SEM |
Morphological assessment; fiber sizing analysis; evaluation of interaction between fibers and matrix; investigation of failures, fractures, adhesion, gaps, corrosion, and deformation. |
[2929 Spackman, C. C., Frank, C. R., Picha, K. C., & Samuel, J. (2016). 3D printing of fiber-reinforced soft composites: process study and material characterization. Journal of Manufacturing Processes, 23, 296-305. http://dx.doi.org/10.1016/j.jmapro.2016.04.006. http://dx.doi.org/10.1016/j.jmapro.2016....
, 3434 Lopes, B. J., & D’Almeida, J. R. M. (2019). Initial development and characterization of carbon fiber reinforced ABS for future Additive Manufacturing applications. Materials Today: Proceedings, 8(Part 3), 719-730. http://dx.doi.org/10.1016/j.matpr.2019.02.013. http://dx.doi.org/10.1016/j.matpr.2019.0...
, 4141 El-Shekeil, Y. A., Sapuan, S. M., Khalina, A., Zainudin, E. S., & Al-Shuja’a, O. M. (2012). Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polymer Letters, 6(12), 1032-1040. http://dx.doi.org/10.3144/expresspolymlett.2012.108. http://dx.doi.org/10.3144/expresspolymle...
42 Martin, N., & Youssef, G. (2018). Journal of the Mechanical Behavior of Biomedical Materials Dynamic properties of hydrogels and fi ber-reinforced hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 85, 194-200. http://dx.doi.org/10.1016/j.jmbbm.2018.06.008. PMid:29908487. http://dx.doi.org/10.1016/j.jmbbm.2018.0...
43 Wang, Z., Zhao, X.-L., Xian, G., Wu, G., Raman, R. K. S., & Al-Saadi, S. (2017). Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Construction & Building Materials, 156, 985-1004. http://dx.doi.org/10.1016/j.conbuildmat.2017.09.045. http://dx.doi.org/10.1016/j.conbuildmat....
-4444 Li, H., Zhang, K., Fan, X., Cheng, H., Xu, G., & Suo, H. (2019). Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites. Composites. Part B, Engineering, 173, 106910. http://dx.doi.org/10.1016/j.compositesb.2019.106910. http://dx.doi.org/10.1016/j.compositesb....
, 7474 Jayakrishna, K., Rajiyalakshmi, G., & Deepa, A. (2019) Structural health monitoring of fiber polymer composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp.75-91). UK:Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102291-7.00005-8. http://dx.doi.org/10.1016/B978-0-08-1022...
75 Essabir, H., Bouhfid, R., & Qaiss, A. (2019) Fracture surface morphologies in understanding of composite structural behavior. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp. 277-293). UK: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102291-7.00014-9. http://dx.doi.org/10.1016/B978-0-08-1022...
76 Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., & Karthi, N. (2019). Study of mechanical and morphological properties of jute-tea leaf fiber reinforced hybrid composites: effect of glass fiber hybridization. Materials Today: Proceedings, 27(Part 3), 2372-2375.
77 Idicula, M., Malhotra, S. K., Joseph, K., & Thomas, S. (2005). Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Composites Science and Technology, 65(7–8), 1077-1087. http://dx.doi.org/10.1016/j.compscitech.2004.10.023. http://dx.doi.org/10.1016/j.compscitech....
78 Chandekar, H., Chaudhari, V., & Waigaonkar, S. (2020). A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 26(Part 2), 2079-2082. http://dx.doi.org/10.1016/j.matpr.2020.02.449. http://dx.doi.org/10.1016/j.matpr.2020.0...
79 Liu, X., He, Y., Qiu, D., & Yu, Z. (2019). Numerical optimizing and experimental evaluation of stepwise rapid high-pressure microwave curing carbon fiber/epoxy composite repair patch. Composite Structures, 230, 111529. http://dx.doi.org/10.1016/j.compstruct.2019.111529. http://dx.doi.org/10.1016/j.compstruct.2...
80 Di Mauro, C., Genua, A., Rymarczyk, M., Dobbels, C., Malburet, S., Graillot, A., & Mija, A. (2021). Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Composites Science and Technology, 205, 108678. http://dx.doi.org/10.1016/j.compscitech.2021.108678. http://dx.doi.org/10.1016/j.compscitech....
81 Fu, Y., Zhou, H., & Zhou, L. (2021). Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites. Composites Science and Technology, 207, 108711. http://dx.doi.org/10.1016/j.compscitech.2021.108711. http://dx.doi.org/10.1016/j.compscitech....
