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Soil Science/ Original Article

Geostatistics and multivariate 
analysis to determine 
experimental blocks for sugarcane
Abstract – The objective of this work was to define experimental blocks for 
sugarcane experiments using geostatistical techniques, principal component 
analysis, and clustering techniques applied to soil properties. For this, data of 
soil chemical properties from a sugarcane experiment were used. Geostatistical 
techniques were applied to identify the spatial variability of these properties 
and to estimate the values for non-sampled locations through kriging. The 
principal components analysis was used for dimensional reduction, and, 
with the new variables obtained, the cluster analysis was performed using 
the k-means method to determine the experimental blocks with two to five 
replicates. Of the 12 analyzed variables, 10 showed spatial dependence. The 
principal component analysis allowed reducing the dimensionality of the data 
to two variables, which explained 82.27% of total variance. The obtained 
blocks presented irregular polygonal shapes, with different formats and sizes, 
and some of them showed discontinuities. The proposed methodology has the 
potential to identify more uniform areas in terms of soil chemical properties 
to allocate experimental blocks for sugarcane.

Index terms: experimental design, field experimentation, kriging, principal 
component analysis, spatial variations.

Geoestatística e análise multivariada para determinação 
de blocos experimentais para cana-de-açúcar
Resumo – O objetivo deste trabalho foi definir blocos experimentais para 
experimentos com cana-de-açúcar, com uso de técnicas de geoestatística, 
análise de componentes principais e técnicas de agrupamento aplicadas às 
propriedades do solo. Para isso, foram utilizados dados de propriedades 
químicas do solo de um experimento com cana-de-açúcar. As técnicas de 
geoestatística foram aplicadas para identificar a variabilidade espacial dessas 
propriedades e estimar os valores para locais não amostrados por meio de 
krigagem. A análise de componentes principais foi aplicada para redução 
dimensional, e, com as novas variáveis obtidas, realizou-se a análise de 
agrupamento pelo método k-means, para determinar os blocos experimentais 
com duas a cinco repetições. Das 12 variáveis analisadas, 10 apresentaram 
dependência espacial. A análise de componentes principais permitiu reduzir 
a dimensionalidade dos dados para duas variáveis, que explicaram 82,27% da 
variância total. Os blocos obtidos apresentaram formas poligonais irregulares, 
com diferentes formatos e tamanhos, e alguns mostraram descontinuidade. A 
metodologia proposta tem potencial para identificar áreas mais homogêneas 
em termos de propriedades químicas do solo, para alocar blocos experimentais 
de cana-de-açúcar.

Termos para indexação: delineamento experimental, experimentação de 
campo, krigagem, análise de componentes principais, variações espaciais.
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Introduction

Brazil stands out in sugarcane (Saccharum 
officinarum L.) production, which is expected to reach 
652.9 million of tons in the 2023/2024 crop season, 
representing an increment of 6.9% in relation to that of 
2022/2023 (Acompanhamento..., 2023). However, the 
increased production area also increases environmental 
impacts, which, added to climate changes, presents a 
great challenge to producers (Pittelkow et al., 2015).

In this context, agricultural experimentation emerges 
as an important tool to improve crop productivity. 
Among the basic principles of experimentation, local 
control is key to enhance experiment efficiency by 
dividing the known heterogeneous environment into 
more homogeneous sections (Costa et al., 2007). This 
procedure aims to reduce experimental error in order 
to raise experimental precision through the systematic 
control of sources of variation.

Regarding the control of environment variability, 
the choice between a randomized complete block 
design and a completely randomized design depends 
on whether the plot-to-plot variation is smaller than 
that of the block-to-block (Clewer & Scarisbrick, 
2013), considering that the efficiency of an experiment 
depends on defining blocks as uniform as possible. Any 
unwanted variation within the blocks may maximize 
confounding factors in relation to the treatments.

To support experiment planning, geostatistics 
is an alternative that can be used to identify the 
spatial structure of soil properties through kriging 
interpolation (Oliver & Webster, 2014; Carneiro et al., 
2016a, 2016b; Silva et al., 2017; Bhunia et al., 2018; 
Amaral & Justina, 2019). 

