pab
Pesquisa Agropecuária Brasileira
Pesq. agropec. bras.
0100-204X
1678-3921
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira
Resumo:
O objetivo deste trabalho foi avaliar o uso da altura do dossel da planta como variável de ajuste para melhorar as medições indiretas do índice de área foliar (IAF). Três experimentos foram conduzidos com diferentes culturas - milho (Zea mays), soja (Glycine max) e cana-de-açúcar (Saccharum officinarum) -, para comparar o desempenho do IAF medido indiretamente (IAFind) e corrigido pela variável de ajuste com o IAF medido diretamente (IAFref). Sem a correção proposta, o IAFind tendeu a ser superestimado em 20%, em média, em relação ao IAFref, para as três culturas. Após o uso da altura da colheita para ajustar o IAFind, observaram-se fortes relações positivas entre o IAFref e o IAFind corrigido (R2 = 0,96); a superestimação foi reduzida para 4% e o erro médio quadrático diminuiu para 0,35 m2 m-2. A variável altura do dossel mostra-se promissora para correção do IAF das culturas de soja, milho e cana-de-açúcar.
Introduction
The leaf area index (LAI) is defined as the ratio of the total leaf area per unit area exploited by the crop (Miller, 1967) and is a key variable in a range of processes including gas and energy exchange, water and nutrient cycling, canopy health, and primary production (Fang et al., 2018; Yan et al., 2019). It can be evaluated by: direct methods, such as planimeters, area integrators, and specific relationships (Chianucci & Cutini, 2013); and indirect methods, as dry mass and electronic devices to assess the light intercepted by the canopies (Gonsamo et al., 2018; Fang et al., 2019). An accurate quantification of the LAI is, therefore, important for crop growth and development (Addai & Alimiyawo, 2015).
Several commercial instruments may be used for the indirect measurement of the LAI, including the Accupar LP-80 Ceptometer (Meter Group, Inc., Pullman, WA, USA), LAI-2200C Plant Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA), SunScan Canopy Analysis System (Delta-T Devices Ltd, Cambridge, United Kingdom), and Demon (CSIROpedia, Canberra, Australia) (Adeboye et al., 2019).
Of these optical instruments, the LAI-2200C Plant Canopy Analyzer and its predecessor, the LAI-2000, are among the most used worldwide (Kobayashi et al., 2013; LI-COR, Inc., 2015), and their algorithms are based on the approaches proposed by Miller (1986). In the case of the LAI-2000 analyzer, the manufacturer alerts that there may be divergences in LAI estimates when the plants have a large amount of dead and/or senescent material and recommends that calibrations be made using direct LAI determinations to improve the results (Sbrissia & Silva, 2008).
Electronic analyzers based on gap fraction or transmittance have been widely used to evaluate crops such as corn (Zea mays L.) (Ariza-Carricondo et al., 2019), sugarcane (Saccharum officinarum L.) (Lisboa et al., 2018), acid lime [Citrus latifolia (Yu.Tanaka) Tanaka] (Coelho Filho et al., 2012), and soybean [Glycine max (L.) Merr.] (Malone et al., 2002; Pierozan Junior & Kawakami, 2013; Mbangiwa et al., 2019), as well as isolated plants of jatropha (Jatropha curcas L.) (Lena et al., 2016) and eucalyptus (Eucalyptus urophylla x grandis) plantations (Giunti Neto et al., 2015). However, in all these studies, the authors reported the need for calibration to improve the quality of the data gathered with those devices, but did not consider canopy height as an auxiliary variable.
Although indirect methods to estimate the LAI have already been compared in previous researches, large uncertainties still remain and the use of multiple instruments has revealed a considerable variability and uncertainty in the taken measurements (Ariza-Carricondo et al., 2019). In some cases, it is recommended to combine the LAI-2000 instrument with another method for the correct estimation of the LAI (Ryu et al., 2010a, 2010b).
The objective of this work was to evaluate the use of plant height as a calibration variable for improving indirect measurements of the leaf area index.
Materials and Methods
Three experiments were carried out with the corn, soybean, and sugarcane crops in the experimental area of Escola Superior de Agricultura Luiz de Queiroz of Universidade de São Paulo (22°41'53"S, 47°38'35"W, at 538 m above sea level). The climate, according to Köppen, is Cwa, described as humid subtropical with a rainy summer and a dry winter (Marin et al., 2019). All experiments were irrigated using center-pivot i-Wob UP3 sprinklers (Senninger Irrigation, Clermont, FL, USA), managed by a crop water balance based on data acquired from an automatic agrometeorological station installed in the same experimental area, in order to assure the maximum evapotranspiration rates for all the crops. Each experiment was conducted under conditions to guarantee potential yield (Ittersum et al., 2013; Fischer, 2015), without biotic or abiotic stresses (Fritsche-Neto & Borém, 2012), and preventive actions were taken against pests and diseases. The soils were classified as Oxisols (Peters et al., 2014) in the soybean and sugarcane crop sites and as a Chromic Acrisol Nitisol (Sobenko et al., 2019) in the corn crop site. The biometric data samples consisted of: leaf length and height for corn; dry green leaf mass for sugarcane; and direct and indirect LAI determinations and canopy height measurements for all crops. The period of experimental data collection, number of observations, and a summary of the meteorological conditions are presented in Table 1.
Table 1.
Period and number of leaf area index (LAI) observations, as well as a summary of the meteorological conditions during the experiment.
Dataset
Period of LAI observations (mm/dd/yy)
Number of LAI observations
Air temperature (°C)
Global solar radiation (MJ)
Rainfall (mm)
ETo(1) (mm)
Corn (Zea mays)
5/23/16 to 9/29/16
7
18.67±3.00
14.45±5.38
268.7
313.2±1.09
Soybean (Glycine max)
11/7/16 to 2/8/17
5
23.75±1.90
21.08± 6.28
696.5
354.0±1.39
Sugarcane (Saccharum officinarum)
10/4/18 to 6/19/19
13
23.28±2.77
18.80±6.19
1067.3
871.8±1.41
(1)Reference evapotranspiration obtained by the FAO-56 Penman-Monteith method (Allen et al., 1998).
The P-4285YH corn hybrid was sown on 5/16/2016 and harvested on 9/29/2016. The experimental design was randomized complete blocks with four replicates. Each replicate consisted of 96-m2 plots, 3.2 m wide (four rows spaced at 0.8 m) and 30 m long (288 m2 per hybrid), resulting in a population of 60,000 plants per hectare. For fertilization, 30 kg ha-1 nitrogen, 90 kg ha-1 P2O5, and 50 kg ha-1 K2O were applied, as well as 80 kg ha-1 nitrogen topdressed. The biometric data samples were taken on 7/11/2016, 7/18/2016, 8/18/2016, 8/25/2016, 8/30/2016, and 9/22/2016.
The experiment with the soybean crop consisted of a 3.0-ha field cultivated with the BRS399 RR cultivar from October 2016 to March 2017, at a row spacing of 0.45 m and with 18 seeds per linear meter, resulting in a plant density of 35.5 plants per square meter. The experimental design was randomized complete blocks with four replicates. Fertilization was performed by applying 196 kg ha-1 single superphosphate (18% P2O5, 16% Ca, and 8% S). Biometric data samples were collected on 11/29/2016, 12/5/2016, 12/28/2016, 1/5/2017, and 2/14/2017.