82 Xu, Y., Adekunle, K., Ramamoorthy, S. K., Skrifvars, M., & Hakkarainen, M. (2020). Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Composites Communications, 22, 100536. http://dx.doi.org/10.1016/j.coco.2020.100536. http://dx.doi.org/10.1016/j.coco.2020.10...
83 Miao, Y., Chen, H., Cui, G., & Qi, Y. (2021). Preparation of new conductive organic coating for the fiber reinforced polymer composite oil pipe. Surface and Coatings Technology, 412, 127017. http://dx.doi.org/10.1016/j.surfcoat.2021.127017. http://dx.doi.org/10.1016/j.surfcoat.202...
-8484 Balaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J., & Purushothaman, R. (2020). Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin. Results in Chemistry, 2, 100056. http://dx.doi.org/10.1016/j.rechem.2020.100056. http://dx.doi.org/10.1016/j.rechem.2020....
]
|
SEM/EDS |
Elemental analysis of surfaces after treatment; identification of ratios and chemical composition. |
[3535 Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. http://dx.doi.org/10.1016/j.compscitech.2010.01.022. http://dx.doi.org/10.1016/j.compscitech....
, 4545 Newbury, D. E., & Ritchie, N. W. M. (2015). Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). Journal of Materials Science, 50(2), 493-518. http://dx.doi.org/10.1007/s10853-014-8685-2. PMid:26346887. http://dx.doi.org/10.1007/s10853-014-868...
, 8282 Xu, Y., Adekunle, K., Ramamoorthy, S. K., Skrifvars, M., & Hakkarainen, M. (2020). Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Composites Communications, 22, 100536. http://dx.doi.org/10.1016/j.coco.2020.100536. http://dx.doi.org/10.1016/j.coco.2020.10...
, 8585 Louwsma, J., Carvalho, A., Lutz, J.-F., Joly, S., & Chan-Seng, D. (2021). Adsorption of phenylalanine-rich sequence-defined oligomers onto Kevlar fibers for fiber-reinforced polyolefin composite materials. Polymer, 217, 123465. http://dx.doi.org/10.1016/j.polymer.2021.123465. http://dx.doi.org/10.1016/j.polymer.2021...
86 Sánchez, M. L., Patiño, W., & Cárdenas, J. (2020). Physical-mechanical properties of bamboo fibers-reinforced biocomposites: influence of surface treatment of fibers. Journal of Building Engineering, 28, 101058. http://dx.doi.org/10.1016/j.jobe.2019.101058. http://dx.doi.org/10.1016/j.jobe.2019.10...
-8787 Yu, W., Zhang, H., Lan, A., Yang, S., Zhang, J., Wang, H., Zhou, Z., Zhou, Y., Zhao, J., & Jiang, Z. (2020). Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids and Surfaces. B, Biointerfaces, 193, 111098. http://dx.doi.org/10.1016/j.colsurfb.2020.111098. PMid:32498001. http://dx.doi.org/10.1016/j.colsurfb.202...
]
|
DSC |
Determination of phase transition, mainly Tg temperature in the matrix; evaluation of matrix curing process; curing degree. |
[2424 Mgbemena, C. O., Li, D., Lin, M.-F., Liddel, P. D., Katnam, K. B., Kumar, V. T., & Nezhad, H. Y. (2018). Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: a review of scientific challenges. Composites. Part A, Applied Science and Manufacturing, 115, 88-103. http://dx.doi.org/10.1016/j.compositesa.2018.09.012. http://dx.doi.org/10.1016/j.compositesa....
, 3636 Mak, K., & Fam, A. (2019). Freeze-thaw cycling effect on tensile properties of unidirectional flax fiber reinforced polymers. Composites. Part B, Engineering, 174, 106960. http://dx.doi.org/10.1016/j.compositesb.2019.106960. http://dx.doi.org/10.1016/j.compositesb....
, 4646 Canevarolo, S. V., Jr (2003). Técnicas de caracterização de polímeros. São Paulo: Artliber Editora.
47 Vijaya Kumar, K., Shailesh, P., Ranga Babu, J. A., & Kumar Puli, R. (2017). Preparation and characterization of GFRPC material. Materials Today: Proceedings, 4(2), 3053-3061. http://dx.doi.org/10.1016/j.matpr.2017.02.188. http://dx.doi.org/10.1016/j.matpr.2017.0...
