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ABSTRACT. This paper deals with the two-dimensional strip packing problem (2D-SPP) with the order/or
multi-drop and vertical stability constraints. The existing exact algorithm that solves this problem is not
able to provide optimal solutions on large instances in a reasonable amount of time. Hence, with a view
to quickly obtain a physically stable packing of minimum height while satisfying the order constraint,
the Biased Random-Key Genetic Algorithm (BRKGA) is combined with Bottom-Left-Fill (BLF) and Open
Space (OS) heuristics. Both versions of the algorithm (BRKGA + BLF and BRKGA + OS) retrieved optimal
solutions on many benchmark instances, consuming lesser computational time than the exact algorithm.
A comparative study was also performed between the BRKGA, Simulated Annealing (SA) and Particle
Swarm Optimization (PSO) algorithms on newly generated large instances. Moreover, the effectiveness
of the BRKGA has also been checked on the classical 2D-SPP and two-dimensional orthogonal packing
problem (2D-OPP) datasets.

Keywords: multi-drop requirements, vertical stability, Biased Random-Key Genetic Algorithm.

1 INTRODUCTION

The strip packing problem, owing to its large industrial applications in different fields, is
still drawing considerable attention of researchers around the world. In this paper, the two-
dimensional strip packing problem (2D-SPP) is under consideration. In the 2D-SPP, a strip of
finite width and virtually infinite height and a set of rectangular items are given. The goal is to
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orthogonally pack all these rectangular items into the strip such that no two items overlap and the
packing height is minimized. The 2D-SPP has different variants depending on the orientation and
guillotine constraints. The problem addressed in this paper is subtype “OF” (Lodi et al., 1999) in
which the items have a fixed orientation and no guillotine cutting is required.

A survey on the 2D-SPP can be found in the recent study conducted by Júnior et al. (2022). It
is observed that most existing works on the 2D-SPP in fact do not consider real-life practical
constraints. One such constraint is called the vertical stability. The vertical stability constraint
ensures that after being packed, the items do not rotate or fall down due to the force of gravity.
The other practical constraint that naturally arises in packing problems is the order constraint.
It is also referred as the multi-drop or Last In First Out (LIFO) constraint. Assuming that items
will be unloaded from the up-side of the strip, the order constraint states that if the order of item
i is greater than the order of item j, then item i must not block the way out when unloading
item j. A somewhat similar situation occurs in the capacitated vehicle routing problem with
two-dimensional loading constraints (2L-CVRP) (Wei et al., 2018). In a vehicle route, while
unloading/delivering items of one client, there should not exist items of other clients ahead on
the route blocking the way out of the items of the current client (Silva et al., 2022).

This paper considers both the order and stability constraints while solving the 2D-SPP. Hence-
forth, the considered problem will be termed as two-dimensional strip packing problem with
order and stability constraints (2SPOS). A typical example of the 2SPOS is the problem of load-
ing freight trains, where loading the freight cars (or the containers used in double-stack cars)
can be seen as a loading of pallets satisfying the order and static stability constraints (Queiroz &
Miyazawa, 2014). The 2D-SPP is NP-hard (Hochbaum & Maass, 1985), and the consideration
of the order and stability constraints makes the 2SPOS even more complex to be solved.

The existing exact algorithm for the 2SPOS is computationally expensive and could solve only
small-sized instances. Meta-heuristics are fast and have already shown their strengths in obtain-
ing (near) optimal solutions on large packing problems. These techniques are commonly com-
bined with a placement algorithm (decoding algorithm) for solving cutting and packing problems
(Soke & Bingul, 2006). Motivated by these facts, in this study the Biased Random Key Genetic
Algorithm (BRKGA) with Bottom-Left-Fill (BLF) and Open Space (OS) placement heuristics is
implemented for the 2SPOS. The reason for choosing the BRKGA is its success in solving a va-
riety of hard optimization problems, including packing problems (Gonçalves & Resende, 2013;
Junior et al., 2020). There exist many decoding algorithms in the literature for packing problems.
They pack items following different rules, which generate packings of different heights. In the
present case, one decoding algorithm may create a stable packing and the other may not. There-
fore, in this work, two different decoding algorithms (BLF and OS) were utilized. Another widely
used meta-heuristics for solving complex combinatorial optimization problems are the Simulated
Annealing (SA) and Particle Swarm Optimization (PSO). There have also been many successful
applications of SA and PSO for cutting and packing problems. For example, Burke et al. (2009)
achieved very good solutions for the two-dimensional rectangular cutting stock problem using
the SA algorithm. Omar & Ramakrisnan (2013) successfully applied an evolutionary PSO for
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solving the non-oriented two dimensional bin packing problem. In this work, therefore, SA and
PSO have also been tested for the 2SPOS.

In order to evaluate the performance of the BRKGA, comparative studies have been performed
on a variety of datasets. First of all, the performance of both versions of the BRKGA (BRKGA +
BLF and BRKGA + OS) is checked against the exact algorithm of Queiroz & Miyazawa (2014)
on the available 2SPOS dataset. Following this, the BRKGA + BLF/OS, SA + BLF/OS and PSO
+ BLF/OS algorithms are compared with each other on newly generated large 2SPOS instances.
The BRKGA + BLF outperforms all others on the 2SPOS datasets; hence, lastly its effectiveness
is also examined on the classical 2D-SPP and 2D-OPP benchmark datasets. The 2D-OPP (two-
dimensional Orthogonal Packing Problem) consists in determining if a set of rectangular items
can be packed in the strip of a given length size.

The 2D-OPP appears, for example, as a sub-problem of the 2D-SPP and 2L-CVRP. Therefore,
having good algorithms for the 2D-SPP means having good algorithms for the 2D-OPP, which
in turn, can allow solving the 2L-CVRP efficiently. In the 2L-CVRP, considering practical con-
straints is a must while approaching real logistic situations, e.g., considering the order (multi-
drop requirements), load balancing, load stability, among others. Hence, in this work, 2SPOS is
tackled with a view to develop a good and fast algorithm for it. The proposed BRKGA generates
very good solutions for 2SPOS as well as for 2D-SPP and 2D-OPP in reasonable computational
time, which justifies the present work.

The rest of the paper is organized as follows. The next section presents a literature review on
the 2D-SPP. Section 3 introduces the 2SPOS in detail, including a discussion on the stability. In
section 4, the workings of all the proposed algorithms are explained in detail. In section 5, per-
formance of algorithms is assessed on the basis of obtained results on multiple datasets. Lastly,
the conclusion and possible extensions of this work are presented in section 6.

2 LITERATURE REVIEW

A large number of researchers have contributed to solving the 2D-SPP. Due to high complexity
of the problem, heuristics and meta-heuristics have mainly been preferred. Baker et al. (1980)
proposed the well-known Bottom-Left (BL) heuristic, which places a rectangle at the lowest
possible position and left-justifying it. The BL is fast, but unable to fill “holes” (empty spaces
surrounded by previously placed rectangles). To overcome this drawback, Chazelle (1983) devel-
oped the Bottom-Left-Fill heuristic. Liu & Teng (1999) further proposed the Improved Bottom-
Left, which always gives priority to the down movement. Zhang et al. (2006) developed a fast
recursive heuristic to find the minimum height for the 2D-SPP. Burke et al. (2004) proposed the
Best-Fit (BF) heuristic for the two-dimensional rectangular cutting stock problem. Their method
selects the best rectangle for the placement according to the spaces to be filled into the strip. A
bidirectional best-fit heuristic was later proposed by Aşık & Özcan (2009). Leung et al. (2011)
also utilized the concept of best-fit and proposed a scoring rule based heuristic for the 2D-SPP.
Verstichel et al. (2013) proposed Three-way Best-Fit (T-w BF) heuristic, adding three new cri-
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teria in the placement procedure. Wei et al. (2009) presented a Least-Waste-First strategy based
heuristic for the 2D-SPP that determines the best pair of position and rectangle for the placement.
Wei et al. (2011) proposed a skyline based heuristic, suggesting a set of priority rules. Wei et al.
(2017) further improved the skyline heuristic by introducing the fitness number while selecting
the best rectangle. He et al. (2013) earlier proposed a deterministic heuristic algorithm for the
2D-SPP in which orthogonal rotation of pieces was allowed.

