
�

�

“main” — 2014/4/27 — 23:51 — page 107 — #1
�

�

�

�

�

�

Pesquisa Operacional (2014) 34(1): 107-116
© 2014 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

GENERALIZATING PATH AND FAN GRAPHS:
SUBCOLORING AND TOUGHNESS

Lilian Markenzon1* and Christina F.E.M. Waga2

Received February 26, 2013 / Accepted February 24, 2014

ABSTRACT. Two graph classes are presented; the first one (k-ribbon) generalizes the path graph and the

second one (k-fan) generalizes the fan graph. We prove that they are subclasses of chordal graphs and so

they share the same structural properties of this class. The solution of two problems are presented: the

determination of the subchromatic number and the determination of the toughness. It is shown that the

elements of the new classes establish bounds for the toughness of k-path graphs.
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1 INTRODUCTION

When researching new algorithmic problems in graphs it is usual to start examining well-known
classes for which it will be easy to explore and rehearse a variety of approaches. Among these
classes, the complete graphs, the path graphs, the wheels, the bipartite graphs are frequently
assessed. A further approach is to define new subclasses for which the problems can be solved
in polynomial time.

Two classes are defined here with this purpose: the k-ribbon graphs and the k-fan graphs gen-
eralize the path graphs and the fan graphs, respectively. We prove that they are subclasses of
chordal graphs and so they share the same structural properties of this class. Efficient solutions
of two problems are presented: the determination of the subchromatic number and the determi-
nation of the toughness. The study of the new subclasses lead to the establishment of bounds for
the toughness of k-path graphs.

2 k-RIBBONS AND k-FANS

In this section we present the definition of two classes of graphs. The first one, the k-ribbon
graph, is based on the power of a graph. The second one, the k-fan graph, is the result of the join
of two basic graphs.
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Given a graph G = (V , E) and a positive integer d , the d-th power of G is the graph Gd =
(V , E ′) in which two vertices are adjacent when they have distance at most d in G (Diestel [5]).
Clearly G = G1 ⊆ G2 ⊆ . . ..

Definition 2.1. A graph G is a k-ribbon graph when it is the k-th power of the path graph Pn,
1 ≤ k < n.

The join of two graphs G = (V , E) and G′ = (V ′, E ′) is the graph G + G′ = (V ∪ V ′, E ∪ E ′ ∪
{uv | u ∈ V and v ∈ V ′}) (Gross & Yellen [9]).

Definition 2.2. Consider the complete graph K�, 1 ≤ � ≤ k − 1 and k ≥ 2, and Rk−� the
(k − �)-ribbon graph. The graph G = K� + Rk−� , n ≥ k + 1, is a k-fan graph.

Theorems 3 and 5 show that a class that generalizes the k-ribbons and the k-fans is the k-path
graphs, a subclass of k-trees which in turn constitutes a subclass of chordal graphs. Several of

their properties will be useful in the proofs of the paper.

Definition 2.3 (Pereira et al. [14]). A k-path graph, k > 0, can be inductively defined as follows:

• Every complete graph with k + 1 vertices is a k-path graph.

• If G = (V , E) is a k-path graph, v /∈ V and Q ⊆ V is a k-clique of G containing at least
one simplicial vertex, then G′ = (V ∪ {v}, E ∪ {vw | w ∈ Q}) is also a k-path graph.

• Nothing else is a k-path graph.

Theorem 1 (Markenzon et al. [11]). Let G = (V , E) be a k-tree with n > k + 1 vertices. G is
a k-path graph if and only if G has exactly two simplicial vertices.

A clique-tree of G is a tree T whose vertices are the maximal cliques of G such that for every two
maximal cliques Q and Q′, each clique in the path from Q to Q′ in T contains Q ∩ Q′. Lemma

2 shows an important property concerning the clique-tree of a k-path graph which enables us to
conclude that every k-path graph is an interval graph.

Lemma 2 (Pereira et al. [14]). Every k-path graph admits a unique clique-tree and this clique-
tree is a path.

Let G = (V , E) be a k-path graph and Q be the set of maximal cliques of G. Some properties

of k-path graphs are:

1. |Q| = k + 1, Q ∈ Q;

2. |Q| = n − k;

3. If Q, Q′ ∈ Q are adjacent vertices in a clique-tree of G then |Q ∩ Q′| = k.

Pesquisa Operacional, Vol. 34(1), 2014
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Theorem 3 (Markenzon et al. [11]). Every k-ribbon, 1 ≤ k < n, is a k-path graph.

Note that 1-ribbons are actually path graphs and there is a unique k-ribbon of order n. For a

given n, it is possible to present n − 1 k-ribbons with 1 ≤ k ≤ n − 1.

A k-ribbon graph can be inductively defined by simply replacing the second item of Definition
2.3 by the following item.

• If G = (V , E) is a k-ribbon, v /∈ V and Q ⊆ V is a k-clique of G composed by the k most

recently included vertices, then G′ = (V ∪ {v}, E ∪ {vw | w ∈ Q}) is also a k-ribbon.