The RB867515 sugarcane variety was planted on 5/10/2018, using nearly 9.7 buds per square meter, at a row spacing of 1.4 m. The experimental design was randomized complete blocks with four replicates. From the end of August to the beginning of October 2018, the soil was prepared and received 500 kg ha-1 reactive natural phosphate. Fertilization at planting consisted of 50 kg ha-1 N, 75 kg ha-1 P2O5, and 75 kg ha-1 K2O enriched with 0.3% B and 0.5% Zn. Two cover fertilizations were performed: the first in January 2019, with 177 kg ha-1 N as urea and 186 kg ha-1 K as potassium oxide (K2O); and the second in July 2019, with 127.5 kg ha-1 N as urea. The biometric samples were taken on 1/23/2019, 2/8/2019, 2/21/2019, 3/9/2019, 3/21/2019, 4/4/2019, 4/15/2019, 4/23/2019, 5/8/2019, 5/23/2019, 6/5/2019, 6/10/2019, and 6/19/2019.
The samples used for the LAI measured directly (LAIref) and indirectly (LAIind) were collected on the same dates as those for biometrics. For the soybean crop, the LAIref was estimated with the aid of the Quant scanning and processing software, version 1.0.2 (Richter et al., 2014), used to calculate leaf area. For the corn crop, the LAIref (Vieira Junior et al., 2006) was based on measuring the width and length of green leaves, multiplied by a shape correction factor of 0.7 (Marin et al., 2005). For the sugarcane crop, the LAIref was obtained by the leaf disk method (Pierozan Junior & Kawakami, 2013). For the corn and soybean crops, 5 sample plants were randomly selected among the blocks, totalizing 20 plants, for LAIref determinations. For the soybean and sugarcane crops, 5 sample plants - 20 and 25 in total, respectively - were collected among the blocks to determine the LAIref by the destructive method.
For the indirect measurements of the LAIind, the LAI-2200C electronic analyzer (LI-COR, Inc., Lincoln, NE, USA), with an embedded algorithm, was used; the theoretical background of this device is fully described in Kuusk (2016). Following the manufacturer’s recommendations (LI-COR, Inc., 2015), all LAI measurements were taken in the late afternoon or at sunrise to avoid the incidence of direct sunlight, at a 45° angle view. It should be noted that, although not performed in this work, measurements under open-sky conditions are also allowed (Pearse et al., 2016). Besides each LAIind, crop canopy height was measured using a ruler.
In theory, electronic retrievers work based on notions of probability, that is, the LAI-2200C analyzer measures the probability (PΘ) that radiation will not be intercepted by the canopy, through the following equation (Ryu et al., 2010a; LI-COR, Inc., 2015):
(
Θ
)
=
e
(
−
G
(
Θ
)
μ
S
(
Θ
)
)
where G (Θ) is the foliage projection fraction, μ is leaf density, and S (Θ) is the distance from the top of the canopy to soil surface. S (Θ) is, therefore, a relationship between canopy height and the cosine of the angle defined between the canopy projection line and its normal (Jones, 2013).
The LAIind data were statistically compared with those obtained for the LAIref and canopy height, using as agreement measures: Nash & Sutcliffe’s modeling efficiency (Ritter & Muñoz-Carpena, 2013), the correlation index, the root mean square error (RMSE), and Wilmott’s index of agreement (Willmott et al., 2012).
Results and Discussion
The LAIind was overestimated by about 20% compared with the LAIref for soybean, corn, and sugarcane (Figure 1), but it expressed well the time variation of the LAI for the three crops (Table 2). Based on a theoretical model and on the gap fraction measurements from 41 sites, Kobayashi et al. (2013) reported that the effective LAI must be quantified using a second approach and that, in some cases, the LAI is overestimated up to 30% at the studied sites. Particularly for the soybean crop, the LAI-2200C analyzer was not able to estimate satisfactorily the LAI at the end-of-cycle sampling (71 days after sowing), as found by Jesus et al. (2001). As in the study of Malone et al. (2002), the results probably indicate that the estimates of LAIs with defoliation below 2.0 were likely skewed by a greater proportion of pods, stems and petioles, resulting in higher values than those obtained for the directly measured LAI. Similar results were found by Liu et al. (2008) for soybean crops, since the indirect measurement overestimated the LAI by 12.5% at 96 days after sowing. However, the LAIref values are consistent with those reported by Heiffig et al. (2006) for the soybean crop, by Ferreira Junior et al. (2014) and Ariza-Carricondo et al. (2019) for corn, and by Oliveira et al. (2004) for sugarcane. Likewise, the result of the present study is in agreement with that of Liu & Pattey (2010), possibly since LAI-2000 also captures other canopy tissues from below the canopy.
Figure 1.
Leaf area index (LAI) measured directly (LAIref) and indirectly (LAIind) throughout the experiments for the: A, soybean (Glycine max); B, corn (Zea mays); and C, sugarcane (Saccharum officinarum) crops. Open and solid triangles represent LAIref and LAIind, respectively. The LAIref and LAIind were measured by the destructive method and with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA), respectively.
Table 2.
Leaf area index measured directly (LAIref) and indirectly (LAIind)(1) and canopy height of the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops during the experiment.
DAS or DAE or DAP(2)
LAIind
LAIref
Canopy height (m)
Soybean
22
2.0
1.3
0.19
29
3.6
2.3
0.20
50
6.3
4.9
0.65
59
6.7
5.6
0.77
71
3.6
0.6
0.84
Mean
4.5
3.0
0.53
Corn
56
1.3
0.6
0.29
63
1.6
0.8
0.43
94
3.1
2.7
1.32
101
3.2
2.9
1.32
106
3.2
2.9
1.45
129
2.7
2.6
1.63
Mean
2.5
2.1
1.07
Sugarcane
110
2.4
1.3
1.38
126
1.9
1.1
1.50
139
2.5
1.6
2.11
155
3.1
2.0
2.45
167
6.3
4.9
2.67
181
6.4
5.1
2.75
192
5.1
4.5
3.07
200
4.8
4.4
2.80
215
5.2
4.6
3.14
230
4.9
4.1
3.63
243
4.7
4.2
3.39
248
5.1
4.3
3.55
257
4.4
3.3
3.27
Mean
4.4
3.5
2.75
(1)Measured indirectly with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA) and directly by the destructive method. (2)DAS, days after sowing in soybean; DAE, days after emergence in corn; and DAP, days after planting in sugarcane.
The LAIind (Figure 2 A), compared with the LAIref, showed good accuracy for all three crops evaluated, as observed by Welles & Norman (1991) and Jonckheere et al. (2004) when using the LAI-2000 analyzer to estimate the LAI in homogeneous canopies such as those of soybean, wheat (Triticum aestivum L.), and grass. This is probably related to the fact that, although they are not the same devices, the successors of LAI-2000 use the same theoretical background, with some improvements (Yan et al., 2019). The obtained coefficient of determination (R2) ranged from 0.46 to 0.88, with higher values for sugarcane and corn and a lower precision for soybean (Table 3). The lower R2 value for the soybean crop may be explained by the gap fraction highly sensitive to canopy structure, leaf distribution, and leaf plasticity (López-Lozano et al., 2007).
Figure 2.