48 Yu, A. Z., Rahimi, A. R., & Webster, D. C. (2018). High performance bio-based thermosets from dimethacrylated epoxidized sucrose soyate (DMESS). European Polymer Journal, 99, 202-211. http://dx.doi.org/10.1016/j.eurpolymj.2017.12.023. http://dx.doi.org/10.1016/j.eurpolymj.20...
49 Ferdosian, F., Zhang, Y., Yuan, Z., Anderson, M., & Xu, C. (2016). Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins. European Polymer Journal, 82, 153-165. http://dx.doi.org/10.1016/j.eurpolymj.2016.07.014. http://dx.doi.org/10.1016/j.eurpolymj.20...
50 Tesfaye, T., Sithole, B., Ramjugernath, D., & Mokhothu, T. (2018). Valorisation of chicken feathers: characterisation of thermal, mechanical and electrical properties. Sustainable Chemistry and Pharmacy, 9, 27-34. http://dx.doi.org/10.1016/j.scp.2018.05.003. http://dx.doi.org/10.1016/j.scp.2018.05....
-5151 Wang, S., & ElGawady, M. A. (2019). Effects of hybrid water Immersion, environmental exposures, and axial load on the mechanical properties of concrete filled epoxy-based glass fiber reinforced polymer tubes. Construction & Building Materials, 194, 311-321. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.232. http://dx.doi.org/10.1016/j.conbuildmat....
, 7878 Chandekar, H., Chaudhari, V., & Waigaonkar, S. (2020). A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 26(Part 2), 2079-2082. http://dx.doi.org/10.1016/j.matpr.2020.02.449. http://dx.doi.org/10.1016/j.matpr.2020.0...
79 Liu, X., He, Y., Qiu, D., & Yu, Z. (2019). Numerical optimizing and experimental evaluation of stepwise rapid high-pressure microwave curing carbon fiber/epoxy composite repair patch. Composite Structures, 230, 111529. http://dx.doi.org/10.1016/j.compstruct.2019.111529. http://dx.doi.org/10.1016/j.compstruct.2...
-8080 Di Mauro, C., Genua, A., Rymarczyk, M., Dobbels, C., Malburet, S., Graillot, A., & Mija, A. (2021). Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Composites Science and Technology, 205, 108678. http://dx.doi.org/10.1016/j.compscitech.2021.108678. http://dx.doi.org/10.1016/j.compscitech....
, 8888 Revanth, J. S., Madhav, V. S., Sai, Y. K., Krishna, D. V., Srividya, K., & Sumanth, C. H. M. (2019). TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides, jute and glass fiber. Materials Today: Proceedings, 26(Part 2), 460-465.
89 Mphahlele, K., Ray, S. S., & Kolesnikov, A. (2019). Cure kinetics, morphology development, and rheology of a high-performance carbon-fiber-reinforced epoxy composite. Composites. Part B, Engineering, 176, 107300. http://dx.doi.org/10.1016/j.compositesb.2019.107300. http://dx.doi.org/10.1016/j.compositesb....
-9090 Rahmani, N., Willard, B., Lease, K., Legesse, E. T., Soltani, S. A., & Keshavanarayana, S. (2015). The effect of post cure temperature on fiber/matrix adhesion of T650/Cycom 5320-1 using the micro-droplet technique. Polymer Testing, 46, 14-20. http://dx.doi.org/10.1016/j.polymertesting.2015.05.012. http://dx.doi.org/10.1016/j.polymertesti...
]
|
TGA |
Determination of fiber content; evaluation of thermal stability of composites; assessment of thermal decomposition of materials; characterization of the effects of dehydration and oxidation on material. |
[3434 Lopes, B. J., & D’Almeida, J. R. M. (2019). Initial development and characterization of carbon fiber reinforced ABS for future Additive Manufacturing applications. Materials Today: Proceedings, 8(Part 3), 719-730. http://dx.doi.org/10.1016/j.matpr.2019.02.013. http://dx.doi.org/10.1016/j.matpr.2019.0...
, 4646 Canevarolo, S. V., Jr (2003). Técnicas de caracterização de polímeros. São Paulo: Artliber Editora., 5252 Shubham, S. K., Purohit, R., Yadav, P. S., & Rana, R. S. (2019). Study of nano-fillers embedded in polymer matrix composites to enhance its properties: a review. Materials Today: Proceedings, 26(Part 2), 3024-3029.
53 Yee, R. Y., & Stephens, T. S. (1996). A TGA technique for determining graphite fiber content in epoxy composites. Thermochimica Acta, 272, 191-199. http://dx.doi.org/10.1016/0040-6031(95)02606-1. http://dx.doi.org/10.1016/0040-6031(95)0...