There is an underlying construction in this definition which establishes a labeling for a k-ribbon.
The vertices of the first (k + 1)-clique are labeled v1, . . . , vk+1, where v1 is a simplicial vertex

of G. Following the definition, each new vertex is sequentially labeled. It is easy to see that vn

is the other simplicial vertex of G. Figure 1 shows a 5-ribbon and its labeling.

Since k-path graphs are interval graphs, this labeling provides a immediate proof that k-ribbons
are also proper interval graphs (interval graphs that does not contain K1,3).

v1

v2

v3 v5 v7 v9 v11 v13

v4 v6 v8 v10 v12 v14

Figure 1 – 5-ribbon of order 14.

Observing this construction, we can determine the degree sequence of a k-ribbon graph, k ≥ 2.

• if n = k + 2, 〈k + 1, . . . , k + 1︸ ︷︷ ︸
k

, k, k〉.

• if n = k+2+i, 1 ≤ i ≤ k−2, 〈k + i + 1, . . . k + i + 1︸ ︷︷ ︸
k−i

, k+i, k+i, . . . , , k+1, k+1, k, k〉.

• if n > 2k, 〈2k, . . . , 2k︸ ︷︷ ︸
n−2k

, 2k − 1, 2k − 1, . . . , k + 1, k + 1, k, k〉.

A k-fan graph is also a k-path graph, as proved in Theorem 5.

Lemma 4 (Pereira et al. [13]). Let G = (V , E) be a k-path graph, k > 1. Then,

1. if v is a universal vertex of G then G[V − {v}] is a (k − 1)-path graph;

2. if a new vertex w /∈ V is added to G and a (k + 1)-path graph G′ is obtained then w is a

universal vertex of G′ .

Theorem 5. Every k-fan, k ≥ 2, is a k-path graph.

Pesquisa Operacional, Vol. 34(1), 2014
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Proof. A k-fan graph G = K� + Rk−� can be seen as the successive addition of � universal

vertices to the (k − �)-ribbon Rk−� . Pereira et al. [13] proved in Lemma 4 that if we add
a universal vertex to a k-path graph we obtain a (k + 1)-path graph. So, a k-fan is a k-path
graph. �

The 2-fan graph K1 + Pn is the usual fan graph. Let G = K� + Rk−� be a k-fan graph, k ≥ 3.

For a given n > 2k + 1, consider the pair (�, k − �). There are k − 1 non-isomorphic k-fan
graphs, one for each pair (1, k −1), (2, k −2), . . . , (k −1, 1). Figure 2 shows all possible 5-fans
of order 11.

�

K1 + R4 K2 + R3

K3 + R2 K4 + R1

Figure 2 – 5-fans of order 11.

The degree sequence of the k-fan graph G = K� + Rk−� , k ≥ 2, 1 ≤ � ≤ k − 1 and n > k + 3

can be determined from the sequence degree of Rk−� , incrementing their degrees by � and
including � elements with value n − 1.

3 SUBCOLORING

A s-coloring of a graph G = (V , E) is a partition of the vertices into s pairwise disjoint sets

V1, . . . , Vs such that for every i = 1, . . . , s, each color class Vi consists of isolated vertices.
This concept can be generalized in several ways and we address one of these, introduced by
Albertson et al. [1]. A partition V1, . . . , Vs is called a s-subcoloring of a graph G if each color

class induces in G a disjoint union of complete subgraphs. The subchromatic number χs(G) is
the smallest integer for which G has a s-subcoloring.

Pesquisa Operacional, Vol. 34(1), 2014
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It is known that the problem of determining whether χs (G) ≤ k, k ≥ 2, is NP-complete

(Gimbel & Hartman [8]). So, the recognition of classes of graphs for which it is possible to
solve the problem in polynomial time is an interesting research topic. Fiala et al. [7] showed
that, for a fixed s, recognizing s-subcolorability of graphs with tree decomposition bounded by a

constant b can be decided in O(n2bsb+2). Stacho [15] presented a polynomial time algorithm for
testing the 2-subcolorability of chordal graphs with time complexity of O(n3) and Stacho [16]
proved that it is NP-complete to decide, for a given chordal graph G, whether or not G admits a

s-subcoloring, s ≥ 3.

A simple result is the subcoloring of paths, χs (Pn) = χ(Pn) = 2, and complete graphs,
χs (Kn) = 1. This result led us to examine how complete subgraphs are able to affect the subcol-
oring problem, which other graphs have constant subchromatic number and how the k-ribbons

and the k-fans behave.

Albertson et al. [1] presented the following results, particularly relevant for the subject ad-
dressed here, remembering that indifference graphs are equivalent to proper interval graphs.

Theorem 6 (Albertson et al. [1]). Let G be an interval graph which contains no induced K1,c+1.
Then χs (G) ≤ c.

