Acessibilidade / Reportar erro

Modeling the potential distribution to present and future of the poorly known species Xenohyla eugenioi Caramaschi, 1998 (Anura: Hylidae) with findings about its distribution, natural history, and conservation

Abstract

The distribution of amphibians is conditioned by historical factors and ecological drivers. Thus, Ecological Niche Models are important tools to provide information on the potential distribution of the species and determine where they will be requirements in future. Mainly, rare species or with restricted areas of occurrence, because this information are essential to understanding of their living area, microhabitat use, or natural history, serving as a basis for preservation actions. Xenohyla eugenioi is a poorly known species, restricted to transition areas of Caatinga and Atlantic Forest from Minas Gerais to Sergipe. This species exhibits little biological information available and few specimens housed in museums, which difficulty to plan conservation strategies. Here our aim was modeling the current and future distribution and discussing about conservation of Xenohyla eugenioi. We searched for occurrence records through literature and scientific collections data. For the future (2071-2100), we used ensemble models from three algorithms (CTA, GLM and ANN) to two shared socioeconomic pathways (SSP370 and SSP585 scenarios). This species has approximately 650 km in straight line between the extreme localities, occurring mainly in bromeliads near to water bodies. The Ensemble method indicates the most suitable areas of occurrence were over ecotonal range between Caatinga and Atlantic Forest and our projections have showed suitable conditions to highlands (up to 1.000 m). However, in the future, is expected total erosion of the X. eugenioi populations, due climatic changes, which reinforce the caution to conservation of this poorly known species and necessity of studies about its ecology, natural history and distribution. Moreover, we hope that this work can contribute to the discovery of new records, characterizing the narrower niche space than this species may actually inhabit.

Keywords:
Anura; Climate change; Extinction; Ecological Niche Modeling; Species distribution model

INTRODUCTION

Understanding the processes and mechanisms that influence species diversity patterns is a widely studied and discussed issue in macroecology (Ricklefs & Schluter, 1993Ricklefs, R.E. & Schluter, D. 1993. Species diversity: regional and historical influences. In: Ricklefs, R.E. & Schluter, D. Species diversity in ecological communities: historical and geographical perspectives. Chicago, Chicago University Press. p. 350-363.). The distribution of species is conditioned by historical factors, such as the dynamics of geographical barriers (Hoorn & Wesselingh, 2011Hoorn, C. & Wesselingh, F. 2011. Amazonia: landscape and species evolution: a look into the past. John Wiley & Sons.). Furthermore, ecological drivers such as the set of environmental conditions provide a favorable habitat for the establishment of species (Soberón, 2007Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters , 10(12): 1115-1123. 10.1111/j.1461-0248.2007.01107.x.
https://doi.org/10.1111/j.1461-0248.2007...
). For example, studies about resources used by anurans have shown how the biotic (e.g., calling sites and prey availability) and abiotic (e.g., temperature and humidity) factors bias their occurrence (Bertoluci & Rodrigues, 2002Bertoluci, J. & Rodrigues, M.T. 2002. Utilização de habitats reprodutivos e micro-habitats de vocalização em uma taxocenose de anuros (Amphibia) da Mata Atlântica do Sudeste do Brasil. Papéis Avulsos de Zoologia, São Paulo, 42: 287-297.; Xavier et al., 2015Xavier, A.L.; Guedes, T.B. & Napoli, M.F. 2015. Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil. PLoS ONE, 10(6): 1-18, e0128268. 10.1371/journal.pone.0128268.
https://doi.org/10.1371/journal.pone.012...
; Neves et al., 2020Neves, M.O.; Cabral, H.; Pedrozo, M.; Ferreira, V.L.; Moura, M.R. & Santana, D.J. 2020. Dataset of occurrences and ecological traits of amphibians from Upper Paraguay River Basin, central South America. Nature Conservation, 41: 71-89. 10.3897/natureconservation.41.54265.
https://doi.org/10.3897/natureconservati...
; Ceron et al., 2022Ceron, K.; Provete, D.B.; Pires, M.M.; Araujo, A.C.; Blüthgen, N. & Santana, D.J. 2022. Differences in prey availability across space and time lead to interaction rewiring and reshape a predator-prey Metaweb. Ecology, Washington, 23(8): 1-10, e3716. 10.1002/ecy.3716.
https://doi.org/10.1002/ecy.3716...
). Understanding the distribution patterns of species provides an assessment of the risks to which it is subjected and is an important tool for determining priority areas for conservation (Guisan et al., 2013Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; Martin, T.G.; Rhodes, J.R.; Maggini, R.; Stterfield, S.A.; Elith, J.; Schwartz, M.W.; Possingham, H.P. & Buckley, Y.M. 2013. Predicting species distributions for conservation decisions. Ecology Letters ,16(12): 1424-1435. 10.1111/ele.12189.
https://doi.org/10.1111/ele.12189...
).

Around 25% of amphibian species do not have any records within protected areas worldwide (Nori et al., 2015Nori, J.; Lemes, P.; Urbina-Cardona, N.; Baldo, D.; Lescano, J. & Loyola, R. 2015. Amphibian conservation, land-use changes and protected areas: A global overview. Biological Conservation , 191: 367-374. 10.1016/j.biocon.2015.07.028.
https://doi.org/10.1016/j.biocon.2015.07...
; Oliveira et al., 2017Oliveira, U.; Soares-Filho, B.S.; Paglia, A.P.; Brescovit, A.D.; Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; Barbosa, J.P.P.P.; Stehmann, J.R.; Ascher, J.S.; Vasconcelos, M.F.; Marco, P.; Lowenberg-Neto, P.; Ferro, V.G. & Santos, A.J. 2017. Biodiversity conservation gaps in the Brazilian protected areas. Scientific Reports, 7: 1-9, 9141. 10.1038/s41598-017-08707-2.
https://doi.org/10.1038/s41598-017-08707...
). In addition, many species have an inaccurate distribution and/or contain huge areas not sampled (Bini et al., 2006Bini, L.M.; Diniz-Filho, J.A.; Rangel, T.F.L.V.B.; Bastos, R.P. & Pinto, M.P. 2006. Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distribution, 12(6): 475-482. 10.1111/j.1366-9516.2006.00286.x.
https://doi.org/10.1111/j.1366-9516.2006...
). These facts make it difficult to dimension the real distribution of species, especially for those rare or with restricted areas of occurrence (Pearson et al., 2007Pearson, R.G.; Raxworthy, C.J.; Nakamura, M. & Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1): 102-117.). Moreover, endemic species generally exhibit restricted relationships to specific conditions (e.g., climate and biotic interactions), and many of them are poorly known in relation to their living area, microhabitat use, or natural history (Neves et al., 2018Neves, M.O.; Pereira, E.A.; Sugai, J.L.M.; Rocha, S.B.; Feio, R.N. & Santana, D.J. 2018. Distribution pattern of anurans from three mountain complexes in southeastern Brazil and their conservation implications. Anais da Academia Brasileira de Ciências, 90(2): 1611-1623.). Therefore, it is essential to study the distribution of these species to serve as a basis for preservation actions.