The objective of this work was to define experimental 
blocks for sugarcane experiments using geostatistical 
techniques, principal component analysis, and 
clustering techniques applied to soil properties.

Materials and Methods

For the study, the used data were those of soil fertility 
collected in the research by Ferreira (2020), with the 
support of Centro de Pesquisa e Melhoramento da 
Cana-de-Açúcar, an institution for sugarcane research 
and improvement of Universidade Federal de Viçosa. 
The sugarcane experimental area, a 42x80 m plot, 
covering 3,360 m2, was located in the municipality of 
Oratórios, in the state of Minas Gerais, Brazil.

The area was subjected to a systematic sampling, in 
a 4x9regular grid, with 36 sampling points (Figure 1). 
Point density was approximately 0.01 point per square 
meter, a value considered intermediate when compared 
with those found in the literature (Pasini et al., 2021; 
Adão et al., 2022).

Soil samples were collected in October 2019, at a 
depth between 0–20 cm, properly stored, and, then, 
sent to the municipality of Viçosa, also in the state 
of Minas Gerais, for analyses. The following 12 
soil chemical properties were evaluated: hydrogen 
potential (pH), phosphorus, potassium, magnesium, 
calcium, aluminum, potential acidity (H+Al), total 
exchangeable bases, effective cation exchange capacity 
(CTCt), cation exchange capacity at pH7 (CTCT), 
aluminum saturation index, and base saturation index. 
The used extractors were: Mehlich-1 for K and P; KCl 
1.0 mol L-1 for Ca, Mg, and Al; and calcium acetate 0.5 
mol L-1 at pH 7 for H+Al (Donagema et al., 2011).

Shapiro-Wilk’s test, at a 5% significance level, 
was applied to check whether the distribution of the 
variables met normality assumption. Additionally, 
histograms and boxplot graphs for each analyzed 
variable were used to complement the analysis of data 
distribution. The boxplot was specifically used to 
detect and remove outliers as recommended by Smiti 
(2020). According to Santos et al. (2017), because 
they are considered inconsistent values, outliers can 
impair the quality of the variogram and geostatistical 
interpolation.

The base package of the R software (R Core Team, 
2020), version 4.0.2, was used, together with the 
geoR package, version 1.8.1, to identify the spatial 
dependence of the variables and to fit a model.

When spatial dependence was observed, the 
variograms were subjected to the variofit function of 
the geoR package. The coefficients of the models were 
estimated using the methods of ordinary least squares 
or weighted least squares (Cressie, 1985). 

In order to evaluate the quality of the fit, the 
Jackknife cross-validation technique was carried out 
using the xvalid function of the geoR package. For 
this, the following aspects of cross-validation were 
used: angular coefficient of the regression between 
estimated and observed values equal or near 1, mean of 
the estimation error near zero, mean of the standardized 
error near zero, and variance of the standardized 
estimation error near 1 (Mendoza Hernández, 2021). 
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After model fitting, the spatial dependence index 
(SDI) suggested by Biondi et al. (1994) was calculated 
in order to determine the degree of intensity of spatial 
dependence, using the following equation:

SDI = C1 / C1 + C0 × 100

where C1 is the contribution, and C0 is the nugget effect.
In the absence of spatial dependence, interpolation 

can be performed using other non-stochastic methods, 
among which the inverse distance weighted estimation 
stands out (Salekin et al., 2018; Chen et al., 2019; 
Shukla et al., 2020).

For the interpolation of the data of soil chemical 
properties (36 sampled values for each attribute), the 

ordinary kriging technique was carried out using the 
obtained adjusted variogram. This type of kriging was 
chosen because it is a popular method that provides 
the best unbiased linear estimative according to Bai & 
Tahmasebi (2021).

For the principal component analysis, the collected 
and estimated data were used, resulting in 729 coordinate 
points. The first k components that explained 80% or 
more of the total accumulated variance were chosen 
(Jolliffe & Cadima, 2016). Afterwards, clustering was 
performed by parameterizing the algorithm in order 
to find clusters in the same number of suggested 
experimental blocks (two, three, four, and five). Using 
the results of the clustering analysis, maps of the 
experimental area were generated.