Several other researchers hybridized meta-heuristics with heuristic placement rules to further
enhance the solution quality. For example, Jakobs (1996) implemented Genetic Algorithm with
the BL method. Liu & Teng (1999) also used Genetic Algorithm with the BL heuristic. Hopper
& Turton (2001) combined Genetic Algorithm, Simulated Annealing, and Tabu Search with the
BL/BLF and evaluated their performance for the 2D-SPP. Burke et al. (2009) obtained improved
solutions by the hybridization of the BF heuristic together with Simulated Annealing and the
BLF. Dereli & Daş (2007) proposed a new recursive placement procedure, which was combined
with Simulated Annealing for the 2D-SPP. Leung et al. (2011) presented a two-stage Intelli-
gent Search Algorithm with their improved BF heuristic, which is based on a scoring rule. Yang
et al. (2013) proposed a Simple Randomized Algorithm, improving the scoring rule and intro-
ducing the least waste priority strategy in the placement heuristic. Wei et al. (2016) presented an
efficient Intelligent search Algorithm involving three stages, each using a heuristic approach to
construct solutions based on an improved scoring rule and the least-waste-first strategy. Wei et al.
(2011) proposed the Iterative Doubling Binary Search algorithm with their skyline based heuris-
tic. İsmail Babaoğlu (2017) presented an implementation of the fruit fly optimization algorithm
to solve the 2D-SPP. The aim of his study was to find the best sequence of the rectangles with
FOA, and then to place the rectangles by the BLF approach. Another popular meta-heuristic for
the 2D-SPP is the effective corner increment-based algorithm of (Chen & Chen, 2018).

More recently, Rakotonirainy & van Vuuren (2020) proposed two improved meta-heuristics for
the 2D-SPP. The first algorithm is a hybrid of Simulated Annealing and a heuristic construc-
tion algorithm, while the second algorithm involves application of Simulated Annealing directly
in the space of completely defined packing layouts, without an encoding of solutions. Alvarez-
Valdes et al. (2008) presented a greedy randomized adaptive search procedure (GRASP) for
the 2D-SPP, investigating several strategies for the constructive and improvement phases. Burke
et al. (2011) presented a much simpler but equally competitive iterative packing methodology
based on squeaky wheel optimization for the 2D-SPP. Shalaby & Kashkoush (2013) proposed
the particle swarm optimization algorithm for a 2D irregular strip packing problem. Júnior et al.
(2017) proposed a parallel Biased Random-Key Genetic Algorithm with multiple populations for
the irregular strip packing problem by applying a collision-free region concept as the positioning
method. Bortfeldt (2006) suggested a Genetic algorithm for the 2D-SPP that works without any
encoding of solutions. Rather, fully defined layouts are manipulated as such by means of spe-
cific genetic operators. Yuan & Liu (2009) approached the 2D-SPP using max-min ant system
and an improved placement strategy. Gómez-Villouta et al. (2010) presented a reinforced Tabu
Search algorithm for the 2D-SPP. Recently, Grandcolas & Pain-Barre (2022) presented a hybrid
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meta-heuristic approach called Progress and Verify Strategy for the 2D-SPP. It relies on two pro-
cedures: a local search algorithm that delivers satisfying placements of items on the horizontal
axis, and an exact procedure that searches for the positions of items on the vertical axis.

Most of the research works mentioned above solve the classical 2D-SPP. However, there exists
some other studies, which tackle the 2D-SPP considering additional constraints. Wei et al. (2019)
solved the two-dimensional strip packing problem with unloading constraints (2DSPU) and pro-
posed an open space based first-fit heuristic to generate a packing pattern for a given sequence
of items. They also used a randomized local search to improve the solution by trying different
sequences. Silveira et al. (2014) presented approximation algorithms for the 2DSPU. Earlier,
Silveira et al. (2013) proposed two approximation algorithms and a GRASP for the 2DSPU and
did extensive computational experiments to verify the performance of these algorithms. Queiroz
& Miyazawa (2013) solved the 2D-SPP considering multi-drop and load bearing constraints.
Moreover, Queiroz & Miyazawa (2014) investigated the 2SPOS proposing a branch-and-cut
approach.

Some other works that deal with the stability constraint were proposed for the container load-
ing problem (Ramos et al., 2016; Christensen & Rousøe, 2009; Bracht et al., 2016; Tarantilis
et al., 2009; Martı́nez-Franco et al., 2020). To the best of our knowledge, the work of Queiroz
& Miyazawa (2014) is only that considers the order and stability constraints together in the con-
text of 2D-SPP. Their algorithm may require large computational time and could solve only very
small-sized instances. Hence, in this work, an attempt has been made to develop a fast algorithm
that could produce good solutions in reasonable computation time even on large instances of the
2SPOS. Since the BRKGA has already been successfully applied to solve the 2D and 3D bin
packing problems, in this paper it is hybridized with the BLF and OS heuristics for the consid-
ered problem. The SA and PSO are also considered with these heuristics in order to evaluate the
performance of BRKGA on instances of different sizes.

3 PROBLEM BACKGROUND

In the 2SPOS, there is a strip S of width W and unbounded height, and a set of N items, each
item i with width wi, height hi, order number oi, and mass mi. The oi represents the unload order
of item i (items with a smaller oi are unloaded first). It is assumed that the items are unloaded
from the top of the strip using only vertical movements. The bottom-left corner of the strip has
coordinates (0,0) and its width (height) side is parallel to the x(y)-axis. The bottom-left corner
of an item i packed in S is represented by the coordinates (xi,yi). The problem’s objective is
to pack all items into S in order to minimize the packing height while satisfying the following
constraints:

• All items must be inside the strip.

• All items must be packed orthogonally.

• Items cannot be rotated.
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• Items cannot overlap each other.

• The resulting packing needs to be vertically stable.

• Items must respect the order constraint: for any two items i and j, where oi ≤ o j, (x j ≥
xi +wi)∨ (xi ≥ x j +w j)∨ (yi ≥ y j +h j) must be true.

3.1 Stability in 2SPOS

This section details how to check whether an item in the packing is vertically stable or unstable.
To do so, it is assumed that only the force of gravity with the intensity of g = 9.81 m/s2 is acting
on items and no other external forces are present on the packing. Let A+

i (A−i ) be the set of items
immediately above (below) and in direct contact with item i. Now, consider the Figure 1, where:

1. Fw
i is the weight of item i, i.e, Fw

i = mig. It is acting at the geometric center of item i.

2. Fi j is the force acting on the top of i that is transferred from j. For j ∈ A+
i , there is Fi j = Fv

j
if A−j = {i}, otherwise, Fi j = ηi jFv

j . Force Fi j acts on i according to two cases: at the same
vertical direction of the j center of mass if A−j only has i; or, at the middle of the contact
surface between j and i if A−j has two or more items.