Scatter plot of the leaf area index measured directly (LAIref) and indirectly (LAIind) throughout the experiments for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops (A) and scatter plot of the leaf area index corrected by canopy height (B). The LAIref and LAIind were measured by the destructive method and with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA), respectively.
Table 3.
Comparison between statistical tests and modeling performance with and without canopy height (H) for the correction of the leaf area index (LAI) for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops.
Statistical indicator(1)
LAIref x LAIind(2)
LAIref x [LAIind x H]
Soybean
R2
0.46
0.95
RMSE
2.87
0.19
d
0.60
0.89
NS
0.12
0.95
Corn
R2
0.72
0.99
RMSE
1.55
0.03
d
0.76
0.97
NS
0.58
0.95
Sugarcane
R2
0.88
0.96
RMSE
11.14
0.84
d
0.65
0.97
NS
0.56
0.96
(1)R2, coefficient of determination; RMSE, root mean square error; d, Willmott’s index of agreement; and NS, Nash-Sutcliffe’s index of agreement. (2)LAIref, LAI obtained directly by the destructive method; and LAIind, LAI obtained indirectly with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA).
Although Willmott’s index of agreement showed satisfactory efficiency, a way to improve the correlation between the LAIref and LAIind data was still sought. In addition, the canopy height values obtained for the studied crops were considered consistent with those found by Doná et al. (2019), Shioga et al. (2015), and Oliveira et al. (2010) for similar soybean, corn, and sugarcane cultivars, respectively (Table 2); the observed peaks tended to coincide with the maximum LAI values.
After canopy height was used as a calibration variable, R2 and Willmott’s index of agreement showed better performance (Figure 2 B). R2 ranged from 0.95 to 0.99, and RMSE decreased considerably from 11.14 to 0.84 for sugarcane. In this way, there was a positive contribution to improving estimation, and all p-values were <0.01, except the one for soybean (Table 4). Galzerano et al. (2012) and Coêlho et al. (2014) also found a good correlation between canopy height and determinations of the LAI; however, these authors evaluated tropical grasses.
Table 4.
Linear regression coefficients between the leaf area index measured directly (LAIref) and indirectly (LAIind)(1) and canopy height (H), as input variables, for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops throughout the experiments.
Variables
Coefficient
P-value
Soybean
Intersection
-1.2662413
0.271
LAIind
1.30994127
0.027
H
-0.030408
0.167
Corn
Intersection
-0.8797169
0.014
LAIind
0.94336531
0.006
H
0.00541574
0.077
Sugarcane
Intersection
-1.1741805
0.005
LAIind
0.87195609
<0.01
H
0.00311855
0.090
(1)Measured directly by the destructive method and indirectly with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA).
Inserting canopy height as a secondary input variable in regression reduced the error of both Willmott’s index of agreement and R2; therefore, the variable contributed positively to the accuracy of the used method (Table 3). Although canopy height improved the verified correlation, it is possible that other factors influence LAI-2200C measurements, mainly in the crop reproductive stage due to a logical relationship, which implies that other plant structures, such as stems and pods, are considered as leaf area (Malone et al., 2002). This process seems to have occurred for the soybean cultivar evaluated in the present work (Figure 2 B). Welles & Norman (1991) reported another source of uncertainty in the theory behind analyzers, highlighting that the electronic indirect method fails to distinguish senescent or dead tissue from living tissue, increasing the discrepancy in the LAI readings, as in the case of the soybean crop. To improve measurements, Nilson (1971) suggests relating clumping to the size of vegetative elements and to the distance between them. Kucharik et al. (1998) compared the variation of this parameter in a homogeneous canopy and found that the LAI, under these conditions, only varies as a function of canopy height.
Canopy height proves to be a promising calibration variable for use in the corn and sugarcane crops. One of the reasons is that, since the LAI can be determined throughout the crop cycle by indirect measurements, more reliable data can be obtained. In both crops, correcting by canopy height resulted in a more accurate LAI because these plants have a higher proportion of leaves than other structures, when compared with soybean (Argenta et al., 2001).
Conclusions
The values of the leaf area index (LAI) estimated by the LAI-2200C electronic device are overestimated for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops.
Canopy height as a calibration variable can correct indirect LAI measurements and improve agreement with direct LAI measurements.
Acknowledgments
To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for grants (process numbers 301424/2015-2, 401662/2016-0, and 425174/2018-2); to Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), for grants (process numbers 2017/20925-0 and 2017/50445-0); and to Empresa Brasileira de Pesquisa Agropecuária (Embrapa) and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), for support.
References
ADDAI, I.K.; ALIMIYAWO, M. Graphical determination of leaf area index and its relationship with growth and yield parameters of sorghum (Sorghum bicolor L. Moench) as affected by fertilizer application. Journal of Agronomy, v.14, p.272-278, 2015. DOI: https://doi.org/10.3923/ja.2015.272.278.
ADDAI
I.K.
ALIMIYAWO
M.
Graphical determination of leaf area index and its relationship with growth and yield parameters of sorghum (Sorghum bicolor L. Moench) as affected by fertilizer application
Journal of Agronomy
14
272
278
2015
10.3923/ja.2015.272.278
ADEBOYE, O.B.; ADEBOYE, A.P.; ANDERO, O.S.; FALANA, O.B. Evaluation of AccuPAR LP 80 in estimating leaf area index of soybeans canopy in Ile-Ife, Nigeria. Agricultural Research, v.8, p.297-308, 2019. DOI: https://doi.org/10.1007/s40003-018-0371-1.
ADEBOYE
O.B.
ADEBOYE
A.P.
ANDERO
O.S.
FALANA
O.B.
Evaluation of AccuPAR LP 80 in estimating leaf area index of soybeans canopy in Ile-Ife, Nigeria
Agricultural Research
8
297
308
2019
10.1007/s40003-018-0371-1
ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines for computing crop requirements. Rome: FAO, 1998. (FAO Irrigation and Drainage Paper, 56). DOI: https://doi.org/10.1016/j.eja.2010.12.001.
ALLEN
R.G.
PEREIRA
L.S.
RAES
D.
SMITH
M.
Crop evapotranspiration: guidelines for computing crop requirements
Rome
FAO
1998
FAO Irrigation and Drainage Paper, 56
10.1016/j.eja.2010.12.001
ARGENTA, G.; SILVA, P.R.F. da; SANGOI, L. Arranjo de plantas em milho: análise do estado-da-arte. Ciência Rural, v.31, p.1075-1084, 2001. DOI: https://doi.org/10.1590/S0103-84782001000600027.
ARGENTA
G.
SILVA
P.R.F. da
SANGOI
L.
Arranjo de plantas em milho: análise do estado-da-arte
Ciência Rural
31
1075
1084
2001
10.1590/S0103-84782001000600027
ARIZA-CARRICONDO, C.; MAURO, F. DI; BEECK, M.O. de; ROLAND, M.; GIELEN, B.; VITALE, D.; CEULEMANS, R.; PAPALE, D. A comparison of different methods for assessing leaf area index in four canopy types. Central European Forestry Journal, v.65, p.67-80, 2019. DOI: https://doi.org/10.2478/forj-2019-0011.
ARIZA-CARRICONDO
C.
MAURO
F. DI
BEECK
M.O. de
ROLAND
M.
GIELEN
B.
VITALE
D.
CEULEMANS
R.
PAPALE
D.