Results and Discussion

In terms of spatial distribution, most of the variables 
showed a better fit to the spherical model (Figure 2). In 
addition, all variables presented a nugget effect, except 
the base saturation index, which showed a null value 
until the third decimal place (Table 1). A pure nugget 
effect was only found for H+Al and CTCt, which were 
properly addressed using the inverse distance weighted 
estimation. In general, the range estimated for spatial 
dependence was below 100 m, with an average of 57 m, 
which is equivalent to 71.6% of the largest dimension 
of 80 m of the experimental area. Souza et al. (2014) 
concluded that increasing the number of samples 
changes the results of the geostatistical analysis and 
widens their range.

According to the SDI (Table 1), 80% of the soil 
attributes presented a moderate spatial dependence. 
However, CTCt and the base saturation index showed 
a strong dependence, which is related to their smaller 
nugget effect when compared with the C1 contribution 
value obtained for each of these variables. The values 
found for the inverse distance weighted estimation in 
the present study were higher for P, Ca, and Mg and 
lower for K in comparison with those reported by 
Carvalho et al. (2002). Almeida & Guimarães (2016), 
studying the soil of a coffee (Coffea arabica L.) crop, 
verified a high spatial dependence only for pH.

For H+Al and CTCt, it was not possible to identify 
spatial dependence, being necessary to use the 
interpolator weighted by inverse distance. The map 
for H+Al showed some similarity to the one obtained 

Figure 1. Sugarcane (Saccharum officinarum) experimental 
area in the municipality of Oratórios, in the state of Minas 
Gerais, Brazil. The yellow points indicate the locations 
where the chemical properties of the soil were analyzed in 
a 4x9 regular grid.
Source: adapted from Ferreira (2020).
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Figure 2. Semivariograms of the soil properties from a sugarcane (Saccharum officinarum) experimental area in the 
municipality of Oratórios, in the state of Minas Gerais, Brazil. SB, total exchangeable bases; CTCt, effective cation exchange 
capacity; V, base saturation index; and m, aluminum saturation index.
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via ordinary kriging, but not that of CTCt. During 
the estimation process, the root mean square error 
calculated for CTCt and H+Al was 0.665 and 0.619, 
respectively.

According to the results of the principal component 
analysis, the first four latent variables explained more 
than 90% of the total variance in the data. In most 
academic works, principal components (PCs) are had 
as the set of latent variables that explain at least 70% 
of total variance (Ferreira, 2018), which is why, in the 
present study, the first two principal components (PC1 
and PC2) that, together, explain more than 80% of data 
variability were selected.

To determine the experimental blocks, PC1 and PC2 
were used in the k-means clustering algorithm, taking 
into account the information of all chemical variables. 
The formed groups consisted of the blocks with a 
greater uniformity considering both PCs (Figure 3), 
evidencing the number of blocks as a function of their 
color and shapes.

It should be noted that dividing the experimental 
area into a larger number of blocks will increase the 
uniformity within the blocks, but reduce the area of 
each block, limiting the number of treatments to be 
tested, as well as the size of the experimental units. 
Therefore, the choice of the number of blocks should 
consider the number of treatments and the studied 
crop.

Regarding the number of suggested experimental 
blocks, when the experimental area was divided into 
only two blocks (n=2), the spatial continuity of the red 

and blue blocks became evident (Figure 3). The blocks 
presented distinct areas, with the red block being larger 
than the blue one. Moreover, the shape of these blocks 
were not polygons with straight sides, but curves that 
followed the spatial variability of the terrain.

In the case of three blocks (n=3), blocks with non-
regular shapes and distinct areas were observed. 
Although the k-means algorithm classified some 
points belonging to the green block within the pink 
block, the practical situation in the field may ignore 
these few points and treat the three obtained blocks as 
continuous.

Considering four blocks in the experimental area 
(n=4), distinct shapes and areas were also verified. The 
blue block stood out due to its obvious discontinuity, 
with two relatively large parts that should receive a 
replicate of each treatment in experiment planning.