Ecological Niche Models (ENM) are important tools to provide information on the potential distribution of the species according to suitable environmental conditions used by them (Elith & Leathwick, 2009Elith, J. & Leathwick, J.R. 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697.). Besides, the use of the current environmental information about ecological niches may determine models where the requirements of the species niche in the future may be satisfied (Wiens et al., 2009Wiens, J.A.; Stralberg, D.; Jongsomijt, D.; Howel, C.A. & Snyder, M.A. 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106 (Suppl. 2): 19729-19736. www.pnas.org_cgi_doi_10.1073_pnas.0901639106.
www.pnas.org_cgi_doi_10.1073_pnas.090163...
) and predict range shifts under climate changes (Fordham et al., 2012Fordham, D.A.; Akçakaya, H.R.; Araújo, M.B.; Elith, J.; Keith, D.A.; Pearson, R.; Auld, T.D.; Mellin, C.; Morgan, J.W.; Regan, T.J.; Tozer, M.; Watts, M.J.; White, M.; Wintle, B.A.; Yates, C. & Brook, B.W. 2012. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology, 18(4): 1357-1371.). Thus, the ENMs have been applied to promote better conservation strategies (e.g.,Araújo et al., 2011Araújo, M.B.; Alagador, D.; Cabeza, M.; Nogués-Bravo, D. & Thuiller, W. 2011. Climate change threatens European conservation areas. Ecology Letters, 14(5): 484-492. 10.1111/j.1461-0248.2011.01610.x.
https://doi.org/10.1111/j.1461-0248.2011...
; Chen et al., 2017Chen, Y.; Zhang, J.; Jiang, J.; Nielsen, S.E & He, F. 2017. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Diversity and Distribution , 23(2): 146-157. 10.1111/ddi.12508.
https://doi.org/10.1111/ddi.12508...
), mainly, for poorly known species (Pearson et al., 2007Pearson, R.G.; Raxworthy, C.J.; Nakamura, M. & Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1): 102-117.; Siqueira et al., 2009Siqueira, M.F.; Durigan, G.; De-Marco, J.R.P. & Peterson, A.T. 2009. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. Journal for Nature Conservation , 17: 25-32.).

The genus XenohylaIzecksohn 1998Izecksohn, E. “1996” 1998. Novo gênero de Hylidae brasileiro (Amphibia, Anura). Revista da Universidade Rural, Série Ciência e Vida, 18: 47-52. harbors two allopatric species that inhabit different biomes and live in bromeliads (Caramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.): X. truncata (Izecksohn, 1959Izecksohn, E. 1959. Uma nova espécie de “Hylidae” da baixada Fluminense, Estado do Rio de Janeiro, Brasil. (Amphibia, Anura). Revista Brasileira Biologia, 19(3): 259-263.) and X. eugenioiCaramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.. Xenohyla truncata is a frugivorous species (Silva & Brito-Pereira, 2006Silva, H.R. & Brito-Pereira, M.C. 2006. How much fruit do fruit-eating frogs eat? An investigation on the diet of Xenohyla truncata (Lissamphibia: Anura: Hylidae). Journal of Zoology, 270(4): 692-698. 10.1111/j.1469-7998.2006.00192.x.
https://doi.org/10.1111/j.1469-7998.2006...
) that occurs in seasonally dry forest areas of the Atlantic Forest in “Restingas” (Henriques et al., 1986Henriques, R.P.B.; Araujo, D.S.D. & Hay, J.D. 1986. Descrição e classificação dos tipos de vegetação da restinga de Carapebus, Rio de Janeiro. Revista Brasileira de Botânica, 9: 173-189.) of Rio de Janeiro state (Caramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.), is classified as “Near Threatened” by the IUCN Red List of Threatened Species (Carvalho-e-Silva et al., 2004Carvalho-e-Silva, S.P.; Telles, A.M. & Cruz, A.G. 2004. Xenohyla truncate. The IUCN Red List of Threatened Species. Available: e.T56053A11418199. Available: e.T56053A11418199. 10.2305/IUCN.UK.2004.RLTS.T56053A11418199.en . Access: 15/05/2022.
10.2305/IUCN.UK.2004.RLTS.T56053A1141819...
) and “Vulnerable” by national list of Ministério do Meio Ambiente (Bastos et al., 2023aBastos, R.P.; Martins, M.R.; Bataus, Y.S.L.; Côrtes, L.G.; Uhlig, V.M.; Almeida, A.P.L.; Canedo, C.C.; Caramaschi, U.; Costa, C.O.R.; Ferrante, L.; Ferreira, R.B.; Garcia, P.C.A.; Gasparini, J.L.; Hepp, F.; Moraes, R.L.; Leite, F.S.F.; Martins, I.A.; Nascimento, L.B.; Santana, D.J.; Filho, I.S.N.S.; Soares, T.S.; Toledo, L.F. 2023a. Xenohyla truncata (Izecksohn, 1959). Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Available: Available: 10.37002/salve.ficha.21902 . Access: 08/12/2023.
10.37002/salve.ficha.21902...
). This species occurs in Protected Areas (PAs) such as Reserva Particular do Patrimônio Natural (RPPN), Área de Proteção Ambiental (APA), Parque Natural and Área Natural (Bastos et al., 2023aBastos, R.P.; Martins, M.R.; Bataus, Y.S.L.; Côrtes, L.G.; Uhlig, V.M.; Almeida, A.P.L.; Canedo, C.C.; Caramaschi, U.; Costa, C.O.R.; Ferrante, L.; Ferreira, R.B.; Garcia, P.C.A.; Gasparini, J.L.; Hepp, F.; Moraes, R.L.; Leite, F.S.F.; Martins, I.A.; Nascimento, L.B.; Santana, D.J.; Filho, I.S.N.S.; Soares, T.S.; Toledo, L.F. 2023a. Xenohyla truncata (Izecksohn, 1959). Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Available: Available: 10.37002/salve.ficha.21902 . Access: 08/12/2023.
10.37002/salve.ficha.21902...
). Xenohyla eugenioi is restricted to transition areas of Caatinga and Atlantic Forest called “Agreste”, occurring from the extreme north of Minas Gerais to Sergipe. It is not known from any official PAs (Caramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.; Silvano & Pimenta, 2004Silvano, D. & Pimenta, B. 2004. Xenohyla eugenioi. 2004The IUCN Red List of Threatened Species . Available: https://www.iucnredlist.org/resources/baillie2004.
https://www.iucnredlist.org/resources/ba...
; Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
), being classified as “Data Deficient” by the IUCN Red List of Threatened Species (Silvano & Pimenta, 2004Silvano, D. & Pimenta, B. 2004. Xenohyla eugenioi. 2004The IUCN Red List of Threatened Species . Available: https://www.iucnredlist.org/resources/baillie2004.
https://www.iucnredlist.org/resources/ba...
), and “Least Concern” by national list of Ministério do Meio Ambiente (Bastos et al., 2023bBastos, R.P.; Martins, M.R.; Guidorizzi, C.E.; Andrade, S.P.; Bataus, Y.S.L.; Júnior, R.V.G.; Andrade, G.V.; Ávila, R.W.; Colombo, P.; Dias, I.R.; Kokubum, M.N.C.; Lima, D.C.; Lingnau, R.; Lisboa, B.S.; Loebmann, D.; Lucas, E.; Machado, I.F.; Júnior, A.M.; Martins, M.B.; Moura, G.J.B.; Napoli, M.F.; Oliveira, S.N.; Ribeiro, L.F.; Tinôco, M.S.; Zank, C. 2023b. Xenohyla eugenioi Caramaschi, 1998. Sistema de Avaliação do Risco de Extinção da Biodiversidade -SALVE . Available: Available: 10.37002/salve.ficha.17600 . Access: 08/12/2023.
10.37002/salve.ficha.17600...
).