A comparison of different methods for assessing leaf area index in four canopy types
Central European Forestry Journal
65
67
80
2019
10.2478/forj-2019-0011
CHIANUCCI, F.; CUTINI, A. Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agricultural and Forest Meteorology, v.168, p.130-139, 2013. DOI: https://doi.org/10.1016/j.agrformet.2012.09.002.
CHIANUCCI
F.
CUTINI
A.
Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography
Agricultural and Forest Meteorology
168
130
139
2013
10.1016/j.agrformet.2012.09.002
COELHO FILHO, M.A.; VILLA-NOVA, N.A.; ANGELOCCI, L.R.; MARIN, F.R.; RIGHI, C.A. Método para estimativa do IAF de árvores isoladas ou de plantações com dossel fechado. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.529-538, 2012. DOI: https://doi.org/10.1590/S1415-43662012000500009.
COELHO
M.A.
FILHO
VILLA-NOVA
N.A.
ANGELOCCI
L.R.
MARIN
F.R.
RIGHI
C.A.
Método para estimativa do IAF de árvores isoladas ou de plantações com dossel fechado
Revista Brasileira de Engenharia Agrícola e Ambiental
16
529
538
2012
10.1590/S1415-43662012000500009
COÊLHO, J.J.; DUBEUX JR, J.C.B.; SANTOS, E.R.S.; LEÃO NETO, J.M.C.; CUNHA, M.V. da; SANTOS, M.V.F. dos; MELLO, A.C.L. de; LIRA, M. de A. Canopy height and its relationship with leaf area index and light interception in tropical grasses. Tropical Grasslands - Forrajes Tropicales, v.2, p.31-32, 2014. DOI: https://doi.org/10.17138/TGFT(2)31-32.
COÊLHO
J.J.
DUBEUX JR
J.C.B.
SANTOS
E.R.S.
LEÃO
J.M.C.
NETO
CUNHA
M.V. da
SANTOS
M.V.F. dos
MELLO
A.C.L. de
LIRA
M. de A.
Canopy height and its relationship with leaf area index and light interception in tropical grasses
Tropical Grasslands - Forrajes Tropicales
2
31
32
2014
10.17138/TGFT(2)31-32
DONÁ, S.; KANTHACK, R.A.D.; CAÇÃO, M.M. de F.R.; SANTOS, G.X.L. dos; CORDEIRO-JUNIOR, P.S.; NAKAYAMA, F.T.; FINOTO, E.L.; LEÃO, P.C. da L. Desempenho agronômico de cultivares de soja no Vale do Paranapanema, Safras 2017/18 e 2018/19. Nucleus, p.63-76, 2019. Edição especial. DOI: https://doi.org/10.3738/1982.2278.3626.
DONÁ
S.
KANTHACK
R.A.D.
CAÇÃO
M.M. de F.R.
SANTOS
G.X.L. dos
CORDEIRO-JUNIOR
P.S.
NAKAYAMA
F.T.
FINOTO
E.L.
LEÃO
P.C. da L.
Desempenho agronômico de cultivares de soja no Vale do Paranapanema, Safras 2017/18 e 2018/19
Nucleus
63
76
2019
Edição especial
10.3738/1982.2278.3626
FANG, H.; BARET, F.; PLUMMER, S.; SCHAEPMAN-STRUB, G. An overview of global leaf area index (LAI): methods, products, validation, and applications. Reviews of Geophysics, v.57, p.739-799, 2019. DOI: https://doi.org/10.1029/2018RG000608.
FANG
H.
BARET
F.
PLUMMER
S.
SCHAEPMAN-STRUB
G.
An overview of global leaf area index (LAI): methods, products, validation, and applications
Reviews of Geophysics
57
739
799
2019
10.1029/2018RG000608
FANG, H.; YE, Y.; LIU, W.; WEI, S.; MA, L. Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: an investigation of the PASTIS-57 instrument and smartphone applications. Agricultural and Forest Meteorology, v.253-254, p.48-61, 2018. DOI: https://doi.org/10.1016/J.AGRFORMET.2018.02.003.
FANG
H.
YE
Y.
LIU
W.
WEI
S.
MA
L.
Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: an investigation of the PASTIS-57 instrument and smartphone applications
Agricultural and Forest Meteorology
253-254
48
61
2018
10.1016/J.AGRFORMET.2018.02.003
FERREIRA JUNIOR, R.A.; SOUZA, J.L. de; TEODORO, I.; LYRA, G.B.; SOUZA, R.C. de; ARAÚJO NETO, R.A. de. Eficiência do uso da radiação em cultivos de milho em Alagoas. Revista Brasileira de Engenharia Agrícola e Ambiental, v.18, p.322-328, 2014. DOI: https://doi.org/10.1590/S1415-43662014000300012.
FERREIRA
R.A.
JUNIOR
SOUZA
J.L. de
TEODORO
I.
LYRA
G.B.
SOUZA
R.C. de
ARAÚJO
R.A. de.
NETO
Eficiência do uso da radiação em cultivos de milho em Alagoas
Revista Brasileira de Engenharia Agrícola e Ambiental
18
322
328
2014
10.1590/S1415-43662014000300012
FISCHER, R.A. Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Research, v.182, p.9-18, 2015. DOI: https://doi.org/10.1016/j.fcr.2014.12.006.
FISCHER
R.A.
Definitions and determination of crop yield, yield gaps, and of rates of change
Field Crops Research
182
9
18
2015
10.1016/j.fcr.2014.12.006
FRITSCHE-NETO, R.; BORÉM, A. (Ed.). Plant breeding for biotic stress resistance. Heidelberg: Springer, 2012. DOI: https://doi.org/10.1007/978-3-642-33087-2.
FRITSCHE-NETO
R.
BORÉM
A.
Plant breeding for biotic stress resistance
Heidelberg
Springer
2012
10.1007/978-3-642-33087-2
GALZERANO, L.; MALHEIROS, E.B.; MORGADO, E. da S.; RUGGIERI, A.C. Interceptação de luz e índice de área foliar em relação a altura do dossel de gramíneas forrageiras. Nucleus Animalium, v.4, p.11-18, 2012. DOI: https://doi.org/10.3738/NA.V4I2.742.
GALZERANO
L.
MALHEIROS
E.B.
MORGADO
E. da S.
RUGGIERI
A.C.
Interceptação de luz e índice de área foliar em relação a altura do dossel de gramíneas forrageiras
Nucleus Animalium
4
11
18
2012
10.3738/NA.V4I2.742
GIUNTI NETO, C.J.; HAKAMADA, R.E.; OTTO, M.S.G.; SILVA, S.R.; STAPE, J.L. Calibração de dois métodos indiretos para estimativa do índice de área foliar em plantações de Eucalyptus. Scientia Forestalis, v.43, p.919-930, 2015. DOI: https://doi.org/10.18671/scifor.v43n108.16.
GIUNTI
C.J.
NETO
HAKAMADA
R.E.
OTTO
M.S.G.
SILVA
S.R.
STAPE
J.L.
Calibração de dois métodos indiretos para estimativa do índice de área foliar em plantações de Eucalyptus
Scientia Forestalis
43
919
930
2015
10.18671/scifor.v43n108.16
GONSAMO, A.; WALTER, J.-M.; CHEN, J.M.; PELLIKKA, P.; SCHLEPPI, P. A robust leaf area index algorithm accounting for the expected errors in gap fraction observations. Agricultural and Forest Meteorology, v.248, p.197-204, 2018. DOI: https://doi.org/10.1016/J.AGRFORMET.2017.09.024.