3. Fv
i is the resultant force in the vertical direction, which is obtained by summing up Fw

i and
Fi j, for all j ∈ A+

i .

To exemplify the calculation of η , let’s consider items q1, q2 and q3. Forces Fq1i, Fq2i and Fq3i

that are on the top of them have been transferred from item i, as illustrated in Figure 1. The b and
c are mid points of the horizontal gaps between q1 & q2 and q2 & q3, respectively. In the absence
of gaps, these points will denote the points at which items touch each other. The a and d are end
points of the bottom face of item i. So, for the leftmost item q1, the value of ηq1i is the area of
item i between the left end point a and the mid point b divided by the complete area of item i.
The calculation of ηq1i is in the same way if the left edge of q1 is at the same x-coordinate or
right side of the left edge of item i. For the intermediate item q2, ηq2i is equal to the area of item

Figure 1 – Example of vertical forces acting on a packing.
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i between the mid point b and the mid point c divided by the complete area of item i. Lastly, for
the rightmost item q3, ηq3i equals the area of item i between the mid point c and the right end
point d divided by the complete area of item i. The ηq3i is calculated in the same way if the right
edge of q3 is at the same x-coordinate or left side of the right edge of item i. Once the value of η

is known, the transferred forces can be calculated. For example, Fq1i is equal to ηq1iFv
i . It is to be

noted that this is a heuristic way to transfer the forces and it does not always guarantee that the
transferred forces are correct.

Queiroz & Miyazawa (2014) determined the transferred forces in a different way when |A−i | ≥ 2.
They assumed that i is the structural element called beam and the adjacent items in A−i are
columns that gives support to i. Due to the interaction between the beam and the columns, reac-
tion forces appear. These reactions forces actually represent the forces that are transferred from
i to it’s supporting items. In the case of two supports (two items in A−i ), static equilibrium equa-
tions of rigid bodies were used to calculate reaction forces. In the case of three or more supports,
the three-moment equation method was applied. In the case of a single support, Fv

i is totally
transferred as same as in this paper. Their method of vertical stability checking can be computa-
tionally expensive as the calculation of reaction forces is made on O

(
n3
)
. In this paper, therefore,

a heuristic approach is adopted to estimate the transferred forces quickly.

Furthermore, Fv
i acts at the center of mass. Its position along the the x-axis (∆v

i ) is calculated by
the formula shown in the equation (1).

∆
v
i =

Fw
i δi +∑ j∈A+

i
Fi jδ j

Fw
i +∑ j∈A+

i
Fi j

(1)

in which δi and δ j are the coordinates on the x-axis where the respective forces Fw
i and Fi j are

acting on i. Note that, when only the weight force is acting on an item, its center of mass coincides
with the geometric center. In the presence of forces from other items, the center of mass shifts to
∆v

i . Moreover, an item i is considered stable if the projection of ∆v
i lies above any item j ∈ A−i or

between two items in A−i or on the floor of the strip. The packing is said to be vertically stable if
all the items packed in it are stable.

The items in the packing are analyzed from top to bottom and left to right for those packed at
the same y-coordinate. While doing so, the resultant vertical force (Fv

i ) and its position on each
item are saved. To obtain the transferred forces on any item i, the items j immediately above i
and in direct contact with it are determined first. For each j, it is checked which items are present
immediately below and in direct contact with j. If there is only i, then the resultant vertical
force of item j is fully transferred to i. Otherwise, item i receives a fraction of the resultant
vertical force of item j, which is determined by the η calculation method described above. Once
transferred forces are known, ∆v

i is calculated and checked whether it lies in one of the stable
regions. A pseudocode describing all these steps for checking the vertical stability has also been
provided in Algorithm 1 (Appendix II).
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4 SOLUTION METHODOLOGY

The integration of meta-heuristics with heuristic placement rules has worked well on complex
packing problems. In this paper, the biased random-key genetic algorithm, simulated annealing
and particle Swarm Optimization meta-heuristics have been amalgamated with the bottom-left-
fill and open space heuristic to solve the 2SPOS. These algorithms follow the standard framework
proposed in the literature. In the next sections, the working process of these techniques and how
they are applied to handle the 2SPOS have been discussed.

4.1 Biased random-key genetic algorithm

The Genetic Algorithm (GA), introduced by Holland (1975), is widely accepted as a powerful
optimization technique for solving real-world hard combinatorial optimization problems quickly,
reliably and accurately. The main building blocks of the GA are “chromosomes”, which represent
candidate solutions to the optimization problem. The traditional GA often produces infeasible
chromosomes upon crossover in the case of sequencing problems and hence, extra computational
effort is needed to repair them. In order to circumvent this, Bean (1994) proposed the random-
key genetic algorithm (RKGA). In RKGA, chromosomes are represented as vectors of so called
“keys” (randomly generated real numbers in the interval [0,1]). And, parameterized uniform
crossover (Spears & DeJong, 1991) is used that always generates legal off-springs. Aiming to
further improve the performance of the RKGA, Gonçalves & Resende (2011) developed the
biased random-key genetic algorithm (BRKGA) by making a slight modification in the mating
selection of the RKGA.

The framework of the BRKGA is illustrated in Figure 2. It begins with the initialization of a
population comprising of p random-key vectors. Each component of a key vector is a uniformly
randomly generated real number in the interval [0,1]. The fitness of each key vector (individ-
ual or chromosome) is evaluated, and the current population is partitioned into two groups of
individuals: a group with pe elite individuals (solutions with the best fitness values) and the
remaining p− pe non-elite individuals. Then, a new population for the next generation is cre-
ated. All elite individuals are copied into it without any modifications. The mutation process is
ensured by adding pm mutants, which are also key vectors generated in the same way that an
individual of the initial population is generated. To keep the population size constant, the rest of
the p− (pm + pe) slots in the new population are filled with off-springs created by the crossover
operation. In the BRKGA, the crossover is performed between randomly chosen an elite solu-
tion and a non-elite solution. While in the RKGA it is done between any two randomly chosen
solutions from the entire population. When the new population is complete, fitness values are cal-
culated for all the newly created random-key vectors and the population is partitioned into elite
and non-elite individuals to continue the evolution process. A pseudocode of BRKGA is pro-
vided in Algorithm 2 (Appendix II). The implementation details of the BRKGA for the 2SPOS
are discussed in sections 4.1.1 and 4.1.2.
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Figure 2 – An iteration of BRKGA.

Figure 3 – Generation of the item packing sequence.

4.1.1 Population and decoding

The BRKGA is a population based global search meta-heuristic technique. Its performance is
greatly enhanced when it can explore different parts of the search space with a diverse set of
solutions. Thus, in order to promote diversity and favor an unbiased investigation of the whole
solution space, the initial population is generated uniformly randomly. Each chromosome is en-
coded as a vector of random keys and having length equal to N (total number of rectangular
items in an instance of the problem). The random keys (real numbers in [0,1]) are used to ob-
tain a packing sequence of items. To explain this, consider Figure 3 showing 8 items and a key
vector. Each item is associated with a key (item 1 with the first key, item 2 with the second key
and so on). The key values are sorted in the descending order, and the positions of items in the
sorted key vector define the sequence in which they will be inserted into the strip. For example,
in Figure 3, the obtained packing sequence is (7,6,2,4,1,3,8,5).

