006; Kessler, 2006; Pérez-Moreno et al., 2016; Portela et 
al., 2016). The values of dissolved oxygen in CC were lower than those for NEC. This 
could be attributed to an increase in the primary productivity due to marine upwelling 
and the trade winds throughout the CC, which produces higher diel variation in the 
consumption of dissolved oxygen by primary producers reducing oxygen concentration 
at local scale (Fiedler, Talley, 2006; Chiappa-Carrara et al., 2019; Maske et al., 2019).

We also found differences in fish assemblages among sites. Species richness was greater 
in ZC, followed by LG, CH and MZ in CC season (Fig. 3). This pattern was similar in 
NEC season, but in this case MZ species richness was higher than CH. LG was the site 
with the highest rugosity and percentage of rocks, while ZC was the most heterogeneous 
site based on percentage of rocks (Tab. 3). In marine ecosystems, habitat heterogeneity 
presents a positive relationship with fish richness and abundance, promoting biotic 
interactions such as density-dependent processes (Caley et al., 1996; Hixon, Carr, 1997; 
Ault, Johnson, 1998; Jones, Syms, 1998; Folpp et al., 2020). For example, the number 
and size of holes on different substrata are most related to abundance in reefs of the Red 
Sea (Roberts, Ormond, 1987). Moreover, LG is in a cove, while ZC was deepest site. 
It has been reported that deep reefs provide refuges for numerous shallow water fishes 
including many species endemic to these habitats (Lindfield et al., 2016), whereas coves 
can give protection from strong winds and waves promoting habitat stability at local 
scale (Bejarano et al., 2017; Graham et al., 1997; Karkarey et al., 2020), which might be 
important for reproduction and foraging sites. Thus, depth and site exposure to winds 
and waves might be additional habitat factors contributing to the species richness found 
in ZC and LG sites. 
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We recorded 54 species in total by using a video-transect technique, of which 32 
were registered in both seasons. Previous studies in the bays of Ixtapa-Zihuatanejo 
based on visual records reported ~50 conspicuous and 108 cryptic species, including 
pelagic, residents and transient species of soft bottoms (Valencia-Méndez et al., 2021), 
while for other sites of the coast of the State of Guerrero (e.g., Bay of Acapulco), 114 
species are reported with no mention of whether these were cryptic, conspicuous, or 
both (Palacios-Salgado et al., 2014). Nevertheless, these studies were conducted over 18 
years and along a coastline of ~800 km, respectively. 

The video-transects sampling technique is used to obtain data on richness and 
abundance of different taxonomic groups related to reefs (e.g., benthos: Ramos et al., 
2010; fishes: Wartenberg, Booth, 2014), and is considered precise for monitoring 
conspicuous fishes in terms of richness and abundance, highlighting the implementation 
in the same sampling area and the experience of the diver (or subaquatic drone 
operators) to continuously trace the transect with the video-camera in a homogenous 
manner (Peters, 1991; Rogers, Miller, 2001; Hill, Wilkinson, 2004; Ramos et al., 2010; 
Wartenberg, Booth, 2015). Based on this and in the number of conspicuous species 
reported for the bays of Ixtapa-Zihuatanejo, we were able to have a good approximation 
of most conspicuous species using the video-transect technique, which is supported by 
the rarefaction results obtained for the sampled sites-currents, for which the asymptote 
was obtained for most of the sites-currents. We must highlight that differences in the 
fish species richness reported in different regions of the Mexican-Pacific is related not 
only with the sampling effort, but also to anomalies occurring every 4–5 years due to El 
Niño Southern Oscillation (ENSO), which can be a veil to elucidate patterns of changes 
in species richness at local or regional scale (Fiedler, Talley, 2006; Valencia-Méndez et 
al., 2021).

The most abundant species for both seasons and sites were T. lucasanum, S. 
acapulcoensis, Microspathodon dorsalis (Gill, 1862), and Abudefduf troschelii (Gill, 1862). 
However, our results showed changes in abundance between seasons and among all 
sites. These species are important biotic components, contributing more than 60% of 
the total fish biomass in coastal sites for the Tropical Eastern Pacific (Arias -Godínez et 
al., 2019). In the Pacific coasts, these species are associated with rocky reefs and have 
ecological relevance. For example, T. lucasanum feds on eggs and embryos of the other 
three species mentioned, acting as a density-dependent factor where seasonal changes 
promote this interaction (Foster, 1987; González-Mendoza et al., 2023). On the other 
hand, most of the sites (excluding CH) presented lower differences in water conditions 
in NEC, which suggests a more stable season for reproduction of most of the species 
recorded in this season (e.g., Mulloidichthys dentatus (Gill, 1862), Epinephelus labriformis 
(Jenyns, 1840), Caranx caballus Günther, 1868) (Green, McCormick, 2005; Mair et al., 
2012; Lucano-Ramírez et al., 2019; Ruiz-Ramírez et al., 2019). 

Based on the feeding habits reported in literature for the recorded fish species, the 
number of carnivorous species was higher in CC in comparison to NEC in all sites. 
These seasonal changes can be explained by the relation in temperature and marine 
upwellings in CC, with an increase in primary productivity and prey abundance 
(Fulton et al., 2005; Dornelas et al., 2006; Tian et al., 2014; Varela et al., 2018). By 
the other hand, the absence of planktivorous fish species in MZ could be associated to 
the presence of carnivorous fish species in sites where coral is the dominant substrate, 
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changing the foraging behavior of planktivorous fish (Beukers, Jones, 1998; Bullard, 
Hay, 2002; Motro et al., 2005). Furthermore, the species co-occurrence model indicated 
a segregated pattern of species in CC, while an aggregate pattern for NEC. This is 
explained by changes in abundance and presence of 17 different species exclusive for 
this season (Alvarez-Filip et al., 2006; Valencia-Méndez et al., 2021). Besides, the beta 
diversity index showed higher values for CC, indicating high turnover species across 
sites. This suggests that the fish assemblage can be related with dispersion factors in CC 
and niche factors in NEC (Fiedler, Philbrick, 1991; Gotelli, 2000; Escalera-Vázquez, 
Zambrano, 2010).

Our results showed higher abundances of fish associated to changes in water 
conditions (e.g., increase in temperature), which resulted in low differences in the 
ordination comparing the same sites in different seasons (Fig. 4). The fish species 
that changed abundance between season were Halichoeres dispilus (Günther, 1864), 
Thalassoma lucasanum, Chromis atrilobata (Gill, 1862), and S. acapulcoensis. These species 
are reported to increase in abundance with temperature, and they can coexist at high 
abundances by differences in feeding behavior (Dominici-Arosemena, Wolff, 2006; 
Sánchez-Caballero et al., 2019). 

These results provide evidence of the importance of maintaining sites with different 
substrate composition, depth, and exposure to wind and waves will allow the conservation 
of fish assemblages dynamics inhabiting seasonal environments in the bays of Ixtapa-
Zihuatanejo. The conservation of these sites in the Mexican Tropical Pacific coast lies 
on the importance as part of a biological corridor, where increasing anthropogenic 
activities threaten the marine fish diversity. 
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