GONSAMO
A.
WALTER
J.-M.
CHEN
J.M.
PELLIKKA
P.
SCHLEPPI
P.
A robust leaf area index algorithm accounting for the expected errors in gap fraction observations
Agricultural and Forest Meteorology
248
197
204
2018
10.1016/J.AGRFORMET.2017.09.024
HEIFFIG, L.S.; CÂMARA, G.M. de S.; MARQUES, L.A.; PEDROSO, D.B.; PIEDADE, S.M. de S. Fechamento e índice de área foliar da cultura da soja em diferentes arranjos espaciais. Bragantia, v.65, p.285-295, 2006. DOI: https://doi.org/10.1590/S0006-87052006000200010.
HEIFFIG
L.S.
CÂMARA
G.M. de S.
MARQUES
L.A.
PEDROSO
D.B.
PIEDADE
S.M. de S.
Fechamento e índice de área foliar da cultura da soja em diferentes arranjos espaciais
Bragantia
65
285
295
2006
10.1590/S0006-87052006000200010
ITTERSUM, M.K. van; CASSMAN, K.G.; GRASSINI, P.; WOLF, J.; TITTONELL, P.; HOCHMAN, Z. Yield gap analysis with local to global relevance - a review. Field Crops Research, v.143, p.4-17, 2013. DOI: https://doi.org/10.1016/j.fcr.2012.09.009.
ITTERSUM
M.K. van
CASSMAN
K.G.
GRASSINI
P.
WOLF
J.
TITTONELL
P.
HOCHMAN
Z.
Yield gap analysis with local to global relevance - a review
Field Crops Research
143
4
17
2013
10.1016/j.fcr.2012.09.009
JESUS, W.C. de; VALE, F.X.R. do; COELHO, R.R.; COSTA, L.C. Comparison of two methods for estimating leaf area index on common bean. Agronomy Journal, v.93, p.989-991, 2001. DOI: https://doi.org/10.2134/agronj2001.935989x.
JESUS
W.C. de
VALE
F.X.R. do
COELHO
R.R.
COSTA
L.C.
Comparison of two methods for estimating leaf area index on common bean
Agronomy Journal
93
989
991
2001
10.2134/agronj2001.935989x
JONCKHEERE, I.; FLECK, S.; NACKAERTS, K.; MUYS, B.; COPPIN, P.; WEISS, M.; BARET, F. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, v.121, p.19-35, 2004. DOI: https://doi.org/10.1016/j.agrformet.2003.08.027.
JONCKHEERE
I.
FLECK
S.
NACKAERTS
K.
MUYS
B.
COPPIN
P.
WEISS
M.
BARET
F.
Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography
Agricultural and Forest Meteorology
121
19
35
2004
10.1016/j.agrformet.2003.08.027
JONES, H.G. Plants and microclimate: a quantitative approach to environmental plant physiology. 3rd ed. Cambridge: Cambridge University Press, 2013. DOI: https://doi.org/10.1017/CBO9780511845727.
JONES
H.G.
Plants and microclimate: a quantitative approach to environmental plant physiology
3rd ed.
Cambridge
Cambridge University Press
2013
10.1017/CBO9780511845727
KOBAYASHI, H.; RYU, Y.; BALDOCCHI, D.D.; WELLES, J.M.; NORMAN, J.M. On the correct estimation of gap fraction: how to remove scattered radiation in gap fraction measurements? Agricultural and Forest Meteorology, v.174-175, p.170-183, 2013. DOI: https://doi.org/10.1016/J.AGRFORMET.2013.02.013.
KOBAYASHI
H.
RYU
Y.
BALDOCCHI
D.D.
WELLES
J.M.
NORMAN
J.M.
On the correct estimation of gap fraction: how to remove scattered radiation in gap fraction measurements?
Agricultural and Forest Meteorology
174-175
170
183
2013
10.1016/J.AGRFORMET.2013.02.013
KUCHARIK, C.J.; NORMAN, J.M.; GOWER, S.T. Measurements of leaf orientation, light distribution and sunlit leaf area in a boreal aspen forest. Agricultural and Forest Meteorology, v.91, p.127-148, 1998. DOI: https://doi.org/10.1016/S0168-1923(98)00058-6.
KUCHARIK
C.J.
NORMAN
J.M.
GOWER
S.T.
Measurements of leaf orientation, light distribution and sunlit leaf area in a boreal aspen forest
Agricultural and Forest Meteorology
91
127
148
1998
10.1016/S0168-1923(98)00058-6
KUUSK, A. Specular reflection in the signal of LAI-2000 plant canopy analyzer. Agricultural and Forest Meteorology, v.221, p.242-247, 2016. DOI: https://doi.org/10.1016/j.agrformet.2016.02.015.
KUUSK
A.
Specular reflection in the signal of LAI-2000 plant canopy analyzer
Agricultural and Forest Meteorology
221
242
247
2016
10.1016/j.agrformet.2016.02.015
LENA, B.P.; FOLEGATTI, M.V.; FRANCISCO, J.P.; SANTOS, O.N.A.; ANDRADE, I.P.S. Performance of LAI-2200 Plant Canopy Analyzer on leaf area index of jatropha nut estimation. Journal of Agronomy, v.15, p.191-197, 2016. DOI: https://doi.org/10.3923/ja.2016.191.197.
LENA
B.P.
FOLEGATTI
M.V.
FRANCISCO
J.P.
SANTOS
O.N.A.
ANDRADE
I.P.S.
Performance of LAI-2200 Plant Canopy Analyzer on leaf area index of jatropha nut estimation
Journal of Agronomy
15
191
197
2016
10.3923/ja.2016.191.197
LI-COR, INC. LAI-2200C Plant Canopy Analyzer: instruction manual. Lincoln, [2015]. 258p.
LI-COR, INC
LAI-2200C Plant Canopy Analyzer: instruction manual
Lincoln
2015
258p
LISBOA, I.P.; CHERUBIN, M.R.; LIMA, R.P.; CERRI, C.C.; SATIRO, L.S.; WIENHOLD, B.J.; SCHMER, M.R.; JIN, V.L.; CERRI, C.E.P. Sugarcane straw removal effects on plant growth and stalk yield. Industrial Crops and Products, v.111, p.794-806, 2018. DOI: https://doi.org/10.1016/j.indcrop.2017.11.049.
LISBOA
I.P.
CHERUBIN
M.R.
LIMA
R.P.
CERRI
C.C.
SATIRO
L.S.
WIENHOLD
B.J.
SCHMER
M.R.
JIN
V.L.
CERRI
C.E.P.
Sugarcane straw removal effects on plant growth and stalk yield
Industrial Crops and Products
111
794
806
2018
10.1016/j.indcrop.2017.11.049
LIU, G.; XIE, Y.; GAO, X.-F.; DUAN, X.-W. Application of SunScan canopy analysis system in measuring leaf area index of soybean. Chinese Journal of Ecology, v.27, p.862-866, 2008.
LIU
G.
XIE
Y.
GAO
X.-F.
DUAN
X.-W.