While applying the BRKGA on the 2SPOS instances, the packing sequence obtained by sorting
keys is further modified by the Algorithm 3 (Appendix II). And, then the placement heuristic
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(BLF/OS) is applied that packs items one by one following the new modified sequence. In the
case of 2D-SPP/2D-OPP instances, Algorithm 3 is not used, and the packing sequence obtained
after sorting keys is directly used by the placement heuristic.

Algorithm 3 was proposed after preliminary experiments on the 2SPOS instances. It was ob-
served that the BRKGA+BLF/OS with packing sequences obtained by sorting keys was not able
to find feasible solutions due to violation of the order constraint. Algorithm 3 rearranges items
in a descending order of their order numbers. Due to different order of items having the same
order number in the packing sequences generated by sorting keys, Algorithm 3 produces dif-
ferent strings. In the packing sequence created by Algorithm 3, higher order number items are
packed before lower order number items. By this way of packing the BRKGA+BLF/OS could
find packing patterns that do not violate the order constraint.

4.1.2 Crossover

The crossover is a process of mixing genes of parent solutions to produce offsprings. One of the
motivations behind the development of the BRKGA (or RKGA) is to avoid infeasible chromo-
somes created by the traditional crossover operators (e.g., one point or two-point operators). So,
following this notion, parameterized uniform crossover has been utilized in which there is no
such feasibility issue. In order to describe this, let e, ē and c be an elite parent, a non-elite parent,
and an offspring, respectively. Their length is equal to N, and k represents a component/gene
(k = 1,2,3, . . . ,N) of the key vectors. The probability of crossover is pc. For each component
k of the offspring, a random number between 0 and 1 is generated. If it is less than or equal to
pc then the offspring takes the corresponding gene value from the elite parent (i.e., c(k) = e(k)),
otherwise, c(k) = ē(k).

4.2 Simulated annealing

Simulated Annealing (SA) is a local search based meta-heuristic proposed by Metropolis et al.
(1953). It imitates the physical process of annealing in which a solid is heated up to a prede-
termined temperature and then allowed to cool slowly to gain uniform hardness. The general
framework of SA for the minimization problem has been shown in Algorithm 4 (Appendix II). It
consists of two nested loops. The inner loop simulates the achievement of thermal equilibrium at
a given temperature, so it is referred as the thermal equilibrium loop. The outer loop performs the
cooling process, in which the temperature is decreased from its initial value towards zero until
certain convergence criterion is achieved, so this loop is referred as the cooling loop or annealing
loop. SA starts with the generation of an initial feasible solution (So). In each step of the inner
loop, a neighbour solution (S′) is generated. If the neighbour solution (S′) is better than the cur-
rent solution (S), then S′ is accepted. Otherwise, the neighbour solution (S′) is accepted as the
current solution (S) with a probability of acceptance that depends on the energy (fitness value)
as well as on the current temperature. Afterwards, the best found solution (S∗) is updated. After
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exiting from the inner loop, the current temperature is reduced by a geometric cooling schedule
and then the inner loop is restarted.

In this paper, the initial solution is randomly generated as a permutation of item numbers. To
search for neighbour candidate solutions, SA uses the Swap method in which two items are
randomly selected and their positions are exchanged. On the 2SPOS instances, however, solutions
are further modified by Algorithm 3 (Appendix II) before calling the BLF/OS heuristic for the
same reason of getting infeasible solutions due to violation of the order constraint.

4.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm mimics cognitive and collaborative be-
haviours of swarm of birds during the search of food. In PSO, each individual in the swarm
is referred as a particle. To reach at the desired destination, particles navigate the hyperspace
(problem’s solution space). In the process of exploration, they memorize their own best positions
and the best position discovered by the swarm. In order to move from one position to the other,
particles update their velocities and positions according to equations (2) and (3).

Vl(t) = Ω×Vl(t−1)+C1× rand(.)×
(

Xbest
l −Xl(t−1)

)
+C2× rand(.)×

(
Xbest

s −Xl(t−1)
)

(2)

Xl(t) =Vl(t)+Xl(t−1) (3)

where: Ω is the inertia weight constant; Vl(t) is the velocity of particle l at tth iteration; C1

and C2, respectively, denote cognitive and collaborative ability of particles called accelerations
coefficients; rand(.) is a randomly generated value between 0 and 1; Xl represents the current
position of particle l; Xbest

l and Xbest
s denote the best position of an individual particle l and the

global best position found by swarm, respectively.

As shown in equations (2) and (3), each particle adjusts its position based on its own best-known
solution (personal best) and the best solution discovered by the entire group (global best). This
collaborative movement enables particles to converge toward optimal solutions over iterations.
A detailed pseudocode of PSO has been shown in Algorithm 5 (Appendix II). Each iteration
consists of three phases: updating velocities/positions, updating personal best positions, and up-
dating the global best position. The position of a particle is encoded as a vector of length N (total
number of rectangular items in an instance of the problem). Each component of a position vector
is a real number in [lb,ub]. During the search process, if any component of a position vector
becomes less than lb, it is reset at lb and if becomes greater than ub, it is reset equal to ub. The
velocity of a particle is also a vector of length N. Each component of the initial velocity vectors
is a uniformly randomly generated real number in [0,1]. To obtain a packing sequence, a position
vector is sorted in the same way as a key vector in BRKGA. As in SA and BRKGA, Algorithm
3 is used on the 2SPOS instances when applying the PSO algorithm.
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4.4 Bottom-left-fill and Open space

The bottom-left-fill (BLF) heuristic packs items one by one in accordance with a given sequence.
It strictly adheres to the condition that no items packed can be moved further to the bottom or to
the left. In BLF, a list of insertion positions is maintained. Among the feasible insertion positions
from the list, the position with the minimum y-coordinate is selected, breaking ties with the
minimum x-coordinate. An insertion position is considered feasible when upon insertion the
(partial/complete) packing obtained satisfies all the constraints, including the stability one.

In the beginning, the position list (pList) contains only the origin, which is the coordinate of the
bottom left corner of the strip. Whenever an item is inserted, its loading position is erased from
the pList and at most four new insertion points are added into the pList. This is illustrated in
Figure 4. An item i having width w and height h is placed at the position (x,y). The four new
insertion positions created are as follows: (1) bottom right corner of item i (x+w,y), (2) top left
corner of item i (x,y+h), (3) minimum non-occupied y-axis point of the right edge projection
of item i (x+w,y′), and (4) leftmost non-occupied point of the top edge projection of item i
(x′,y+h). To update the pList after insertion of item i, the position (x,y) is deleted and the newly
created four positions are added into the pList. Moreover, duplicate position entries are removed
from pList.

The open space (OS) heuristic also packs the rectangles one by one following an ordered se-
quence of rectangles. This method uses the open space to represent the candidate position that
the rectangle can be placed at. A list of candidate positions is maintained during the packing
process, and the first position in the list at which the (partial/complete) packing obtained after
the insertion satisfies all the constraints is selected. It is suggested to see the research article of
Wei et al. (2019) for a detailed description of the open space heuristic. In this paper, exactly the
same version proposed in Wei et al. (2019) has been implemented.

It is to be noted that there is no change in the original BLF and OS heuristics under the order
and stability constraints. The order and stability constraints of the (partial/complete) packing are
checked while detecting the feasibility of an insertion position. Moreover, while applying the
BLF/OS, if for any item a feasible insertion position is not found, then the solution is considered
infeasible and an infinitely large packing height is assigned to it.