54 Moon, C., Bang, B., Choi, W., Kang, G., & Park, S. (2005). A technique for determining fiber content in FRP by thermogravimetric analyzer. Polymer Testing, 24(3), 376-380. http://dx.doi.org/10.1016/j.polymertesting.2004.10.002. http://dx.doi.org/10.1016/j.polymertesti...
55 Ghouti, H. A., Zegaoui, A., Derradji, M., Cai, W.-A., Wang, J., Liu, W.-B., & Dayo, A. Q. (2018). Multifunctional hybrid composites with enhanced mechanical and thermal properties based on polybenzoxazine and chopped Kevlar/carbon hybrid fibers. Polymers, 10(12), 1308. http://dx.doi.org/10.3390/polym10121308. PMid:30961233. http://dx.doi.org/10.3390/polym10121308...
-5656 Mak, K., & Fam, A. (2020). The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers. Composites. Part B, Engineering, 183, 107645. http://dx.doi.org/10.1016/j.compositesb.2019.107645. http://dx.doi.org/10.1016/j.compositesb....
, 7878 Chandekar, H., Chaudhari, V., & Waigaonkar, S. (2020). A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 26(Part 2), 2079-2082. http://dx.doi.org/10.1016/j.matpr.2020.02.449. http://dx.doi.org/10.1016/j.matpr.2020.0...
, 8080 Di Mauro, C., Genua, A., Rymarczyk, M., Dobbels, C., Malburet, S., Graillot, A., & Mija, A. (2021). Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Composites Science and Technology, 205, 108678. http://dx.doi.org/10.1016/j.compscitech.2021.108678. http://dx.doi.org/10.1016/j.compscitech....
, 8484 Balaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J., & Purushothaman, R. (2020). Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin. Results in Chemistry, 2, 100056. http://dx.doi.org/10.1016/j.rechem.2020.100056. http://dx.doi.org/10.1016/j.rechem.2020....
, 9191 Zin, M. H., Abdan, K., & Norizan, M. N. (2018). The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp. 1–17). UK: Woodhead Publishing. ]
|
FT-IR |
Fiber and matrix characterization; assessment of chemical changes, after surface modification of fiber or matrix through specific molecular vibration absorption; relationship between amount of surface treatment of fibers and intensity of infrared absorption ratio in IR spectra; fiber sizing analysis; degradation studies; aging or stability studies of FRP; water absorption in FRP development; non-destructive analyses: DRIFT, PAS, ATR, microscopy; destructive analysis: KBr pellet analyzed by transmission mode. |
[1212 Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites: feasibiliy study for sustainable automotive industries. In D. Verma, E. Fortunati, S. Jain, & X. Zhang (Eds.), Biomass, biopolymer-based materials, and bioenergy: construction, biomedical, and other industrial applications (pp. 103–122). UK: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102426-3.00006-0 http://dx.doi.org/10.1016/B978-0-08-1024...
, 3434 Lopes, B. J., & D’Almeida, J. R. M. (2019). Initial development and characterization of carbon fiber reinforced ABS for future Additive Manufacturing applications. Materials Today: Proceedings, 8(Part 3), 719-730. http://dx.doi.org/10.1016/j.matpr.2019.02.013. http://dx.doi.org/10.1016/j.matpr.2019.0...
, 3838 Thomason, J. (2020). A review of the analysis and characterisation of polymeric glass fibre sizings. Polymer Testing, 85, 106421. http://dx.doi.org/10.1016/j.polymertesting.2020.106421. http://dx.doi.org/10.1016/j.polymertesti...
, 4141 El-Shekeil, Y. A., Sapuan, S. M., Khalina, A., Zainudin, E. S., & Al-Shuja’a, O. M. (2012). Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polymer Letters, 6(12), 1032-1040. http://dx.doi.org/10.3144/expresspolymlett.2012.108. http://dx.doi.org/10.3144/expresspolymle...
, 4343 Wang, Z., Zhao, X.-L., Xian, G., Wu, G., Raman, R. K. S., & Al-Saadi, S. (2017). Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Construction & Building Materials, 156, 985-1004. http://dx.doi.org/10.1016/j.conbuildmat.2017.09.045. http://dx.doi.org/10.1016/j.conbuildmat....