When the experimental area was divided into five 
blocks (n=5), blocks with a similar size and shape to 
those of n=4 were observed. As the number of blocks 
increased, the discontinuity of the small area also 
increased. Therefore, for practical purposes, it might 
be better for the researcher to mark and not use these 
small areas if they are not large enough to implement 
an experimental plot. Normally, to define the size of 
an experimental unit, the researcher can carry out 
a uniformity test using methodologies such as the 
method of the maximum curvature of the coefficient 
of variation (Cargnelutti Filho et al., 2016).

The values obtained in the classification of the 729 
points referring to the selected PC1 and PC2 are shown 

Table 1. Geostatistical parameters estimated for the semivariograms describing the spatial variability of the evaluated soil 
chemical variables and the methods used to obtain them(1).
Variable C0 C1 Level Reached Model Method(2) IDE (%)(3)

pH 0.02 0.012 0.045 56.00 Spherical WLS 34.83
P 5.270 6.823 12.094 38.85 Spherical WLS 56.41
K 91.340 100.690 192.032 21.36 Spherical WLS 52.44
Ca 0.037 0.081 0.121 60.01 Exponential WLS 68.64
Mg 0.005 0.006 0.011 61.02 Spherical OLS 57.41
Al 0.120 0.042 0.160 93.00 Spherical WLS 25.00
SB 0.079 0.150 0.231 67.93 Exponential OLS 65.50
CTC(t) 0.002 0.029 0.031 50.52 Spherical WLS 95.08
V <0.001 29.062 29.062 9.70 Exponential OLS 100.00
m 186.831 255.980 442.816 114.87 Spherical OLS 57.81

(1)SB, total exchangeable bases; CTCt, effective cation exchange capacity; V, base saturation index; m, aluminum saturation index; C0, nugget effect; 
and C1, contribution. (2)WLS, weighted least squares; and OLS, ordinary least squares. (3)IDE, inverse distance weighted estimation, whose values were 
classified as: IDE ≥ 0.75, high; 0.25 ≤ IDE < 0.75, moderate; and IDE < 0.25, low.
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in Table 2. The total sum of squares was the same for 
all blocks, a result that was already expected since this 
value is calculated based on the variance of the scores 
of PC1 and PC2.

As previously discussed, the experimental blocks 
obtained by clustering presented different-sized 
areas (Table 3), which should be considered when 
planning an experiment since they imply certain 
restrictions.

Ferreira (2020) used 14 m2 plots for a selection 
experiment of sugarcane, in alignment with Leite et al. 
(2009) and Igue et al. (1991). Considering the blocks 

with smaller areas, the division of the experimental 
area into two, three, four, or five blocks would allow 
testing 90, 46, 43, and 29 treatments in experiments 
with sugarcane, respectively.

In an experiment with corn (Zea mays L.), Assis & 
Silva (1999) concluded that the ideal experimental plot 
should vary from 0.75 to 6.77 m2. Considering a 5.0 m2 
plot, it would be possible to establish 252, 130, 121, and 
81 experimental units within the smallest block when 
dividing the area into two, three, four, or five blocks, 
respectively.

Figure 3. Definition of clustered blocks via the k-means algorithm as a function of the number of replicates (n), considering 
the spatial variability of soil chemical attributes in a sugarcane (Saccharum officinarum) experimental area.

n=2 n=3 n=4 n=5

Table 2. Lack of uniformity between and within blocks as a function of the sums of squares associated with principal 
components 1 and 2 for dividing a sugarcane (Saccharum officinarum) experimental area into two, three, four, and five 
blocks.

Parameter(1) Number of blocks
n=2 n=3 n=4 n=5

SQT 7,185.97
SQE 4,254.07 5,030.79 5,699.24 6,013.00
SQYellow N N N 242.77
SQBlue 1,215.84 N 329.64 263.37
SQPink N 1,201.08 387.07 206.66
SQGreen N 496.27 445.87 207.97
SQRed 1,716.06 457.82 324.15 252.20
NYellow N N N 149.00
NBlue 276.00 N 178.00 181.00
NPink N 364.00 134.00 86.00
NGreen N 216.00 213.00 160.00
NRed 453.00 149.00 204.00 153.00

(1)SQT, total sum of squares; SQE, total sum of squares between the blocks; SQYellow, SQBlue, SQPink, SQGreen, and SQRed, sum of squares of the yellow, blue, 
pink, green, and red blocks, respectively; NYellow, NBlue, NPink, NGreen, and NRed, number of points classified in the yellow, blue, pink, green, and red blocks, 
respectively; and N, not applicable.
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In experiments with several treatments and/or 
large experimental units, however, the researcher 
may choose the incomplete block design, which, 
although more difficult to analyze than the complete 
block design, is compensated by gain in experimental 
precision (Pimentel-Gomes, 2022).