5 RESULTS AND DISCUSSION

This section presents a detailed description of exhaustive experiments accomplished in this re-
search. The algorithms described in the previous section have been tested on a wide range of
benchmark instances. The first test set includes 26 small-sized 2SPOS instances created by
Queiroz & Miyazawa (2014). The strip width (W ) and the number of items (N) in these in-
stances vary in the range of 10-60 and 5-20, respectively. The order of each item was randomly
chosen in the set {1,2,3,4}, while the mass of an item is given by its area. The second dataset
consists of 15 newly generated 2SPOS instances, called MQM. These instances are partitioned
into three groups: (1) MQM1 - MQM5 (W = 80 and N = 125), (2) MQM6 - MQM10 (W = 60
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Figure 4 – Insertion of an item in BLF.

and N = 100) and (3) MQM11 - MQM15 (W = 40 and N = 75). The dimensions (wi,hi) of
each item i were generated randomly in the closed interval [0.10W,0.40W ]. The order number an
item receives is uniformly chosen in [1,Ct ], where Ct = ⌈ tN

10 ⌉ and t = 2,4,6,8,10, respectively,
for 1st ,2nd , . . . ,5th instance in each group. The mass of an item is equivalent to its area. Three
classical 2D-SPP datasets; namely, C, beng and NT(N) were also used. The C dataset (Hopper
& Turton, 2001) consists of 21 instances with W and N ranging between 20-160 and 16-197,
respectively. The minimum and maximum number of items in the beng instances (Bengtsson,
1982) are 20 and 200, while W is either 25 or 40. In the NT(N) dataset (Hopper, 2000), W is
200 for all 35 instances and N lies between 17-197. The last dataset, called CJCM, contains 42
2D-OPP instances generated by Clautiaux et al. (2007). This set of 42 instances is divided into 15
feasible (F) and 27 infeasible (NF) instances. For each instance, the container is a square 20×20
and the number of items 10≤N ≤ 23. The algorithms were coded in C++ on Visual Studio Code
1.74.2 and run on Linux server with Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60 GHz and 32 GB
of RAM.

In order to achieve high-quality solution for each problem instance, detailed experiments have
been performed for several possible governing control parameters of BRKGA, SA, and PSO.
While doing experiments for the BRKGA, pe and pm have been varied in the range of 10-25%
and 15-30%, respectively, in a step of 5. Also, three values of pc (0.70, 0.75, 0.80) were tested.
It was observed that the combination of pe : 0.10× p and pm : 0.15× p with pc value of 0.70
produce better results. Furthermore, the population comprising 30-100 key vectors was checked
and it was found that BRKGA was best with the population size (p) of 30 for 2SPOS/2D-SPP
datasets and 100 for the 2D-OPP dataset. A higher population size than these required more
computing time without a respective positive gain in the final solution. So, the (p, pe, pm, pc)

value of (30,3,5,0.70) and (100,10,15,0.70) were held constant for 2SPOS/2D-SPP instances
and 2D-OPP instances, respectively. The BRKGA was allowed to run till 2300 cpu seconds on
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2SPOS/2D-SPP instances and 900 cpu seconds on 2D-OPP instances. Likewise, through some
initial experiments, the To, Tf and α values in SA were set at 1.0, 0.01 and 0.9, respectively.
The control parameter Len was inspected by varying in the range of 30-100. The Len value of
100 was used finally as it generated much better solutions. As the pseudo code of SA shows, it
was allowed to explore the search space until the current temperature falls below Tf . Similarly,
parameters of PSO were set after executing some experiments. The population size (number of
particles) was set at 30. Three values of Ω (0.3, 0.6, 0.9) were checked and PSO was found to be
better with Ω value of 0.9. The acceleration coefficients C1 and C2 were set at 1.5, and [lb,ub]
was set as [−5,5]. The PSO was also allowed to explore the search space till 2300 cpu seconds.
The presented results by BRKGA/SA/PSO on each instance in Tables 1, 2, 3, A1, A2, A3 and
A4 belong to the best of 5 runs.

The results obtained by the two versions of the BRKGA (BRKGA + BLF and BRKGA + OS)
on the first 2SPOS test set have been provided in Table 1. The entry “-” represents that the time
limit was reached (that is, greater than or equal to 2300 cpu seconds), and no feasible solution
was found. The optimal solutions obtained by the branch & cut (BCut) algorithm of Queiroz &
Miyazawa (2014) have also been shown. The columns labeled H and cpu time(s) give packing
heights and computational times, respectively, obtained by the algorithms. As it can be seen,
BRKGA + BLF and BRKGA + OS performed very well, retrieving optimal solutions on 11
and 9 instances, respectively. Moreover, BRKGA has found to be much faster than BCut. For
example, on the instance SS03-60-8, BCut obtained the packing height of 16 while consuming
a large computational time of 1004.00 seconds, whereas BRKGA + BLF and BRKGA + OS
gave the same packing height in just 0.0150 and 0.0087 cpu seconds, respectively. Furthermore,
the deviation/gap from the optimum packing height is extremely small on the instances BRKGA
could not retrieve the optimal solution. For example, on the instances SS01-20-15 and SS03-20-
15, packing heights produced by BRKGA + BLF/OS deviate from the optimum values by 2 and
1 unit(s), respectively. In fact, on 10 instances BRKGA + BLF produced the deviation of less
than 5 units from the optimum packing height. While BRKGA + OS gave the deviation of less
than 5 units on 12 instances. On the ngcut09 instance, the algorithm could not produce a feasible
solution due to violation of the stability constraint. The placement heuristics (BLF/OS) could not
find a feasible insertion position (in terms of stability) for an item (say i). Upon seeing such an
item i in the packing, it was observed that infeasibility occurred because the projection of ∆v

i was
lying in the hole below (empty space surrounded by previously placed rectangles), which was
not between two items in A−i . Overall, BRKGA + BLF seems to be better as it obtained lesser
packing height on 3 instances in negligible computational times.

To better assess the effectiveness of both versions of BRKGA, a comparative analysis is being
made between them and against the SA and PSO algorithms on the 15 large MQM instances.
Tables 2 and 3 present results on the MQM dataset by BRKGA/SA and PSO, respectively. The
column labeled D(%) gives a measure of the compactness of the packing. It is calculated by the
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Table 1 – Results on 2SPOS dataset by Queiroz & Miyazawa (2014)

BCut BRKGA + BLF BRKGA + OS
Instance N W H cpu time(s) H cpu time(s) H cpu time(s)
ngcut01 5 10 11 0.00 11 0.0023 11 0.0021
ngcut02 7 10 15 1.00 15 0.0060 15 0.0060
ngcut03 10 10 16 19.00 16 0.6803 19 0.0149
ngcut04 5 15 8 0.00 8 0.0073 8 0.0047
ngcut05 7 15 15 2.00 15 0.0058 15 0.0078
ngcut06 10 15 15 364.00 15 0.0553 16 0.0121
ngcut07 5 20 11 0.00 11 0.0019 11 0.0038
ngcut08 7 20 19 9.00 19 0.0076 19 0.0100
ngcut09 10 20 31 358.00 – – – –
ngcut10 5 30 46 2.00 46 0.0014 46 0.0036
ngcut11 7 30 33 7.00 33 0.0186 33 0.0046
SS01-20-15 15 20 6 13.00 8 0.0330 8 0.0326
SS02-20-15 15 20 6 246.00 8 0.6792 8 0.1049
SS03-20-15 15 20 7 7.00 8 0.1208 8 0.0321
SS01-20-20 20 20 9 117.00 13 0.2256 13 0.1244
SS02-20-20 20 20 8 68.00 12 1.3405 12 0.1231
SS03-20-20 20 20 8 42.00 12 0.1935 12 0.0706
SS01-40-8 8 40 12 42.00 15 0.0216 15 0.0213
SS02-40-8 8 40 11 144.00 16 2.0093 16 2.0055
SS03-40-8 8 40 10 12.00 14 0.0128 14 0.0062
SS01-40-15 15 40 15 3600.00 22 1.2599 22 0.1412
SS02-40-15 15 40 15 3600.00 21 0.3427 21 0.1051
SS03-40-15 15 40 15 3600.00 22 1.6642 23 0.3295
SS01-60-8 8 60 14 368.00 15 0.0113 15 0.0074
SS02-60-8 8 60 15 3600.00 16 0.0144 16 0.0078
SS03-60-8 8 60 16 1004.00 16 0.0150 16 0.0087