There are only eight localities known to X. eugenioi with some wide gaps between them, which may represent a lack of sampling effort or the presence of geographical barriers. The biggest gap is between the municipality of Ipirá, in Bahia State, and the municipality of Pedra Mole, in Sergipe State (Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
), with approximately 280 kilometers of discontinuity. In addition, habitat loss due to agriculture and cattle raising are potential threats to populations of this species (Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
). There is little information available on biological data about the species (Caramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.; Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
; Marciano-Jr. et al., 2021Marciano-Jr., E.; Tanajura, G.; Costa, M.A.; Orrico, V.G.D. & Dias, I.R. 2021. Advertisement call and cytogenetics of Xenohyla eugenioi Caramaschi, 1998 (Amphibia; Anura; Hylidae), an enigmatic frog from northeastern Brazil. South American Journal of Herpetology, 20: 17-23. 10.2994/SAJH-D-18-00035.1.
https://doi.org/10.2994/SAJH-D-18-00035....
), with few specimens housed in museums, which reflect the difficulty to plan conservation strategies for this species.

For this reason and to better understand the distribution of this species, this study aims: (1) to predict a current and future distribution to X. eugenioi using ENMs; and (2) to discuss the conservation and effectiveness of the PAs in cover the potential distribution of the species.

MATERIAL AND METHODS

Species occurrences

We used eight occurrence points of Xenohyla eugenioi to fit the models (Table 1). We used seven points available in the current bibliography (Caramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.; Napoli & Brandão, 2004Napoli, M.F. & Brandão, F. 2004. Geographic distribution: Xenohyla eugenioi. Herpetological Review, 35(3): 284.; Feio et al., 2006Feio, R.N.; Nascimento, L.B.; Da-Cruz, C.A.G.; Ferreira, P.L. & Pantoja, D.L. 2006. Anfíbios das áreas prioritárias dos Rios Jequitinhonha e Mucuri. In: Pinto, L.P.S. & Bede, L.C. Biodiversidade e conservação nos vales dos Rios Jequitinhonha e Mucuri. Brasília, Ministério do Meio Ambiente. p. 94-119.; Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
; Orrico et al., 2020Orrico, V.G.; Grant, T.; Faivovich, J.; Rivera-Correa, M.; Rada, M.A.; Lyra, M.L.; Cassini, C.S.; Valdujo, P.H.; Schargel, W.E.; Machado, D.J.; Wheeler, W.C.; Barrio-Amorós, C.; Loebmann, D.; Moravec, J.; Zina, J.; Solé, M.; Sturaro, M.J.; Peloso, P.L.V.; Suarez, P. & Haddad, C.F.B. 2020. The phylogeny of Dendropsophini (Anura: Hylidae: Hylinae). Cladistics, 37(1): 73-105. 10.1111/cla.12429.
https://doi.org/10.1111/cla.12429...
) and one record from three specimens housed in the amphibian collection of Universidade Federal do Rio de Janeiro (ZUFRJ): ZUFRJ168486, ZUFRJ168487 and ZUFRJ168488.

Table 1
Known localities of Xenohyla eugenioi in “Agreste” region (Caatinga and Atlantic Forest transition area), Brazil, with respectively municipality and locality, state, latitude and longitude in decimal degrees, elevation above sea level and references of the records. States: Sergipe (SE), Bahia (BA), and Minas Gerais (MG).

Environmental data

We used bioclimatic variables to model the current and future geographic range of X. eugenioi. The climatic data were obtained from CHELSA v2 dataset (Karger et al., 2017Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P. & Kessler, M. 2017. Climatologies at high resolution for the Earth land surface areas. Scientific Data, 4: 1-20, 170122. 10.1038/sdata.2017.122.
https://doi.org/10.1038/sdata.2017.122...
), which represents a set of 19 bioclimatic variables based on monthly precipitation and temperature values averaged between 1981-2010 (current time) and 2071-2100 (future time). We extracted bioclimatic layers at 30 arc-sec of spatial resolution and applied a variable selection procedure. More specifically, we passed the pairwise correlation matrix among the bioclimatic layers through a UPGMA clustering analysis to identify which climatic variables exhibit lower levels of multicollinearity (Dormann et al., 2013Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; MÜnkemÜller, C.M.; Osborne, P.E.; Reineking, B.; Skidmore, A.K.; Zurell, D. & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36: 27-46.). We ended up with five climatic variables, namely: Annual Mean Temperature (BIO01), Isothermality (BIO03), Temperature Seasonality (BIO04), Annual Precipitation (BIO12), and Precipitation Seasonality (BIO15). For future projections, we use the CMIP6 climatologies from three general circulation models (GCMs) (GFDL-ESM4, IPSL-CM6A-LR, and MRI-ESM2-0) provided by CHELSA. We selected these models due to their better ability to simulate temperature and precipitation variables we use (Firpo et al., 2022Firpo, M.A.F.; Guimarães, B.D.S.; Dantas, L.G.; Silva, M.G.B.D.; Alves, L.M.; Chadwick, R.; Llopart, M.P. & Oliveira, G.S.D. 2022. Assessment of CMIP6 models’ performance in simulating present-day climate in Brazil. Frontiers in Climate, 4: 1-27, 948499. 10.3389/fclim.2022.948499.
https://doi.org/10.3389/fclim.2022.94849...
).

For the future, we used two scenarios of shared socioeconomic pathways (SSP): the SSP370 scenario represents high challenges to mitigation and adaptation and SSP585 represents high challenges to mitigation and low challenges to adaptation (IPCC, 2022Intergovernmental Panel on Climate Change (IPCC). 2022. Climate change 2022: impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. 10.1017/9781009325844.
https://doi.org/10.1017/9781009325844...
).