, 5151 Wang, S., & ElGawady, M. A. (2019). Effects of hybrid water Immersion, environmental exposures, and axial load on the mechanical properties of concrete filled epoxy-based glass fiber reinforced polymer tubes. Construction & Building Materials, 194, 311-321. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.232. http://dx.doi.org/10.1016/j.conbuildmat....
, 5555 Ghouti, H. A., Zegaoui, A., Derradji, M., Cai, W.-A., Wang, J., Liu, W.-B., & Dayo, A. Q. (2018). Multifunctional hybrid composites with enhanced mechanical and thermal properties based on polybenzoxazine and chopped Kevlar/carbon hybrid fibers. Polymers, 10(12), 1308. http://dx.doi.org/10.3390/polym10121308. PMid:30961233. http://dx.doi.org/10.3390/polym10121308...
56 Mak, K., & Fam, A. (2020). The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers. Composites. Part B, Engineering, 183, 107645. http://dx.doi.org/10.1016/j.compositesb.2019.107645. http://dx.doi.org/10.1016/j.compositesb....
57 Rohman, A., Windarsih, A., Hossain, M. A. M., Johan, M. R., Ali, M. E., & Fadzilah, N. A. (2019). Application of near- and mid-infrared spectroscopy combined with chemometrics for discrimination and authentication of herbal products: a review. Journal of Applied Pharmaceutical Science, 9(3), 137-147. http://dx.doi.org/10.7324/JAPS.2019.90319. http://dx.doi.org/10.7324/JAPS.2019.9031...
58 Chua, C. Y. X., Liu, H.-C., Di Trani, N., Susnjar, A., Ho, J., Scorrano, G., Rhudy, J., Sizovs, A., Lolli, G., Hernandez, N., Nucci, M. C., Cicalo, R., Ferrari, M., & Grattoni, A. (2021). Carbon fiber reinforced polymers for implantable medical devices. Biomaterials, 271, 120719. http://dx.doi.org/10.1016/j.biomaterials.2021.120719. PMid:33652266. http://dx.doi.org/10.1016/j.biomaterials...
59 Sanches, N. B., Pedro, R., Diniz, M. F., Mattos, E. C., Cassu, S. N., & Dutra, R. C. L. (2013). Infrared spectroscopy applied to materials used as thermal insulation and coatings. Journal of Aerospace Technology and Management, 5(4), 421-430. http://dx.doi.org/10.5028/jatm.v5i4.265. http://dx.doi.org/10.5028/jatm.v5i4.265...
60 Magalhães, R. F., Barros, A. H., Takematsu, M. M., Sanches, N. B., Amado Quagliano, J. C., & Dutra, R. C. L. (2020). FT-IR surface analysis of poly [(4-hydroxybenzoic)-ran-(2-hydroxy-6-naphthoic acid)] fiber: a short review. Polymer Testing, 90, 106750. http://dx.doi.org/10.1016/j.polymertesting.2020.106750. http://dx.doi.org/10.1016/j.polymertesti...
61 Lin, J. (2002). Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion. European Polymer Journal, 38(1), 79-86. http://dx.doi.org/10.1016/S0014-3057(01)00176-8. http://dx.doi.org/10.1016/S0014-3057(01)...
62 Dai, Y., Meng, C., Tang, S., Qin, J., & Liu, X. (2019). Construction of dendritic structure by nano-SiO2 derivate grafted with hyperbranched polyamide in aramid fiber to simultaneously improve its mechanical and compressive properties. European Polymer Journal, 119, 367-375. http://dx.doi.org/10.1016/j.eurpolymj.2019.08.011. http://dx.doi.org/10.1016/j.eurpolymj.20...
63 Kondo, Y., Miyazaki, K., Takayanagi, K., & Sakurai, K. (2008). Surface treatment of PET fiber by EB-irradiation-induced graft polymerization and its effect on adhesion in natural rubber matrix. European Polymer Journal, 44(5), 1567-1576. http://dx.doi.org/10.1016/j.eurpolymj.2008.02.020. http://dx.doi.org/10.1016/j.eurpolymj.20...
64 Bansal, S., Ramachandran, M., & Raichurkar, P. (2017). Comparative analysis of bamboo using jute and coir fiber reinforced polymeric composites. Materials Today: Proceedings, 4(2), 3182-3187. http://dx.doi.org/10.1016/j.matpr.2017.02.203. http://dx.doi.org/10.1016/j.matpr.2017.0...
65 Ramachandran, M., Bansal, S., & Raichurkar, P. (2016). Experimental study of bamboo using banana and linen fibre reinforced polymeric composites. Perspectives in Science, 8, 313-316. http://dx.doi.org/10.1016/j.pisc.2016.04.063. http://dx.doi.org/10.1016/j.pisc.2016.04...