formula shown below in equation (4). So, the higher is the D value, more compact/dense is the
packing. A dense packing is preferred as it will be more stable.

D =
∑

N
i=1 wi×hi

W ×H
×100(%) (4)

where, W is the strip width and H is the packing height. The compactness of the packing ob-
tained by the algorithms is greater than 75% on all instances. However, the BRKGA + BLF
algorithm is the best in generating more compact packings. It obtained better D values than
BRKGA + OS, SA + OS, SA + BLF, PSO + OS, and PSO + BLF on 11, 12, 11, 12, and 10
instances, respectively. On two instances (MQM6 and MQM11), the BRKGA + OS could obtain

Pesqui. Oper., Rio de Janeiro, Vol. 44, 2024: e284365



16 A BIASED RANDOM-KEY GENETIC ALGORITHM FOR THE 2D STRIP PACKING PROBLEM

Table 2 – Results on 2SPOS dataset MQM.

BRKGA + BLF BRKGA + OS SA + OS SA + BLF
Instance N W H cpu time(s) D(%) H cpu time(s) D(%) H cpu time(s) D(%) H cpu time(s) D(%)
MQM1 125 80 733 1242.34 84.2070 729 1134.17 84.6691 733 852.984 84.2070 728 614.778 84.7854
MQM2 125 80 780 699.805 85.1538 793 711.381 83.7579 800 995.270 83.0250 774 1299.67 85.8140
MQM3 125 80 759 304.143 82.8969 761 117.584 82.6790 763 474.786 82.4623 760 316.522 82.7878
MQM4 125 80 748 1044.92 83.5695 762 443.628 82.0341 764 207.792 81.8194 769 1052.34 81.2874
MQM5 125 80 725 853.812 82.4431 732 374.847 81.6547 736 321.921 81.2109 735 185.524 81.3214
MQM6 100 60 442 459.213 83.8914 435 449.084 85.2414 443 368.207 83.7020 437 757.105 84.8513
MQM7 100 60 412 876.075 86.5170 416 571.907 85.6851 422 529.527 84.4668 419 669.116 85.0716
MQM8 100 60 444 877.138 87.7778 450 252.572 86.6074 460 317.313 84.7246 454 324.999 85.8443
MQM9 100 60 435 840.728 84.7203 461 414.899 79.9422 460 318.965 80.1159 445 526.485 82.8165
MQM10 100 60 467 872.743 83.9115 468 345.439 83.7322 472 281.141 83.0226 468 98.7686 83.7322
MQM11 75 40 231 138.207 85.5303 227 124.902 87.0374 230 115.291 85.9022 229 415.587 86.2773
MQM12 75 40 209 83.6365 87.2608 210 191.428 86.8452 217 214.585 84.0438 214 77.2622 85.2220
MQM13 75 40 226 174.278 85.7412 226 268.756 85.7412 232 239.637 83.5237 227 203.206 85.3634
MQM14 75 40 200 75.7704 84.5000 203 54.4951 83.2512 197 157.746 85.7868 202 24.4563 83.6634
MQM15 75 40 198 65.8791 85.3535 203 192.805 83.2512 206 51.3828 82.0388 202 12.7919 83.6634
Avg. – – 467.266 573.912 84.898 471.733 376.526 84.141 475.666 363.103 83.336 470.466 438.574 84.166

better D values than the others. On just one instance (MQM14), the compactness of the packing
formed by the SA + OS is better. Whereas SA + BLF gave better D values than the others on
two instances (MQM1 and MQM2). The BRKGA + BLF also found the most dense/compact
packing with the D value of 87.7778% on MQM8. While the least dense packing was created
by the BRKGA + OS on MQM9, obtaining the D value of 79.9422%. The (max, min) D val-
ues given by the BRKGA + BLF, BRKGA + OS, SA + OS, SA + BLF, PSO + OS, and PSO
+ BLF are (87.7778%, 82.4431%), (87.0374%, 79.9422%), (85.9022%, 80.1159%), (86.2773%,
81.2874%), (86.2773%, 80.5542%), and (86.9940%, 81.7124%), respectively. Furthermore, the
BRKGA + BLF gave an average D value of 84.898%, whereas the BRKGA + OS, SA + OS, SA
+ BLF, PSO + OS, and PSO + BLF obtained average D values of 84.141%, 83.336%, 84.166%,
83.533%, and 84.449%, respectively. These values clearly show that BRKGA + BLF outper-
formed BRKGA + OS, SA + OS, SA + BLF, PSO + OS, and PSO + BLF with regard to the
packing compactness. It happened so due the ability of the BLF to fill holes (empty spaces
surrounded by previously packed rectangles) together with the greater search space exploration
capability of BRKGA. The D value is inversely proportional to the packing height H. Hence, the
BRKGA + BLF, which is better than the others in obtaining higher D values, is also the best in
obtaining packings with minimum heights. It could not give better H value than BRKGA + OS,
SA + OS, SA + BLF, PSO + OS, and PSO + BLF on just 3, 2, 4, 3, and 5 instances, respectively.
The average H value given by BRKGA + BLF (467.266 units) is significantly better than that
achieved by BRKGA + OS (471.733 units), SA + OS (475.666 units), SA + BLF (470.466 units),
PSO + OS (475.933), and PSO + BLF (470.600). It was noticed that Ct corresponds to the (mini-
mum) 20% of N on MQM1, MQM6, and MQM11. And, of these three instances, BRKGA + OS
obtained packings with lesser heights than the others on two instances (MQM6 and MQM11)
and SA + BLF gave better H value than the others on one instance (MQM1).

It is evident that BRKGA + BLF is the best among the applied algorithms for the 2SPOS. To
further check its robustness, it was applied on the classical 2D-SPP and 2D-OPP datasets. Tables
A1, A2, and A3 (Appendix I) show the results achieved on 2D-SPP datasets. The details of N,
W , and LB in these tables can be found in Wei et al. (2011). The columns labeled LB and gap(%)
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Table 3 – Results on 2SPOS dataset MQM.