Species distribution models

For the elaboration of Ecological Niche Models (ENMs), we implemented Ensemble of Small Models (ESM, Lomba et al., 2010Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Moreira, F.; Honrado, J. & Guisan, A. 2010. c. Overcoming the rare species modeling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143(11): 2647-2657. 10.1016/j.biocon.2010.07.007.
https://doi.org/10.1016/j.biocon.2010.07...
; Breiner et al., 2015Breiner, F.T.; Guisan, A.; Bergamini, A. & Nobis, M.P. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10): 1210-1218. 10.1111/2041-210X.12403.
https://doi.org/10.1111/2041-210X.12403...
) that is developed for rare species (Lomba et al., 2010Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Moreira, F.; Honrado, J. & Guisan, A. 2010. c. Overcoming the rare species modeling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143(11): 2647-2657. 10.1016/j.biocon.2010.07.007.
https://doi.org/10.1016/j.biocon.2010.07...
). The ESM strategy builds models with predictor subsets, and then, these subsets are evaluated according to a model performance metric obtained through cross-validation (see below). Finally, all subsetted models are averaged into a weighted ensemble model (Breiner et al., 2018Breiner, F.T.; Nobis, M.P.; Bergamini, A. & Guisan, A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution , 9(4): 802-808. 10.1111/2041-210X.12957.
https://doi.org/10.1111/2041-210X.12957...
). We used three modelling algorithms in our ESM: artificial neural network (ANN, Manel et al., 1999Manel, S.; Dias, J.M.; Buckton, S.T. & Ormerod, S.J. 1999. Alternative methods for predicting species distribution: An illustration with Himalayan river birds. Journal of Applied Ecology , 36(5): 734-747. 10.1046/j.1365-2664.1999.00440.x.
https://doi.org/10.1046/j.1365-2664.1999...
), generalized linear models (GLM, McCullagh & Nelder, 1989MCcullagh, P. & Nelder, J.A. 1989. Generalized Linear Models. 2.ed. London, Chapman & Hall.), and classification and regression tree (CTA, Breiman et al., 1984Breiman, L.; Friedman, J.H.; Olshen, R.A. & Stone, C.J. 1984. Classification and regression trees. New York, Chapman & Hall.). These algorithms were found to be best performing when using presence-only data (Breiner et al., 2015Breiner, F.T.; Guisan, A.; Bergamini, A. & Nobis, M.P. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10): 1210-1218. 10.1111/2041-210X.12403.
https://doi.org/10.1111/2041-210X.12403...
, 2018Breiner, F.T.; Nobis, M.P.; Bergamini, A. & Guisan, A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution , 9(4): 802-808. 10.1111/2041-210X.12957.
https://doi.org/10.1111/2041-210X.12957...
). Pseudo-absences were randomly generated within the study area and matched the same number of real presences for X. eugenioi. We built the models and predictions 100 times for each algorithm, selecting each time a different 75% random sample of the true occurrences (Lomba et al., 2010Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Moreira, F.; Honrado, J. & Guisan, A. 2010. c. Overcoming the rare species modeling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143(11): 2647-2657. 10.1016/j.biocon.2010.07.007.
https://doi.org/10.1016/j.biocon.2010.07...
; Breiner et al., 2015Breiner, F.T.; Guisan, A.; Bergamini, A. & Nobis, M.P. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10): 1210-1218. 10.1111/2041-210X.12403.
https://doi.org/10.1111/2041-210X.12403...
). Model accuracy was always verified against the remaining 25% using True Skill Statistics (TSS, Allouche et al., 2006Allouche, O.; Tsoar, A. & Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 4(6)3: 1223-1232. 10.1111/j.1365-2664.2006.01214.x.
https://doi.org/10.1111/j.1365-2664.2006...
). TSS range from −1 to 1, where values above zero indicate a better than random prediction. All analyses were performed in R language (version 3.5.2, R Core Team, 2019R Core Team. 2019. R: A Language and Environment for Statistical Computing. Version 3.5.2. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org.
https://www.R-project.org...
) with raster, rgdal, and ncdf4 packages (Bivand et al., 2023Bivand, R.; Keitt, T. & Rowlingson, B. 2023. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library_. R package version 1.6-6. https://CRAN.R-project.org/package=rgdal.
https://CRAN.R-project.org/package=rgdal...
; Hijmans, 2023Hijmans, R. 2023. _raster: Geographic Data Analysis and Modeling_. R package version 3.6-20. https://CRAN.R-project.org/package=raster.
https://CRAN.R-project.org/package=raste...
; Pierce, 2023Pierce, D. 2023. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files_. R package version 1.21. https://CRAN.R-project.org/package=ncdf4.
https://CRAN.R-project.org/package=ncdf4...
).

We applied the minimal predicted area method (MPA, Engler et al., 2004Engler, R.; Guisan, A. & Rechsteiner, L. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal Applied of Ecology, 41(2): 263-274. 10.1111/j.0021-8901.2004.00881.x.
https://doi.org/10.1111/j.0021-8901.2004...
) to establish a threshold value to convert habitat suitability measures (varying between 0 and 1) into binary maps (0 = absence, 1 = presence). MPA predicts a potential area that is adequately small but still includes the maximum number of true species occurrences. To define the probability threshold, we extracted the value of habitat suitability for each observed occurrence in the current projection map and computed the value corresponding to the percentile 90%. Thereby, the binary distributions encompassed 90% of the real occurrences. After that, we overlap the potential area found in our models with the existent network of Protected Areas of the Brazilian Ministry of Environment and calculated the potential protected distribution of the species.

RESULTS

Extent of occurrence records

Xenohyla eugenioi is known from eight localities (Table 1) occurring near water bodies between the north of the Jequitinhonha River in Minas Gerais state and south Vaza-Barris River in Sergipe state, also taking place in the interior of the state of Bahia (Fig. 1). The records have approximately 650 km between the extreme localities in the south (municipality of Salto da Divisa) and in the north (municipality of Pedra Mole). This species is restricted to the northern Atlantic Forest and the region of its ecotone with the Caatinga and no record is found in Protected Areas, only in “Areas of Permanent Protection” (APPs) under Brazilian Federal Law 12,651/2012 (see below in discussion session; Toledo et al., 2010Toledo, L.F.; Carvalho-e-Silva, S.P.; Sánchez, C.; Almeida, M.A. & Haddad, C.F.B. 2010. The review of the Brazilian Forest Act: harmful effects on amphibian conservation. Biota Neotropica, 10: http://www.biotaneotropica.org.br/v10n4/en/abstract?article+bn00410042010.
http://www.biotaneotropica.org.br/v10n4/...
).

Figure 1
Geographic distribution of known records of Xenohyla eugenioi, and total extent area from Ensemble binarized projection (Potential distribution) (6.005 km2). The number of the records follow localities in Table 1. Inset map: South America with states: Pernambuco (PE), Bahia (BA), Alagoas (AL), and Minas Gerais (MG) states.

Potential distribution and modeling

The TSS values for X. eugenioi were relatively high (mean ± SD = 0.9844 ± 0.023) indicating good model fits. TSS value for Ensemble model reached higher than the others algorithms (mean = ANN: 0.9957, CTA: 0.9493, GLM: 0.9961, and Ensemble: 0.9962) and thus the following results are based on the Ensemble models and their projections.

The Ensemble binarized projection (threshold = 917.85) indicates the most probable areas of occurrence were over an ecotonal range between Caatinga and Atlantic Forest which extends of the Minas Gerais to Pernambuco states through of extent area of approximately 6.005 km2 (Fig. 1). Our Ensemble projection have shown suitable conditions for areas with high altitudes (up to 1.000 m), and the Central-South region of Bahia. Moreover, we found environmental suitability to Pernambuco state, the only region found above São Francisco River and far from any known record of X. eugenioi (Fig. 1).