66 Bajwa, D. S., Adhikari, S., Shojaeiarani, J., Bajwa, S. G., Pandey, P., & Shanmugam, S. R. (2019). Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction & Building Materials, 204, 193-202. http://dx.doi.org/10.1016/j.conbuildmat.2019.01.068. http://dx.doi.org/10.1016/j.conbuildmat....
67 Yu, Z., Assif, J., Magoon, G., Kebabian, P., Brown, W., Rundgren, W., Peck, J., Miake-Lye, R., Liscinsky, D., & True, B. (2017). Differential photoacoustic spectroscopic (DPAS)-based technique for PM optical absorption measurements in the presence of light absorbing gaseous species. Aerosol Science and Technology, 51(12), 1438-1447. http://dx.doi.org/10.1080/02786826.2017.1363866. http://dx.doi.org/10.1080/02786826.2017....
68 Badawi, A., Al-Gurashi, W. O., Al-Baradi, A. M., & Abdel-Wahab, F. (2020). Photoacoustic spectroscopy as a non-destructive technique for optical properties measurements of nanostructures. Optik (Stuttgart), 201, 163386. http://dx.doi.org/10.1016/j.ijleo.2019.163389. http://dx.doi.org/10.1016/j.ijleo.2019.1...
69 Takematsu, M. M., Diniz, M. F., Mattos, E. C., & Dutra, R. C. L. (2018). Sheath-core bicomponent fiber characterization by FT-IR and other analytical methodologies. Polimeros: Ciência e Tecnologia, 28(4), 339-347. http://dx.doi.org/10.1590/0104-1428.09016. http://dx.doi.org/10.1590/0104-1428.0901...
70 Senophiyah-Mary, J., & Loganath, R. (2020). A novel method of utilizing waste Printed Circuit Board for the preparation of Fibre Reinforced Polymer. Journal of Cleaner Production, 246, 119063. http://dx.doi.org/10.1016/j.jclepro.2019.119063. http://dx.doi.org/10.1016/j.jclepro.2019...
71 Ji, C., Wang, B., Hu, J., Zhang, C., & Sun, Y. (2020). Effect of different preparation methods on mechanical behaviors of carbon fiber-reinforced PEEK-Titanium hybrid laminates. Polymer Testing, 85, 106462. http://dx.doi.org/10.1016/j.polymertesting.2020.106462. http://dx.doi.org/10.1016/j.polymertesti...
72 Perret, B., Schartel, B., Stöß, K., Ciesielski, M., Diederichs, J., Döring, M., Krämer, J., & Altstädt, V. (2011). Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. European Polymer Journal, 47(5), 1081-1089. http://dx.doi.org/10.1016/j.eurpolymj.2011.02.008. http://dx.doi.org/10.1016/j.eurpolymj.20...
-7373 Donadon, B. F., Mascia, N. T., Vilela, R., & Trautwein, L. M. (2020). Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement. Engineering Structures, 202, 109818. http://dx.doi.org/10.1016/j.engstruct.2019.109818. http://dx.doi.org/10.1016/j.engstruct.20...
, 8282 Xu, Y., Adekunle, K., Ramamoorthy, S. K., Skrifvars, M., & Hakkarainen, M. (2020). Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Composites Communications, 22, 100536. http://dx.doi.org/10.1016/j.coco.2020.100536. http://dx.doi.org/10.1016/j.coco.2020.10...
, 8484 Balaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J., & Purushothaman, R. (2020). Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin. Results in Chemistry, 2, 100056. http://dx.doi.org/10.1016/j.rechem.2020.100056. http://dx.doi.org/10.1016/j.rechem.2020....
, 9292 Adole, O., Anguilano, L., Minton, T., Campbell, J., Sean, L., Valisios, S., & Tarverdi, K. (2020). Basalt fibre-reinforced high density polyethylene composite development using the twin screw extrusion process. Polymer Testing, 91, 106467. http://dx.doi.org/10.1016/j.polymertesting.2020.106467. http://dx.doi.org/10.1016/j.polymertesti...
, 9393 Shelly, D., Nanda, T., & Mehta, R. (2021). Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties. Composites. Part A, Applied Science and Manufacturing, 145, 106371. http://dx.doi.org/10.1016/j.compositesa.2021.106371. http://dx.doi.org/10.1016/j.compositesa....
]
|