PSO + BLF PSO + OS
Instance N W H cpu time(s) D(%) H cpu time(s) D(%)
MQM1 125 80 746 583.789 82.7396 743 1973.68 83.0737
MQM2 125 80 798 1749.96 83.2331 809 442.012 82.1014
MQM3 125 80 752 2013.18 83.6686 759 356.229 82.8969
MQM4 125 80 765 1451.72 81.7124 772 429.193 80.9715
MQM5 125 80 726 1749.25 82.3295 742 816.730 80.5542
MQM6 100 60 445 1582.09 83.3258 441 1820.41 84.0816
MQM7 100 60 413 1006.71 86.3075 419 1046.38 85.0716
MQM8 100 60 448 1031.90 86.9940 456 844.202 85.4678
MQM9 100 60 437 1299.68 84.3326 456 1221.17 80.8187
MQM10 100 60 463 1049.00 84.6364 468 132.274 83.7322
MQM11 75 40 230 440.556 85.9022 229 1131.64 86.2773
MQM12 75 40 211 1595.21 86.4336 214 1152.48 85.2220
MQM13 75 40 225 886.854 86.1222 228 1154.00 84.9890
MQM14 75 40 200 676.215 84.5000 201 749.633 84.0796
MQM15 75 40 200 74.3602 84.5000 202 219.682 83.6634
Avg. – – 470.600 1146.032 84.449 475.933 899.314 83.533

in these tables show lower bounds and percentage deviations of obtained packing heights from
lower bounds. The gap is defined as 100× (H − LB)/LB. On the C dataset, BRKGA + BLF
retrieved the lower bound on 4 instances. It produced the gap of less than 6% on 18 instances
while giving the overall small average gap of 4.19%. The performance of BRKGA + BLF is
also good and consistent on the beng dataset. On all instances, the solution quality deviates from
the optimum/LB by less than 4%. It gave an average gap of just 2.93%, consuming an average
computational time of 241.795 cpu seconds. Whereas on 19 NT(N) instances, the gap given by
BRKGA + BLF is less than or equal to 6%. The average gap is even smaller, i.e, 5.67%. Table A4
(Appendix I) displays the results obtained on the 2D-OPP dataset CJCM. The ε is a parameter
used in the generation of instances [see Clautiaux et al. (2007) for details]. The Hb stands for
the height of the bin/strip. The notations F and NF under column Feas. stand for the feasible
and infeasible instance, respectively. An instance is feasible if the packing height (H) obtained
by the algorithm after placing all items is less than or equal to Hb; otherwise, it is infeasible.
The performance of BRKGA+BLF is close to the exact algorithm of Clautiaux et al. (2007). Of
15 feasible instances, BRKGA+BLF found solutions for 12 instances. The BRKGA+BLF could
provide solutions in less than 4 cpu seconds for 8 feasible instances. The infeasible instances
remained infeasible. However, the packing height obtained by BRKGA+BLF deviates from the
bin height by just 1 or 2 units on infeasible instances.

Based on the above comparative and analytical study of the obtained results on a variety of
datasets, it can now be stated that the BRKGA achieves the targeted goals. In conjunction with
the BLF, it not only produces vertically stable packings with minimum heights quickly on the
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2SPOS datasets, but also turned out to be effective on the classical 2D-SPP and 2D-OPP datasets.
Thus, BRKGA establishes itself as an attractive algorithm for cutting and packing problems.

6 CONCLUDING REMARKS AND FUTURE WORKS

In this research, the two dimensional strip packing problem with order and stability constraints
(2SPOS) has been tacked by the integration of meta-heuristics and two placement heuristics. Mo-
tivated by the successful application of BRKGA in the field of combinatorial complex problems,
it has been employed in conjunction with the BLF/OS placement heuristic to quickly obtain high-
quality packings. A comparative and analytical study is performed between two versions of the
algorithm: BRKGA + BLF and BRKGA + OS. They are compared with SA + BLF/OS and PSO
+ BLF/OS on the 2SPOS instances. The result demonstrates the superiority of BRKGA + BLF
among the applied algorithms. Extending the research, the effectiveness of BRKGA + BLF is also
tested on the classical 2D-SPP and 2D-OPP instances. The small deviations of packing heights
from the lower bounds on the 2D-SPP instances and quick generation of solutions for most of the
feasible 2D-OPP instances confirm its highly robust nature. Moreover, the distribution of forces
in the packing by heuristic means also made BRKGA fast.

In future, this research can be extended by incorporating other practical constraints and objec-
tives (e.g., load bearing, horizontal stability, and fragility requirements). To propose an enhanced
version of BRKGA or a new solution methodology for the 2SPOS could be interesting. Finally,
the stability heuristic proposed in this paper can be used in other problems such as the 2L-CVRP.
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GONÇALVES JF & RESENDE MG. 2013. A biased random key genetic algorithm for 2D and 3D
bin packing problems. International Journal of Production Economics, 145(2): 500–510.
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APPENDIX I

Table A1 – Results on 2D-SPP dataset C.

Instance BRKGA + BLF
Name N W LB H cpu time(s) gap(%)
C11 16 20 20 20 2.2494 0.00
C12 17 20 20 21 0.0967 5.00
C13 16 20 20 20 0.2982 0.00
C21 25 40 15 15 37.0256 0.00
C22 25 40 15 16 0.1374 6.66
C23 25 40 15 15 41.614 0.00
C31 28 60 30 31 40.2822 3.33
C32 29 60 30 31 98.7852 3.33
C33 28 60 30 31 73.2538 3.33
C41 49 60 60 63 123.253 5.00
C42 49 60 60 63 131.865 5.00
C43 49 60 60 63 38.7805 5.00
C51 73 60 90 95 117.538 5.55
C52 73 60 90 95 173.526 5.55
C53 73 60 90 94 725.779 4.44
C61 97 80 120 127 337.362 5.83
C62 97 80 120 128 161.216 6.66
C63 97 80 120 127 380.323 5.83
C71 196 160 240 253 1197.09 5.41
C72 197 160 240 254 518.332 5.83
C73 196 160 240 255 1004.99 6.25
Avg. - - 82.14 86.52 247.7999 4.19
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Table A2 – Results on 2D-SPP dataset beng.

Instance BRKGA + BLF
Name N W LB H cpu time(s) gap(%)
beng1 20 25 30 31 0.1229 3.33
beng2 40 25 57 59 91.5347 3.50
beng3 60 25 84 86 281.843 2.38
beng4 80 25 107 110 453.388 2.80
beng5 100 25 134 137 474.893 2.23
beng6 40 40 36 37 156.691 2.77
beng7 80 40 67 69 198.168 2.98
beng8 120 40 101 104 350.881 2.97
beng9 160 40 126 130 201.085 3.17
beng10 200 40 156 161 209.349 3.20
Avg. - - 89.8 92.4 241.795 2.93
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Table A3 – Results on 2D-SPP dataset NT(N).

Instance BRKGA + BLF
Name N W LB H cpu time(s) gap(%)
n1a 17 200 200 200 68.0163 0.0
n1b 17 200 200 209 2.59804 4.5
n1c 17 200 200 211 0.10281 5.5
n1d 17 200 200 207 5.26973 3.5
n1e 17 200 200 200 48.5089 0.0
n2a 25 200 200 212 83.6716 6.0
n2b 25 200 200 209 50.3541 4.5
n2c 25 200 200 213 66.8893 6.5
n2d 25 200 200 214 16.5433 7.0
n2e 25 200 200 211 34.3348 5.5
n3a 29 200 200 214 18.0326 7.0
n3b 29 200 200 213 20.2273 6.5
n3c 29 200 200 211 25.5847 5.5
n3d 29 200 200 211 71.3916 5.5
n3e 29 200 200 210 25.9999 5.0
n4a 49 200 200 213 162.491 6.5
n4b 49 200 200 215 212.894 7.5
n4c 49 200 200 213 131.287 6.5
n4d 49 200 200 213 109.633 6.5
n4e 49 200 200 212 117.105 6.0
n5a 73 200 200 214 220.288 7.0
n5b 73 200 200 213 358.001 6.5
n5c 73 200 200 214 130.872 7.0
n5d 73 200 200 214 163.645 7.0
n5e 73 200 200 213 309.622 6.5
n6a 97 200 200 213 118.552 6.5
n6b 97 200 200 211 141.725 5.5
n6c 97 200 200 214 298.961 7.0
n6d 97 200 200 214 602.135 7.0
n6e 97 200 200 212 565.384 6.0
n7a 197 200 200 211 768.0 5.5
n7b 197 200 200 211 1057.68 5.5
n7c 197 200 200 209 1058.3 4.5
n7d 197 200 200 212 1196.25 6.0
n7e 197 200 200 211 1639.97 5.5
Avg. - - 200 211.34 282.87 5.67
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Table A4 – Results on 2D-OPP dataset CJCM.