Application of SunScan canopy analysis system in measuring leaf area index of soybean
Chinese Journal of Ecology
27
862
866
2008
LIU, J.; PATTEY, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agricultural and Forest Meteorology, v.150, p.1485-1490, 2010. DOI: https://doi.org/10.1016/j.agrformet.2010.08.002.
LIU
J.
PATTEY
E.
Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops
Agricultural and Forest Meteorology
150
1485
1490
2010
10.1016/j.agrformet.2010.08.002
LÓPEZ-LOZANO, R.; BARET, F.; CHELLE, M.; ROCHDI, N.; ESPAÑA, M. Sensitivity of gap fraction to maize architectural characteristics based on 4D model simulations. Agricultural and Forest Meteorology, v.143, p.217-229, 2007. DOI: https://doi.org/10.1016/j.agrformet.2006.12.005.
LÓPEZ-LOZANO
R.
BARET
F.
CHELLE
M.
ROCHDI
N.
ESPAÑA
M.
Sensitivity of gap fraction to maize architectural characteristics based on 4D model simulations
Agricultural and Forest Meteorology
143
217
229
2007
10.1016/j.agrformet.2006.12.005
MALONE, S.; HERBERT, D.A.; HOLSHOUSER, D.L. Evaluation of the LAI-2000 Plant Canopy Analyzer to estimate leaf area in manually defoliated soybean. Agronomy Journal, v.94, p.1012-1019, 2002. DOI: https://doi.org/10.2134/agronj2002.1012.
MALONE
S.
HERBERT
D.A.
HOLSHOUSER
D.L.
Evaluation of the LAI-2000 Plant Canopy Analyzer to estimate leaf area in manually defoliated soybean
Agronomy Journal
94
1012
1019
2002
10.2134/agronj2002.1012
MARIN, F.R.; ANGELOCCI, L.R.; NASSIF, D.S.P.; VIANNA, M.S.; PILAU, F.G.; SILVA, E.H.F.M. da; SOBENKO, L.R.; GONÇALVES, A.O.; PEREIRA, R.A.A.; CARVALHO, K.S. Revisiting the crop coefficient - reference evapotranspiration procedure for improving irrigation management. Theoretical and Applied Climatology, v.138, p.1785-1793, 2019. DOI: https://doi.org/10.1007/s00704-019-02940-7.
MARIN
F.R.
ANGELOCCI
L.R.
NASSIF
D.S.P.
VIANNA
M.S.
PILAU
F.G.
SILVA
E.H.F.M. da
SOBENKO
L.R.
GONÇALVES
A.O.
PEREIRA
R.A.A.
CARVALHO
K.S.
Revisiting the crop coefficient - reference evapotranspiration procedure for improving irrigation management
Theoretical and Applied Climatology
138
1785
1793
2019
10.1007/s00704-019-02940-7
MARIN, F.R.; ANGELOCCI, L.R.; RIGHI, E.Z.; SENTELHAS, P.C. Evapotranspiration and irrigation requirements of a coffee plantation in Southern Brazil. Experimental Agriculture, v.41, p.187-197, 2005. DOI: https://doi.org/10.1017/S0014479704002480.
MARIN
F.R.
ANGELOCCI
L.R.
RIGHI
E.Z.
SENTELHAS
P.C.
Evapotranspiration and irrigation requirements of a coffee plantation in Southern Brazil
Experimental Agriculture
41
187
197
2005
10.1017/S0014479704002480
MBANGIWA, N.C.; SAVAGE, M.J.; MABHAUDHI, T. Modelling and measurement of water productivity and total evaporation in a dryland soybean crop. Agricultural and Forest Meteorology, v.266-267, p.65-72, 2019. DOI: https://doi.org/10.1016/j.agrformet.2018.12.005.
MBANGIWA
N.C.
SAVAGE
M.J.
MABHAUDHI
T.
Modelling and measurement of water productivity and total evaporation in a dryland soybean crop
Agricultural and Forest Meteorology
266-267
65
72
2019
10.1016/j.agrformet.2018.12.005
MILLER, J.B. A formula for average foliage density. Australian Journal of Botany, v.15, p.141-144, 1967. DOI: https://doi.org/10.1071/BT9670141.
MILLER
J.B.
A formula for average foliage density
Australian Journal of Botany
15
141
144
1967
10.1071/BT9670141
MILLER, J.B. The foliage density equation revisited. Journal of the Australian Mathematical Society. Series B. Applied Mathematics, v.27, p.387-401, 1986. DOI: https://doi.org/10.1017/S0334270000005038.
MILLER
J.B.
The foliage density equation revisited
Journal of the Australian Mathematical Society. Series B. Applied Mathematics
27
387
401
1986
10.1017/S0334270000005038
NILSON, T. A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology, v.8, p.25-38, 1971. DOI: https://doi.org/10.1016/0002-1571(71)90092-6.
NILSON
T.
A theoretical analysis of the frequency of gaps in plant stands
Agricultural Meteorology
8
25
38
1971
10.1016/0002-1571(71)90092-6
OLIVEIRA, E.C.A. de; OLIVEIRA, R.I. de; ANDRADE, B.M.T. de; FREIRE, F.J.; LIRA JÚNIOR, M.A.; MACHADO, P.R. Crescimento e acúmulo de matéria seca em variedades de cana-de-açúcar cultivadas sob irrigação plena. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.951-960, 2010. DOI: https://doi.org/10.1590/S1415-43662010000900007.
OLIVEIRA
E.C.A. de
OLIVEIRA
R.I. de
ANDRADE
B.M.T. de
FREIRE
F.J.
LIRA
M.A.
JÚNIOR
MACHADO
P.R.
Crescimento e acúmulo de matéria seca em variedades de cana-de-açúcar cultivadas sob irrigação plena
Revista Brasileira de Engenharia Agrícola e Ambiental
14
951
960
2010
10.1590/S1415-43662010000900007
OLIVEIRA, R.A. de; DAROS, E.; ZAMBON, J.L.C.; WEBER, H.; IDO, O.T.; ZUFFELLATO-RIBAS, K.C.; KOEHLER, H.S.; SILVA, D.K.T. da. Crescimento e desenvolvimento de três cultivares de cana-de-açúcar, em cana-planta, no Estado do Paraná. Scientia Agraria, v.5, p.87-94, 2004. DOI: https://doi.org/10.5380/rsa.v5i1.1102.
OLIVEIRA
R.A. de
DAROS
E.
ZAMBON
J.L.C.
WEBER
H.
IDO
O.T.
ZUFFELLATO-RIBAS
K.C.
KOEHLER
H.S.
SILVA
D.K.T. da.
Crescimento e desenvolvimento de três cultivares de cana-de-açúcar, em cana-planta, no Estado do Paraná
Scientia Agraria
5
87
94
2004
10.5380/rsa.v5i1.1102
PEARSE, G.D.; WATT, M.S.; MORGENROTH, J. Comparison of optical LAI measurements under diffuse and clear skies after correcting for scattered radiation. Agricultural and Forest Meteorology, v.221, p.61-70, 2016. DOI: https://doi.org/10.1016/J.AGRFORMET.2016.02.001.
PEARSE
G.D.
WATT
M.S.
MORGENROTH
J.