Of the total potential area resulting from our models, about 480 km2 (7.99%) are sheltered by some Protected Area (PA). These PAs that can house the species are Chapada Diamantina National Park (NP), Boa Nova NP, Alto do Cariri State Park (SP), Sete Passagens SP, Espelhado Municipal Natural Park (MNP), Macaqueiras MNP, Boa Nova Wildlife Refuge, Marimbus/Iraquara Environmental Protection Area, Serra do Orobó Area of Relevant Ecological Interest, Cachoeira do Ferro Doido Natural Monument, Arco Verde “private reserve” (RPPN), Riacho da Serra RPPN, Reserva Ganesha RPPN, Reserva Lendas do Caió RPPN, Reserva Casa do Sol RPPN, Reserva Serra do Luar RPPN, and Campos Novos RPPN.

For the future (2100), the projections showed large contractions in the suitable areas for the species (Fig. 2). Climatic suitability areas passed its range from 0-1 at present to 0-0.378 in both future scenarios (SSP370, and SSP585). Applying the threshold, there will not have environmental conditions for the survival of X. eugenioi according to all GCMs and in both scenario. Thus, it is expected the extinction of the species, due to dramatic climate changes.

Figure 2
Ensemble suitability areas projections (range from 0 to 1) for Xenohyla eugenioi based on three climatic models and climate layers, considering an intermediate and high anthropogenic CO₂ emission (SSP370 and SSP585).

DISCUSSION

We presented the first ecological and distribution study of Xenohyla eugenioi integrating literature data and specimens housed in museums to predict the potential distribution currently and in the future, beyond the extinction risk due to climate change. Here, our current projection for X. eugenioi suggests that environmental traits such as temperature and precipitation can explain the occurrence of the species in the ecotonal regions of the Atlantic Forest and Caatinga. Moreover, suitable areas for its occurrence must withdraw in the future (2100) and the species may become extinct as a consequence, according to all projections generated.

The Ensemble projection indicates the species has narrow distribution to ecotonal areas and highlands from branch of the National Park Chapada Diamantina in the Central-South region of Bahia state (Figs. 1 and 2). The Chapada Diamantina, the northern part of Espinhaço Mountain Complex, is characterized by the occurrence of endemic taxa with a high diversity of anurans (Garda et al., 2017Garda, A.A.; Stein, M.G.; Machado, R.B.; Lion, M.B.; Juncá, F.A. & Napoli, M.F. 2017. Ecology, biogeography, and conservation of amphibians of the Caatinga. In: Silva, J.M.C.; Leal, I.R. & Tabarelli, M. (Eds.). Caatinga. Cham, Springer. p. 133-149, 10.1007/978-3-319-68339-3_5.
https://doi.org/10.1007/978-3-319-68339-...
; Guedes et al., 2020Guedes, T.B.; Azevedo, J.A.R.; Bacon, C.D.; Provete, D.B. & Antonelli, A. 2020. Diversity, endemism, and evolutionary history of montane biotas outside the andean region. In: Rull, V. & Carnaval, A.C. Neotropical diversification: patterns and process, fascinating life sciences. New York, Springer. p. 299-328. 10.1007/978-3-030-31167-4_13.
https://doi.org/10.1007/978-3-030-31167-...
). Thus, we believe to be possible the occurrence of X. eugenioi in this area, because its relationships with high altitudinal and ecotonal areas, as demonstrated through the true occurrence of the specimens (Table 1) and the result of our models (Fig. 1). Furthermore, we suggest expeditions with focal samples where the Ensemble projection shows high environmental susceptibility to its occurrence, which can enable new records and, consequently, more information about their populations and threats.

Nowadays, all records of X. eugenioi are found inside terrestrial bromeliads or perches in shrubs of up to 1.5 m height on edge of streams in areas of permanent protection (APPs) (Caramaschi, 1998Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.; Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
; Marciano-Jr. et al., 2021Marciano-Jr., E.; Tanajura, G.; Costa, M.A.; Orrico, V.G.D. & Dias, I.R. 2021. Advertisement call and cytogenetics of Xenohyla eugenioi Caramaschi, 1998 (Amphibia; Anura; Hylidae), an enigmatic frog from northeastern Brazil. South American Journal of Herpetology, 20: 17-23. 10.2994/SAJH-D-18-00035.1.
https://doi.org/10.2994/SAJH-D-18-00035....
). Although approximately 8% of its potential distribution is within Protected Areas, this protection does not currently encompass any record. This information brings up the caution to species conservation because its occurrence is associated to areas with high anthropic pressure, due cattle raising and agriculture (Metzger, 2010Metzger, J.P. 2010. O Código Florestal tem base científica? Natureza & Conservação, 8: 92-99. 10.4322/natcon.00801017.
https://doi.org/10.4322/natcon.00801017...
; Almeida et al., 2015Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
https://doi.org/10.15560/11.5.1744...
). Mainly, because the populations of X. eugenioi found here (Fig. 1) are in regions with only 5% to 20% from original landscape (Ribeiro et al., 2011Ribeiro, M.C.; Martensen, A.C.; Metzger, J.P.; Tabarelli, M.; Scarano, F. & Fortin, M.J. 2011. The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. In: Zachos, F.E. & Habel, J.C. Biodiversity Hotspots: distribution and protection of conservation priority areas. Heidelberg, Springer. p. 405-434.).

In addition to the known impacts on the area of occurrence of the species, the future projections exhibited here did not recover suitable climatic areas for the species in 2100 for all GCMs used, increasing the pressure for the extinction of X. eugenioi. This result match closely to previous estimates indicating loss of climatically suitable areas to anurans from Atlantic Forest (Toledo et al., 2010Toledo, L.F.; Carvalho-e-Silva, S.P.; Sánchez, C.; Almeida, M.A. & Haddad, C.F.B. 2010. The review of the Brazilian Forest Act: harmful effects on amphibian conservation. Biota Neotropica, 10: http://www.biotaneotropica.org.br/v10n4/en/abstract?article+bn00410042010.
http://www.biotaneotropica.org.br/v10n4/...
; Vasconcelos et al., 2018Vasconcelos, T.S.; Nascimento, B.T.M. & Prado, V.H.M. 2018. Expected impacts of climate change threaten the anuran diversity in the Brazilian hotspots. Ecology and Evolution, 8(16): 7894-7906. 10.1002/ece3.4357.
https://doi.org/10.1002/ece3.4357...
). Thus, we consider fundamental the protection of the land and water over its distribution as suggested by Silvano & Pimenta (2014), mainly, due to the actual pressure of the habitat loss on their populations. Then, we suggest integrated strategies as maintenance of large conservation corridors and restoration of gallery forest (seeTabarelli et al., 2005Tabarelli, M.; Pinto, L.P.; Silva, J.M.C.; Hirota, M.; & Bedê, L. 2005. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology, 19(3): 695-700.), which are action can guarantee connectivity among populations and quality of the environment (Toledo et al., 2010Toledo, L.F.; Carvalho-e-Silva, S.P.; Sánchez, C.; Almeida, M.A. & Haddad, C.F.B. 2010. The review of the Brazilian Forest Act: harmful effects on amphibian conservation. Biota Neotropica, 10: http://www.biotaneotropica.org.br/v10n4/en/abstract?article+bn00410042010.
http://www.biotaneotropica.org.br/v10n4/...
).