Instance BRKGA + BLF
ε N W Hb Feas. Feas. H cpu time(s)
00 10 20 20 NF NF 22 0.022256
00 15 20 20 NF NF 21 1.526080
00 23 20 20 NF NF 21 0.707631
00 23 20 20 NF NF 21 22.77910
02 17 20 20 F F 20 0.311232
02 20 20 20 F NF 21 1.279720
02 22 20 20 F F 20 3.776630
02 20 20 20 NF NF 22 0.178222
03 10 20 20 NF NF 21 0.149776
03 15 20 20 NF NF 21 0.763581
03 16 20 20 NF NF 21 854.6230
03 17 20 20 NF NF 21 573.6290
03 18 20 20 F NF 21 1.029370
04 15 20 20 F NF 21 0.219845
04 17 20 20 F F 20 66.47570
04 19 20 20 F F 20 2.001320
04 20 20 20 F F 20 2.556090
04 15 20 20 NF NF 22 0.404958
04 17 20 20 NF NF 21 195.3120
04 18 20 20 NF NF 22 4.341920
05 15 20 20 F F 20 169.0780
05 18 20 20 F F 20 266.0550
05 20 20 20 F F 20 0.870590
05 15 20 20 NF NF 21 0.305335
05 17 20 20 NF NF 21 0.741521
05 15 20 20 NF NF 21 0.055521
07 15 20 20 F F 20 1.157360
07 10 20 20 NF NF 22 0.159582
07 15 20 20 NF NF 21 0.063973
07 15 20 20 NF NF 21 2.244130
08 15 20 20 F F 20 96.95340
08 15 20 20 NF NF 21 0.058781
10 10 20 20 NF NF 21 0.024781
10 15 20 20 NF NF 22 0.062777
10 15 20 20 NF NF 21 204.1260
13 10 20 20 NF NF 21 0.021681
13 15 20 20 NF NF 22 0.058696
13 15 20 20 NF NF 22 0.179233
15 10 20 20 NF NF 21 0.045907
15 15 20 20 NF NF 22 0.060220
20 15 20 20 F F 17 0.608625
20 15 20 20 F F 20 0.149543
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APPENDIX II

Algorithm 1 Pseudocode for checking vertical stability
Input: A partial/complete packing;

Check items one by one from top to bottom;
If at the same y-coordinate, check items one by one from leftmost to rightmost;

1: for each item i do
Determining transferred forces on item i from item j (Fi j) :

2: Determine set A+
i ;

3: for each j ∈ A+
i do

4: Determine set A−j ;
5: if A−j has only i then
6: The vertical resultant force of j is fully transferred to i, i.e, Fi j = Fv

j ;
7: Determine δ j; ▷ Coordinate on the x-axis where the transferred force is acting on i
8: else
9: Item i receives a fraction of the vertical resultant force of j, i.e, Fi j = ηi jFv

j ;
10: Determine δ j;
11: end if
12: end for

13: Determine weight force of item i;
14: Determine δi; ▷ Coordinate on the x-axis where the weight force is acting on i
15: Determine the vertical resultant force on item i (Fv

i );
16: Determine ∆v

i by equation (1); ▷ Coordinate on the x-axis where the Fv
i is acting on i;

17: if ∆v
i lies in a stable region then

18: Item i is stable;
19: end if
20: end for
21: if All items in the packing are stable then
22: Packing is vertically stable;
23: end if
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Algorithm 2 Pseudocode of BRKGA
Step 1: Generate the initial population composed of p random-key vectors, where each component is a uniformly
randomly generated real number in the interval [0, 1].

Step 2: Set the initial population as the Current Population.

Step 3: Apply the decoding procedure to each key vector in the Current Population.

Step 4: Compute the value of the objective function for each solution in the Current Population.

Step 5: Select the best pe (1 < pe < p) solutions (designated elite) based on the values of the objective function from
the Current Population and add them to the New Population that will be considered in the next iteration.

Step 6: Generate pm (1 < pm < p)) new random-key vectors as in Step 1, called mutants, and add them to the New
Population that will be considered in the next iteration.

Step 7: Generate the remaining (p− pe− pm) vectors to complete the New Population that will be considered in the
next iteration by crossing one of the pe vectors corresponding to an elite solution with one of the (p− pe) vectors
corresponding to one of the non-elite solutions in the Current Population.

Step 8: Set the the New Population as the Current Population.

Step 9: Iterate from Step 3 while the stopping criteria are not satisfied.

Algorithm 3 Sorting algorithm
Input: S[ ] = s1,s2, . . . ,sN ; ▷ a vector permutation of N items
1: Get: O[ ] = o(s1),o(s2), . . . ,o(sN); ▷ a vector of order numbers of items
2: for (i = 0; i < N−1; i++) do
3: copy1;
4: copy2;
5: for ( j = i+1; j < N; j++) do
6: if (O[i]< O[ j]) then
7: copy1← O[i];
8: O[i]← O[ j];
9: O[ j]← copy1;

10: copy2← S[i];
11: S[i]← S[ j];
12: S[ j]← copy2;
13: end if
14: end for
15: end for
Output: Snew = S;
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Algorithm 4 Pseudocode of Simulated Annealing
Input: So,To,Tf ,α,Len;
Output: Best solution S∗;
1: S∗← So;
2: S← So;
3: T ← To;
4: while T > Tf do
5: for i← 1 to Len do
6: S′← Swap(S);
7: △ f = f (S′)− f (S);
8: if△ f < 0 then
9: S← S′;

10: else
11: if r < e

−△ f
T then ▷ r: a random number in [0,1]

12: S← S′;
13: end if
14: end if
15: if f (S′)< f (S∗) then
16: S∗← S′;
17: end if
18: end for
19: T ← T ∗α;
20: end while

Algorithm 5 Pseudocode of Particle Swarm Optimization
1: Initialize position and velocity vectors of particles;
2: Set current positions of particles as their personal best positions;
3: Determine global best;
4: while stopping criterion not satisfied do
5: for l← 1 to P do ▷ P: number of particles
6: Update velocity of particle l using equation (2);
7: Update position of particle l using equation (3);
8: end for

Updating personal best:
9: for l← 1 to P do

10: if f (Xl)< f (Xbest
l ) then

11: Xbest
l ← Xl ;

12: end if
13: end for

Updating global best:
14: Xbest

s ← Xbest
1

15: for l← 2 to P do
16: if f (Xbest

l )< f (Xbest
s ) then

17: Xbest
s ← Xbest

l ;
18: end if
19: end for
20: end while
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