Comparison of optical LAI measurements under diffuse and clear skies after correcting for scattered radiation
Agricultural and Forest Meteorology
221
61
70
2016
10.1016/J.AGRFORMET.2016.02.001
PETERS, L.P.; CARVALHO, G.; MARTINS, P.F.; DOURADO, M.N.; VILHENA, M.B.; PILEGGI, M.; AZEVEDO, R.A. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS ONE, v.9, e112271, 2014. DOI: https://doi.org/10.1371/journal.pone.0112271.
PETERS
L.P.
CARVALHO
G.
MARTINS
P.F.
DOURADO
M.N.
VILHENA
M.B.
PILEGGI
M.
AZEVEDO
R.A.
Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria
PLoS ONE
9
e112271
2014
10.1371/journal.pone.0112271
PIEROZAN JUNIOR, C.; KAWAKAMI, J. Efficiency of the leaf disc method for estimating the leaf area index of soybean plants. Acta Scientiarum. Agronomy, v.35, p.487-493, 2013. DOI: https://doi.org/10.4025/actasciagron.v35i4.16290.
PIEROZAN
C.
JUNIOR
KAWAKAMI
J.
Efficiency of the leaf disc method for estimating the leaf area index of soybean plants
Acta Scientiarum. Agronomy
35
487
493
2013
10.4025/actasciagron.v35i4.16290
RICHTER, G.L.; ZANON, A.J.; STRECK, N.A.; GUEDES, J.V.C.; KRÄULICH, B.; ROCHA, T.S.M. da; WINCK, J.E.M.; CERA, J.C. Estimativa da área de folhas de cultivares antigas e modernas de soja por método não destrutivo. Bragantia, v.73, p.416-425, 2014. DOI: https://doi.org/10.1590/1678-4499.0179.
RICHTER
G.L.
ZANON
A.J.
STRECK
N.A.
GUEDES
J.V.C.
KRÄULICH
B.
ROCHA
T.S.M. da
WINCK
J.E.M.
CERA
J.C.
Estimativa da área de folhas de cultivares antigas e modernas de soja por método não destrutivo
Bragantia
73
416
425
2014
10.1590/1678-4499.0179
RITTER, A.; MUÑOZ-CARPENA, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, v.480, p.33-45, 2013. DOI: https://doi.org/10.1016/j.jhydrol.2012.12.004.
RITTER
A.
MUÑOZ-CARPENA
R.
Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments
Journal of Hydrology
480
33
45
2013
10.1016/j.jhydrol.2012.12.004
RYU, Y.; NILSON, T.; KOBAYASHI, H.; SONNENTAG, O.; LAW, B.E.; BALDOCCHI, D.D. On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agricultural and Forest Meteorology, v.150, p.463-472, 2010a. DOI: https://doi.org/10.1016/j.agrformet.2010.01.009.
RYU
Y.
NILSON
T.
KOBAYASHI
H.
SONNENTAG
O.
LAW
B.E.
BALDOCCHI
D.D.
On the correct estimation of effective leaf area index: does it reveal information on clumping effects?
Agricultural and Forest Meteorology
150
463
472
2010a
10.1016/j.agrformet.2010.01.009
RYU, Y.; SONNENTAG, O.; NILSON, T.; VARGAS, R.; KOBAYASHI, H.; WENK, R.; BALDOCCHI, D.D. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agricultural and Forest Meteorology, v.150, p.63-76, 2010b. DOI: https://doi.org/10.1016/j.agrformet.2009.08.007.
RYU
Y.
SONNENTAG
O.
NILSON
T.
VARGAS
R.
KOBAYASHI
H.
WENK
R.
BALDOCCHI
D.D.
How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach
Agricultural and Forest Meteorology
150
63
76
2010b
10.1016/j.agrformet.2009.08.007
SBRISSIA, A.F.; SILVA, S.C. da. Comparação de três métodos para estimativa do índice de área foliar em pastos de capim-marandu sob lotação contínua. Revista Brasileira de Zootecnia, v.37, p.212-220, 2008. DOI: https://doi.org/10.1590/S1516-35982008000200006.
SBRISSIA
A.F.
SILVA
S.C. da.
Comparação de três métodos para estimativa do índice de área foliar em pastos de capim-marandu sob lotação contínua
Revista Brasileira de Zootecnia
37
212
220
2008
10.1590/S1516-35982008000200006
SHIOGA, P.S.; GERAGE, A.C.; ARAÚJO, P.M. de; BIANCO, R.; CUSTÓDIO, A.A. de P. Avaliação estadual de cultivares de milho segunda safra 2015. Londrina: IAPAR, 2015. 101p. (IAPAR. Boletim técnico, 86).
SHIOGA
P.S.
GERAGE
A.C.
ARAÚJO
P.M. de
BIANCO
R.
CUSTÓDIO
A.A. de P.
Avaliação estadual de cultivares de milho segunda safra 2015
Londrina
IAPAR
2015
101p
IAPAR. Boletim técnico, 86
SOBENKO, L.R.; SOUZA, T.T.; GONÇALVES, A.O.; BIANCHINI, V.J.M.; SILVA, E.H.F.M.; SOUZA, L.T.; MARIN, F.R. Irrigation requirements are lower than those usually prescribed for a maize crop in Southern Brazil. Experimental Agriculture, v.55, p.662-671, 2019. DOI: https://doi.org/10.1017/S0014479718000339.
SOBENKO
L.R.
SOUZA
T.T.
GONÇALVES
A.O.
BIANCHINI
V.J.M.
SILVA
E.H.F.M.
SOUZA
L.T.
MARIN
F.R.
Irrigation requirements are lower than those usually prescribed for a maize crop in Southern Brazil
Experimental Agriculture
55
662
671
2019
10.1017/S0014479718000339
VIEIRA JUNIOR, P.A.; DOURADO NETO, D.; BERNARDES, M.S.; FANCELLI, A.L.; MANFRON, P.A.; MARTIN, T.N. Metodologia para estimativa da área foliar de genótipos de milho. Revista Brasileira de Milho e Sorgo, v.5, p.182-191, 2006. DOI: https://doi.org/10.18512/1980-6477/rbms.v5n2p182-191.
VIEIRA
P.A.
JUNIOR
DOURADO
D.
NETO
BERNARDES
M.S.
FANCELLI
A.L.
MANFRON
P.A.
MARTIN
T.N.
Metodologia para estimativa da área foliar de genótipos de milho
Revista Brasileira de Milho e Sorgo
5
182
191
2006
10.18512/1980-6477/rbms.v5n2p182-191
WELLES, J.M.; NORMAN, J.M. Instrument for indirect measurement of canopy architecture. Agronomy Journal, v.83, p.818-825, 1991. DOI: https://doi.org/10.2134/agronj1991.00021962008300050009x.
WELLES
J.M.
NORMAN
J.M.
Instrument for indirect measurement of canopy architecture
Agronomy Journal
83
818
825
1991
10.2134/agronj1991.00021962008300050009x
WILLMOTT, C.J.; ROBESON, S.M.; MATSUURA, K. A refined index of model performance. International Journal of Climatology, v.32, p.2088-2094, 2012. DOI: https://doi.org/10.1002/joc.2419.
WILLMOTT
C.J.
ROBESON
S.M.
MATSUURA
K.
A refined index of model performance
International Journal of Climatology
32
2088
2094
2012
10.1002/joc.2419
YAN, G.; HU, R.; LUO, J.; WEISS, M.; JIANG, H.; MU, X.; XIE, D.; ZHANG, W. Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, v.265, p.390-411, 2019. DOI: https://doi.org/10.1016/j.agrformet.2018.11.033.