Ecological research related to distribution, life history, ecological traits, population size, and trends are necessary to understand and assess the real threat situation of the species (Silvano & Pimenta, 2004Silvano, D. & Pimenta, B. 2004. Xenohyla eugenioi. 2004The IUCN Red List of Threatened Species . Available: https://www.iucnredlist.org/resources/baillie2004.
https://www.iucnredlist.org/resources/ba...
). This way, the lack of information on biological aspects difficult the understanding of the ecological relationship between X. eugenioi and other species. While is well-documented X. truncata life cycle as a bromelicolous species (sensuPeixoto, 1995Peixoto, O.L. 1995. Associação de anuros a bromeliáceas na Mata Atlântica. Revista Universidade Rural, Série Ciências da Vida, 17: 75-83.) that lives in the Neoregelia cruenta and reproduces in pounds nearby by indirect development (Izecksohn, 1998Izecksohn, E. “1996” 1998. Novo gênero de Hylidae brasileiro (Amphibia, Anura). Revista da Universidade Rural, Série Ciência e Vida, 18: 47-52.), the knowledge about X. eugenioi life cycle is still unclear. All literature and our records have found X. eugenioi in terrestrial bromeliads, but the lack of observation of reproduction and juvenile specimens prevents the recognition as a bromelicolous or bromeligenous species (sensuPeixoto, 1995Peixoto, O.L. 1995. Associação de anuros a bromeliáceas na Mata Atlântica. Revista Universidade Rural, Série Ciências da Vida, 17: 75-83.). Fieldwork also made it possible to observe the presence of X. eugenioi in N. cruenta (BBC pers. obs.) and Aechmea sp. (Marciano-Jr. et al., 2021Marciano-Jr., E.; Tanajura, G.; Costa, M.A.; Orrico, V.G.D. & Dias, I.R. 2021. Advertisement call and cytogenetics of Xenohyla eugenioi Caramaschi, 1998 (Amphibia; Anura; Hylidae), an enigmatic frog from northeastern Brazil. South American Journal of Herpetology, 20: 17-23. 10.2994/SAJH-D-18-00035.1.
https://doi.org/10.2994/SAJH-D-18-00035....
), but it is still soon to confirm as a restriction like it is with X. truncata (Izecksohn, 1959Izecksohn, E. 1959. Uma nova espécie de “Hylidae” da baixada Fluminense, Estado do Rio de Janeiro, Brasil. (Amphibia, Anura). Revista Brasileira Biologia, 19(3): 259-263., 1998Izecksohn, E. “1996” 1998. Novo gênero de Hylidae brasileiro (Amphibia, Anura). Revista da Universidade Rural, Série Ciência e Vida, 18: 47-52.). This possible strict relationship can reveal a coadaptation process, while understanding the life cycle may elucidate which factors are necessary to X. eugenioi lives in bromeliads. Thus, we hope future ecological questions of X. eugenioi can be measured and answered, which are important to species conservation and management.

Therefore, our study brings up the most complete locality points of X. eugenioi made so far, together with ecological niche modeling. Our models have shown the relationship of X. eugenioi to highlands and ecotonal areas, which in the future the climatic changes must withdraw suitable areas to its occurrence causing its extinction. Moreover, these data reinforce the caution to the conservation of this poorly known species and present an alert to requirement studies about its ecology, natural history and distribution. We hope that this work will contribute to the discovery of new records, characterizing the narrower niche space than the species may actually inhabit.

ACKNOWLEDGMENTS:

BB thanks to CNPq, RPSA and HA thanks to CAPES, and MON thanks to CNPq and FAPEMAT by their fellowships. The authors thanks to the two reviewers and Thieres Almeida by suggestions. We deeply regret the passing of our co-author Bruno Bove da Costa, whose dedication and expertise on Xenohyla eugenioi significantly shaped this work. Our gratitude for his unwavering commitment and the lasting impact he has had on our collaboration and the broader field.