The coefficient of variation (CV) within each block 
was calculated for the five following soil chemical 
properties that presented the highest CV in the total 
area (Table 4): Ca, Mg, Al, total exchangeable base, 
and base saturation index. It should be noted that a 

high CV reflects a great variability in the experimental 
area.

For n=2, the red block was homogeneous for almost 
all of the five variables evaluated. Four variables 
presented a CV classified as low, below 10%, and only 
the base saturation index showed a value classified as 
medium. However, for the blue block, this homogeneity 
was lower since almost all CV values were classified 
as medium.

As the number of experimental blocks increased, 
the CV of the variables decreased. For n=5, the highest 

Table 4. Coefficients of variation in the total area and within each block for the following soil chemical variables: calcium 
(CVCa), magnesium (CVMg), aluminum (CVAl), sum of bases (CVSB), and base saturation index (CVV), considering the 
different number of blocks (n).

Blocks CVCa (%) CVMg (%) CVAl (%) CVSB (%) CVV (%)
Total area 95.78(1) 49.55(1) 37.14(1) 48.94(1) 49.07(1)

n=2 blocks
Red 7.69 7.83 7.02 6.48 12.63
Blue 19.00 18.15 4.88 14.93 18.56

n=3 blocks
Red 13.78 13.87 3.11 10.88 16.54
Green 13.48 9.78 4.95 8.63 14.45
Pink 5.56 5.59 6.23 4.84 10.97

n=4 blocks
Pink 13.07 13.41 2.99 10.43 16.24
Green 13.92 10.02 4.69 8.82 14.83
Blue 6.55 5.46 7.08 4.68 13.37
Red 4.43 5.78 5.11 3.97 9.42

n=5 blocks
Pink 11.64 11.21 1.66 8.67 13.60
Yellow 11.45 9.35 3.54 7.97 13.01
Green 10.77 6.22 4.69 5.65 11.44
Blue 3.57 5.07 4.72 3.46 9.04
Red 11.45 9.35 3.54 7.97 13.01

(1)Values calculated from the initial 36 sample points.

Table 3. Area of the blocks and their respective proportions in relation to the total area for the different numbers of blocks 
(n) formed in a sugarcane (Saccharum officinarum) experimental area(1).

Blocks n=2 n=3 n=4 n=5
A (m2) P (%) A (m2) P (%) A (m2) P (%) A (m2) P (%)

Yellow N N N N N N 637.0 18.9
Blue 1,260 37.5 N N 758.0 22.6 743.0 22.1
Pink N N 1,723 51.3 609.0 18.1 408.0 12.1
Green N N 985.0 29.3 976.0 29.0 708.0 21.0
Red 2,100 62.5 652.0 19.4 1,017.0 30.3 864.0 25.7

(1)A, area of each block; P, proportion of the area occupied by the block in relation to the total area; and N, not applicable. 
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CV of 13.60% was observed for the base saturation 
index, a value classified as medium. Considering the 
other variables and blocks obtained, most of the CVs 
were lower than 10%. 

The initial experimental area showed a great 
variation in soil chemical attributes, reaching a CV 
of 95.78% (Table 4). However, when the proposed 
methodology was used, it was possible to obtain more 
uniform experimental blocks with a CV classified as 
medium in the most extreme case.

Conclusions

1. The proposed methodology, using geostatistical 
techniques, principal component analysis, and 
clustering techniques, can be used to divide the 
sugarcane (Saccharum officinarum) experimental area 
into uniform blocks based on soil chemical properties.

2. Using the k-means algorithm, the experimental 
area can be divided into two, three, four, or five blocks 
with a high uniformity.

3. The use of regular-shaped blocks is not adequate 
to standardize the sugarcane experimental area.
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