YAN
G.
HU
R.
LUO
J.
WEISS
M.
JIANG
H.
MU
X.
XIE
D.
ZHANG
W.
Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives
Agricultural and Forest Meteorology
265
390
411
2019
10.1016/j.agrformet.2018.11.033
Embrapa Solos, Rua Jardim Botânico, no 1.024, Jardim Botânico, CEP 22460-000 Rio de Janeiro, RJ, Brazil. E-mail: alexandre.ortega@embrapa.brEmbrapa SolosBrazilRio de Janeiro, RJ, Brazil Embrapa Solos, Rua Jardim Botânico, no 1.024, Jardim Botânico, CEP 22460-000 Rio de Janeiro, RJ, Brazil. E-mail: alexandre.ortega@embrapa.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Embrapa Solos, Rua Jardim Botânico, no 1.024, Jardim Botânico, CEP 22460-000 Rio de Janeiro, RJ, Brazil. E-mail: alexandre.ortega@embrapa.brEmbrapa SolosBrazilRio de Janeiro, RJ, Brazil Embrapa Solos, Rua Jardim Botânico, no 1.024, Jardim Botânico, CEP 22460-000 Rio de Janeiro, RJ, Brazil. E-mail: alexandre.ortega@embrapa.br
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.brUniversidade de São PauloBrazilPiracicaba, SP, Brazil Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Avenida Pádua Dias, no 11, Agronomia, CEP 13418-900 Piracicaba, SP, Brazil. E-mail: ehfmsilva@gmail.com, leticiagasparotto@usp.br, juliano.rosa@usp.br, stephanie2.carmo@usp.br, izael.fattori@usp.br, fabio.marin@usp.br
Figure 1.
Leaf area index (LAI) measured directly (LAIref) and indirectly (LAIind) throughout the experiments for the: A, soybean (Glycine max); B, corn (Zea mays); and C, sugarcane (Saccharum officinarum) crops. Open and solid triangles represent LAIref and LAIind, respectively. The LAIref and LAIind were measured by the destructive method and with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA), respectively.
Figure 2.
Scatter plot of the leaf area index measured directly (LAIref) and indirectly (LAIind) throughout the experiments for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops (A) and scatter plot of the leaf area index corrected by canopy height (B). The LAIref and LAIind were measured by the destructive method and with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA), respectively.
Table 2.
Leaf area index measured directly (LAIref) and indirectly (LAIind)(1) and canopy height of the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops during the experiment.
Table 3.
Comparison between statistical tests and modeling performance with and without canopy height (H) for the correction of the leaf area index (LAI) for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops.
Table 4.
Linear regression coefficients between the leaf area index measured directly (LAIref) and indirectly (LAIind)(1) and canopy height (H), as input variables, for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops throughout the experiments.
imageFigure 1.
Leaf area index (LAI) measured directly (LAIref) and indirectly (LAIind) throughout the experiments for the: A, soybean (Glycine max); B, corn (Zea mays); and C, sugarcane (Saccharum officinarum) crops. Open and solid triangles represent LAIref and LAIind, respectively. The LAIref and LAIind were measured by the destructive method and with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA), respectively.
open_in_new
imageFigure 2.
Scatter plot of the leaf area index measured directly (LAIref) and indirectly (LAIind) throughout the experiments for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops (A) and scatter plot of the leaf area index corrected by canopy height (B). The LAIref and LAIind were measured by the destructive method and with the LAI-2200C analyzer (LI-COR, Inc., Lincoln, NE, USA), respectively.
open_in_new
table_chartTable 1.
Period and number of leaf area index (LAI) observations, as well as a summary of the meteorological conditions during the experiment.
Dataset
Period of LAI observations (mm/dd/yy)
Number of LAI observations
Air temperature (°C)
Global solar radiation (MJ)
Rainfall (mm)
ETo(1) (mm)
Corn (Zea mays)
5/23/16 to 9/29/16
7
18.67±3.00
14.45±5.38
268.7
313.2±1.09
Soybean (Glycine max)
11/7/16 to 2/8/17
5
23.75±1.90
21.08± 6.28
696.5
354.0±1.39
Sugarcane (Saccharum officinarum)
10/4/18 to 6/19/19
13
23.28±2.77
18.80±6.19
1067.3
871.8±1.41
table_chartTable 2.
Leaf area index measured directly (LAIref) and indirectly (LAIind)(1) and canopy height of the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops during the experiment.
DAS or DAE or DAP(2)
LAIind
LAIref
Canopy height (m)
Soybean
22
2.0
1.3
0.19
29
3.6
2.3
0.20
50
6.3
4.9
0.65
59
6.7
5.6
0.77
71
3.6
0.6
0.84
Mean
4.5
3.0
0.53
Corn
56
1.3
0.6
0.29
63
1.6
0.8
0.43
94
3.1
2.7
1.32
101
3.2
2.9
1.32
106
3.2
2.9
1.45
129
2.7
2.6
1.63
Mean
2.5
2.1
1.07
Sugarcane
110
2.4
1.3
1.38
126
1.9
1.1
1.50
139
2.5
1.6
2.11
155
3.1
2.0
2.45
167
6.3
4.9
2.67
181
6.4
5.1
2.75
192
5.1
4.5
3.07
200
4.8
4.4
2.80
215
5.2
4.6
3.14
230
4.9
4.1
3.63
243
4.7
4.2
3.39
248
5.1
4.3
3.55
257
4.4
3.3
3.27
Mean
4.4
3.5
2.75
table_chartTable 3.
Comparison between statistical tests and modeling performance with and without canopy height (H) for the correction of the leaf area index (LAI) for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops.
Statistical indicator(1)
LAIref x LAIind(2)
LAIref x [LAIind x H]
Soybean
R2
0.46
0.95
RMSE
2.87
0.19
d
0.60
0.89
NS
0.12
0.95
Corn
R2
0.72
0.99
RMSE
1.55
0.03
d
0.76
0.97
NS
0.58
0.95
Sugarcane
R2
0.88
0.96
RMSE
11.14
0.84
d
0.65
0.97
NS
0.56
0.96
table_chartTable 4.
Linear regression coefficients between the leaf area index measured directly (LAIref) and indirectly (LAIind)(1) and canopy height (H), as input variables, for the soybean (Glycine max), corn (Zea mays), and sugarcane (Saccharum officinarum) crops throughout the experiments.
Variables
Coefficient
P-value
Soybean
Intersection
-1.2662413
0.271
LAIind
1.30994127
0.027
H
-0.030408
0.167
Corn
Intersection
-0.8797169
0.014
LAIind
0.94336531
0.006
H
0.00541574
0.077
Sugarcane
Intersection
-1.1741805
0.005
LAIind
0.87195609
<0.01
H
0.00311855
0.090
Como citar
Gonçalves, Alexandre Ortega et al. Melhoria das medições indiretas do índice de área foliar com uso da altura do dossel. Pesquisa Agropecuária Brasileira [online]. 2020, v. 55 [Acessado 6 Abril 2025], e01894. Disponível em: <https://doi.org/10.1590/S1678-3921.pab2020.v55.01894>. Epub 07 Dez 2020. ISSN 1678-3921. https://doi.org/10.1590/S1678-3921.pab2020.v55.01894.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.