REFERENCES

  • Allouche, O.; Tsoar, A. & Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 4(6)3: 1223-1232. 10.1111/j.1365-2664.2006.01214.x.
    » https://doi.org/10.1111/j.1365-2664.2006.01214.x
  • Almeida, R.P.S.; Andrade, H.; Caramaschi, U. & Dias, E.J.R. 2015. Xenohyla eugenioi Caramaschi, 1998 (Amphibia: Anura: Hylidae): geographic distribution and new record from the state of Sergipe, northeastern Brazil. Check List, 11(15): 1744. 10.15560/11.5.1744.
    » https://doi.org/10.15560/11.5.1744
  • Araújo, M.B.; Alagador, D.; Cabeza, M.; Nogués-Bravo, D. & Thuiller, W. 2011. Climate change threatens European conservation areas. Ecology Letters, 14(5): 484-492. 10.1111/j.1461-0248.2011.01610.x.
    » https://doi.org/10.1111/j.1461-0248.2011.01610.x
  • Bastos, R.P.; Martins, M.R.; Bataus, Y.S.L.; Côrtes, L.G.; Uhlig, V.M.; Almeida, A.P.L.; Canedo, C.C.; Caramaschi, U.; Costa, C.O.R.; Ferrante, L.; Ferreira, R.B.; Garcia, P.C.A.; Gasparini, J.L.; Hepp, F.; Moraes, R.L.; Leite, F.S.F.; Martins, I.A.; Nascimento, L.B.; Santana, D.J.; Filho, I.S.N.S.; Soares, T.S.; Toledo, L.F. 2023a. Xenohyla truncata (Izecksohn, 1959). Sistema de Avaliação do Risco de Extinção da Biodiversidade - SALVE. Available: Available: 10.37002/salve.ficha.21902 Access: 08/12/2023.
    » 10.37002/salve.ficha.21902
  • Bastos, R.P.; Martins, M.R.; Guidorizzi, C.E.; Andrade, S.P.; Bataus, Y.S.L.; Júnior, R.V.G.; Andrade, G.V.; Ávila, R.W.; Colombo, P.; Dias, I.R.; Kokubum, M.N.C.; Lima, D.C.; Lingnau, R.; Lisboa, B.S.; Loebmann, D.; Lucas, E.; Machado, I.F.; Júnior, A.M.; Martins, M.B.; Moura, G.J.B.; Napoli, M.F.; Oliveira, S.N.; Ribeiro, L.F.; Tinôco, M.S.; Zank, C. 2023b. Xenohyla eugenioi Caramaschi, 1998. Sistema de Avaliação do Risco de Extinção da Biodiversidade -SALVE . Available: Available: 10.37002/salve.ficha.17600 Access: 08/12/2023.
    » 10.37002/salve.ficha.17600
  • Bertoluci, J. & Rodrigues, M.T. 2002. Utilização de habitats reprodutivos e micro-habitats de vocalização em uma taxocenose de anuros (Amphibia) da Mata Atlântica do Sudeste do Brasil. Papéis Avulsos de Zoologia, São Paulo, 42: 287-297.
  • Bini, L.M.; Diniz-Filho, J.A.; Rangel, T.F.L.V.B.; Bastos, R.P. & Pinto, M.P. 2006. Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distribution, 12(6): 475-482. 10.1111/j.1366-9516.2006.00286.x.
    » https://doi.org/10.1111/j.1366-9516.2006.00286.x
  • Bivand, R.; Keitt, T. & Rowlingson, B. 2023. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library_. R package version 1.6-6. https://CRAN.R-project.org/package=rgdal
    » https://CRAN.R-project.org/package=rgdal
  • Breiman, L.; Friedman, J.H.; Olshen, R.A. & Stone, C.J. 1984. Classification and regression trees. New York, Chapman & Hall.
  • Breiner, F.T.; Guisan, A.; Bergamini, A. & Nobis, M.P. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10): 1210-1218. 10.1111/2041-210X.12403.
    » https://doi.org/10.1111/2041-210X.12403
  • Breiner, F.T.; Nobis, M.P.; Bergamini, A. & Guisan, A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution , 9(4): 802-808. 10.1111/2041-210X.12957.
    » https://doi.org/10.1111/2041-210X.12957
  • Caramaschi, U. 1998. Description of a second species of the genus Xenohyla (Anura: Hylidae). Amphibia-Reptilia, 19(4): 377-384.
  • Carvalho-e-Silva, S.P.; Telles, A.M. & Cruz, A.G. 2004. Xenohyla truncate. The IUCN Red List of Threatened Species. Available: e.T56053A11418199. Available: e.T56053A11418199. 10.2305/IUCN.UK.2004.RLTS.T56053A11418199.en Access: 15/05/2022.
    » 10.2305/IUCN.UK.2004.RLTS.T56053A11418199.en
  • Ceron, K.; Provete, D.B.; Pires, M.M.; Araujo, A.C.; Blüthgen, N. & Santana, D.J. 2022. Differences in prey availability across space and time lead to interaction rewiring and reshape a predator-prey Metaweb. Ecology, Washington, 23(8): 1-10, e3716. 10.1002/ecy.3716.
    » https://doi.org/10.1002/ecy.3716
  • Chen, Y.; Zhang, J.; Jiang, J.; Nielsen, S.E & He, F. 2017. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Diversity and Distribution , 23(2): 146-157. 10.1111/ddi.12508.
    » https://doi.org/10.1111/ddi.12508
  • Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; MÜnkemÜller, C.M.; Osborne, P.E.; Reineking, B.; Skidmore, A.K.; Zurell, D. & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36: 27-46.
  • Elith, J. & Leathwick, J.R. 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697.
  • Engler, R.; Guisan, A. & Rechsteiner, L. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal Applied of Ecology, 41(2): 263-274. 10.1111/j.0021-8901.2004.00881.x.
    » https://doi.org/10.1111/j.0021-8901.2004.00881.x
  • Feio, R.N.; Nascimento, L.B.; Da-Cruz, C.A.G.; Ferreira, P.L. & Pantoja, D.L. 2006. Anfíbios das áreas prioritárias dos Rios Jequitinhonha e Mucuri. In: Pinto, L.P.S. & Bede, L.C. Biodiversidade e conservação nos vales dos Rios Jequitinhonha e Mucuri. Brasília, Ministério do Meio Ambiente. p. 94-119.
  • Firpo, M.A.F.; Guimarães, B.D.S.; Dantas, L.G.; Silva, M.G.B.D.; Alves, L.M.; Chadwick, R.; Llopart, M.P. & Oliveira, G.S.D. 2022. Assessment of CMIP6 models’ performance in simulating present-day climate in Brazil. Frontiers in Climate, 4: 1-27, 948499. 10.3389/fclim.2022.948499.
    » https://doi.org/10.3389/fclim.2022.948499
  • Fordham, D.A.; Akçakaya, H.R.; Araújo, M.B.; Elith, J.; Keith, D.A.; Pearson, R.; Auld, T.D.; Mellin, C.; Morgan, J.W.; Regan, T.J.; Tozer, M.; Watts, M.J.; White, M.; Wintle, B.A.; Yates, C. & Brook, B.W. 2012. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology, 18(4): 1357-1371.
  • Garda, A.A.; Stein, M.G.; Machado, R.B.; Lion, M.B.; Juncá, F.A. & Napoli, M.F. 2017. Ecology, biogeography, and conservation of amphibians of the Caatinga. In: Silva, J.M.C.; Leal, I.R. & Tabarelli, M. (Eds.). Caatinga. Cham, Springer. p. 133-149, 10.1007/978-3-319-68339-3_5.
    » https://doi.org/10.1007/978-3-319-68339-3_5
  • Guedes, T.B.; Azevedo, J.A.R.; Bacon, C.D.; Provete, D.B. & Antonelli, A. 2020. Diversity, endemism, and evolutionary history of montane biotas outside the andean region. In: Rull, V. & Carnaval, A.C. Neotropical diversification: patterns and process, fascinating life sciences. New York, Springer. p. 299-328. 10.1007/978-3-030-31167-4_13.
    » https://doi.org/10.1007/978-3-030-31167-4_13
  • Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; Martin, T.G.; Rhodes, J.R.; Maggini, R.; Stterfield, S.A.; Elith, J.; Schwartz, M.W.; Possingham, H.P. & Buckley, Y.M. 2013. Predicting species distributions for conservation decisions. Ecology Letters ,16(12): 1424-1435. 10.1111/ele.12189.
    » https://doi.org/10.1111/ele.12189
  • Henriques, R.P.B.; Araujo, D.S.D. & Hay, J.D. 1986. Descrição e classificação dos tipos de vegetação da restinga de Carapebus, Rio de Janeiro. Revista Brasileira de Botânica, 9: 173-189.
  • Hijmans, R. 2023. _raster: Geographic Data Analysis and Modeling_. R package version 3.6-20. https://CRAN.R-project.org/package=raster
    » https://CRAN.R-project.org/package=raster
  • Hoorn, C. & Wesselingh, F. 2011. Amazonia: landscape and species evolution: a look into the past. John Wiley & Sons.
  • Intergovernmental Panel on Climate Change (IPCC). 2022. Climate change 2022: impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. 10.1017/9781009325844.
    » https://doi.org/10.1017/9781009325844
  • Izecksohn, E. 1959. Uma nova espécie de “Hylidae” da baixada Fluminense, Estado do Rio de Janeiro, Brasil. (Amphibia, Anura). Revista Brasileira Biologia, 19(3): 259-263.
  • Izecksohn, E. “1996” 1998. Novo gênero de Hylidae brasileiro (Amphibia, Anura). Revista da Universidade Rural, Série Ciência e Vida, 18: 47-52.
  • Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P. & Kessler, M. 2017. Climatologies at high resolution for the Earth land surface areas. Scientific Data, 4: 1-20, 170122. 10.1038/sdata.2017.122.
    » https://doi.org/10.1038/sdata.2017.122
  • Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Moreira, F.; Honrado, J. & Guisan, A. 2010. c. Overcoming the rare species modeling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143(11): 2647-2657. 10.1016/j.biocon.2010.07.007.
    » https://doi.org/10.1016/j.biocon.2010.07.007
  • Manel, S.; Dias, J.M.; Buckton, S.T. & Ormerod, S.J. 1999. Alternative methods for predicting species distribution: An illustration with Himalayan river birds. Journal of Applied Ecology , 36(5): 734-747. 10.1046/j.1365-2664.1999.00440.x.
    » https://doi.org/10.1046/j.1365-2664.1999.00440.x
  • Marciano-Jr., E.; Tanajura, G.; Costa, M.A.; Orrico, V.G.D. & Dias, I.R. 2021. Advertisement call and cytogenetics of Xenohyla eugenioi Caramaschi, 1998 (Amphibia; Anura; Hylidae), an enigmatic frog from northeastern Brazil. South American Journal of Herpetology, 20: 17-23. 10.2994/SAJH-D-18-00035.1.
    » https://doi.org/10.2994/SAJH-D-18-00035.1
  • MCcullagh, P. & Nelder, J.A. 1989. Generalized Linear Models. 2.ed. London, Chapman & Hall.
  • Metzger, J.P. 2010. O Código Florestal tem base científica? Natureza & Conservação, 8: 92-99. 10.4322/natcon.00801017.
    » https://doi.org/10.4322/natcon.00801017
  • Napoli, M.F. & Brandão, F. 2004. Geographic distribution: Xenohyla eugenioi. Herpetological Review, 35(3): 284.
  • Neves, M.O.; Cabral, H.; Pedrozo, M.; Ferreira, V.L.; Moura, M.R. & Santana, D.J. 2020. Dataset of occurrences and ecological traits of amphibians from Upper Paraguay River Basin, central South America. Nature Conservation, 41: 71-89. 10.3897/natureconservation.41.54265.
    » https://doi.org/10.3897/natureconservation.41.54265
  • Neves, M.O.; Pereira, E.A.; Sugai, J.L.M.; Rocha, S.B.; Feio, R.N. & Santana, D.J. 2018. Distribution pattern of anurans from three mountain complexes in southeastern Brazil and their conservation implications. Anais da Academia Brasileira de Ciências, 90(2): 1611-1623.
  • Nori, J.; Lemes, P.; Urbina-Cardona, N.; Baldo, D.; Lescano, J. & Loyola, R. 2015. Amphibian conservation, land-use changes and protected areas: A global overview. Biological Conservation , 191: 367-374. 10.1016/j.biocon.2015.07.028.
    » https://doi.org/10.1016/j.biocon.2015.07.028
  • Oliveira, U.; Soares-Filho, B.S.; Paglia, A.P.; Brescovit, A.D.; Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; Barbosa, J.P.P.P.; Stehmann, J.R.; Ascher, J.S.; Vasconcelos, M.F.; Marco, P.; Lowenberg-Neto, P.; Ferro, V.G. & Santos, A.J. 2017. Biodiversity conservation gaps in the Brazilian protected areas. Scientific Reports, 7: 1-9, 9141. 10.1038/s41598-017-08707-2.
    » https://doi.org/10.1038/s41598-017-08707-2
  • Orrico, V.G.; Grant, T.; Faivovich, J.; Rivera-Correa, M.; Rada, M.A.; Lyra, M.L.; Cassini, C.S.; Valdujo, P.H.; Schargel, W.E.; Machado, D.J.; Wheeler, W.C.; Barrio-Amorós, C.; Loebmann, D.; Moravec, J.; Zina, J.; Solé, M.; Sturaro, M.J.; Peloso, P.L.V.; Suarez, P. & Haddad, C.F.B. 2020. The phylogeny of Dendropsophini (Anura: Hylidae: Hylinae). Cladistics, 37(1): 73-105. 10.1111/cla.12429.
    » https://doi.org/10.1111/cla.12429
  • Pearson, R.G.; Raxworthy, C.J.; Nakamura, M. & Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1): 102-117.
  • Peixoto, O.L. 1995. Associação de anuros a bromeliáceas na Mata Atlântica. Revista Universidade Rural, Série Ciências da Vida, 17: 75-83.
  • Pierce, D. 2023. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files_. R package version 1.21. https://CRAN.R-project.org/package=ncdf4
    » https://CRAN.R-project.org/package=ncdf4
  • R Core Team. 2019. R: A Language and Environment for Statistical Computing. Version 3.5.2. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org
    » https://www.R-project.org
  • Ribeiro, M.C.; Martensen, A.C.; Metzger, J.P.; Tabarelli, M.; Scarano, F. & Fortin, M.J. 2011. The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. In: Zachos, F.E. & Habel, J.C. Biodiversity Hotspots: distribution and protection of conservation priority areas. Heidelberg, Springer. p. 405-434.
  • Ricklefs, R.E. & Schluter, D. 1993. Species diversity: regional and historical influences. In: Ricklefs, R.E. & Schluter, D. Species diversity in ecological communities: historical and geographical perspectives. Chicago, Chicago University Press. p. 350-363.
  • Silva, H.R. & Brito-Pereira, M.C. 2006. How much fruit do fruit-eating frogs eat? An investigation on the diet of Xenohyla truncata (Lissamphibia: Anura: Hylidae). Journal of Zoology, 270(4): 692-698. 10.1111/j.1469-7998.2006.00192.x.
    » https://doi.org/10.1111/j.1469-7998.2006.00192.x
  • Silvano, D. & Pimenta, B. 2004. Xenohyla eugenioi. 2004The IUCN Red List of Threatened Species . Available: https://www.iucnredlist.org/resources/baillie2004
    » https://www.iucnredlist.org/resources/baillie2004
  • Siqueira, M.F.; Durigan, G.; De-Marco, J.R.P. & Peterson, A.T. 2009. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. Journal for Nature Conservation , 17: 25-32.
  • Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters , 10(12): 1115-1123. 10.1111/j.1461-0248.2007.01107.x.
    » https://doi.org/10.1111/j.1461-0248.2007.01107.x
  • Tabarelli, M.; Pinto, L.P.; Silva, J.M.C.; Hirota, M.; & Bedê, L. 2005. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology, 19(3): 695-700.
  • Toledo, L.F.; Carvalho-e-Silva, S.P.; Sánchez, C.; Almeida, M.A. & Haddad, C.F.B. 2010. The review of the Brazilian Forest Act: harmful effects on amphibian conservation. Biota Neotropica, 10: http://www.biotaneotropica.org.br/v10n4/en/abstract?article+bn00410042010
    » http://www.biotaneotropica.org.br/v10n4/en/abstract?article+bn00410042010
  • Vasconcelos, T.S.; Nascimento, B.T.M. & Prado, V.H.M. 2018. Expected impacts of climate change threaten the anuran diversity in the Brazilian hotspots. Ecology and Evolution, 8(16): 7894-7906. 10.1002/ece3.4357.
    » https://doi.org/10.1002/ece3.4357
  • Wiens, J.A.; Stralberg, D.; Jongsomijt, D.; Howel, C.A. & Snyder, M.A. 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106 (Suppl. 2): 19729-19736. www.pnas.org_cgi_doi_10.1073_pnas.0901639106
    » www.pnas.org_cgi_doi_10.1073_pnas.0901639106
  • Xavier, A.L.; Guedes, T.B. & Napoli, M.F. 2015. Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil. PLoS ONE, 10(6): 1-18, e0128268. 10.1371/journal.pone.0128268.
    » https://doi.org/10.1371/journal.pone.0128268
  • FUNDING INFORMATION:

    This project did not use any external financial support.

Edited by

Edited by:

Pedro Murilo Sales Nunes

Publication Dates

  • Publication in this collection
    10 June 2024
  • Date of issue
    2024

History

  • Received
    14 Feb 2023
  • Accepted
    17 Nov 2023
  • Published
    02 Jan 2024
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br