Corollary 7 (Albertson et al. [1]). For any indifference graph G, χs (G) ≤ 2.

Corollary 7 immediately provides the subchromatic number of a k-ribbon. Theorem 8 offers a

constructive proof which also shows the subcoloring of these graphs, which can be obtained in
O(n+m). Note that a complete graph with k+1 vertices is a k-ribbon graph and its subchromatic
number is 1.

Theorem 8. Let G = (V , E) be a k-ribbon graph, k ≥ 2 and n > k + 1. Then χs (G) = 2.

Proof. Let us consider V = {v1, . . . , vn} the set of vertices where v1 and vn are the simplicial
vertices of the graph. By the properties of k-path graphs and by the definition of k-ribbon,
the order of any maximal clique is k + 1 and they can be denoted Qi = {vi , . . . , vi+k}, i =
1, . . . , n − k.

Let q and r be positive integers such that n = q(k + 1) + r, 0 ≤ r < k + 1. Consider the
following q maximal cliques:

{v1, . . . , vk+1}, {vk+2, . . . , v2(k+1)}, . . . , {v(q−1)k+q , . . . , vq(k+1)}.

By the definition of k-ribbon graph, these cliques are disjoint and they can be disposed alterna-

tively in two classes of colors C1 and C2.

The remaining vertices of G form a clique Q. Two cases must be analyzed. If q is even then Q
is added to the class C1 because among the r remaining vertices some are adjacent to vertices of
the clique {v(q−1)k+q , . . . , vq(k+1)} ∈ C2. Otherwise, Q is added to class C2. So, χs (G) = 2. �

Pesquisa Operacional, Vol. 34(1), 2014
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Theorem 6 gives a bound to the subchromatic number of a k-fan graph. It is not difficult to see

that a k-fan G = K� + Rk−� , no matter �, always contains an induced K1,c formed by a vertex of
K� and a set of cardinality c of independent vertices of Rk−� . However it is a weak bound since
as n grows, the value of c also grows.

The subchromatic number and a specific subcoloring of a k-fan graph of order n ≥ k + 2 are

presented in the following theorem (the k-fan graph with k + 1 vertices is a complete graph and
its subchromatic number is 1). Note that the subcoloring of the graph is performed in O(n + m)

time complexity.

Theorem 9. Let G = K� + Rk−� = (V , E) be a k-fan graph, k ≥ 2 and n ≥ k + 2. Then

χs (G) = 2 or 3.

Proof. The subcoloring of a k-fan graph is associated to the number of disjoint maximal cliques
of Rk−� as presented in Theorem 8. These maximal cliques have cardinality k − � + 1 and Rk−�

has n − � vertices. Let q and r be positive integers such that n − � = q(k − � + 1) + r and
0 ≤ r < k − � + 1.

Let {v1, . . . , vn−�} be the vertices of Rk−� and let v1 and vn−� be the simplicial vertices of the
graph.

If q = 1, there is only one maximal clique of Rk−� to be considered. So, v1, . . . , vk−�+1 belongs

to color class C1 and the r remaining vertices vn−�−r+1, . . . , vn−� of Rk−� and the vertices of
K� belong to another color class C2.

If q �= 1, by Theorem 8, at least two different color classes C1 and C2 are required to subcolor
the q maximal cliques of Rk−� . So, consider the cases:

• q = 2, the set of r remaining vertices {vn−�−r+1, . . . , vn−�} ⊆ C1 and the vertices of K�

belong to C2.

• q = 3 and r = 0, the vertices of K� belong to C2.

• Otherwise, the r remaining vertices vn−�−r+1, . . . , vn−� and the vertices of K� form a
clique and must belong to the class C3.

It is possible to summarize all the cases as follows.

χs (G) =
{

2, q < 3 or q = 3 and r = 0

3, otherwise.
�

4 TOUGHNESS

In 1973, Chvátal [4] introduced the concept of toughness. Much research has been carried out
on connectivity measures, relating toughness conditions to the existence of hamiltonian cycles

Pesquisa Operacional, Vol. 34(1), 2014
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(e.g. Broersma et al. [3]) and comparing measures of vulnerability of the graph (e.g. Kratsch et

al. [10] and Markenzon et al. [12]).

The number of components of a graph G = (V , E) is denoted ω(G). A graph G is t -tough if
|S| ≥ t ω(G−S) for every subset S ⊆ V with ω(G−S) > 1. The toughness of G, denoted τ(G),
is the maximum value of t for which G is t -tough (taking τ(Kn) = ∞ for all n ≥ 1). Hence if

G is not complete, τ(G) = min
{ |S|

ω(G−S)

}
, where the minimum is taken over all separators S of

vertices in G (see Bauer et al. [2]).

Kratsch et al. [10] studied the toughness of trapezoid graphs, proving that its determination
has time complexity of O(n5). Trapezoid graphs contain interval graphs and the authors claim

that, for this class, the toughness can be determined in O(n3). However details are not provided
and the improvements are not explained. We present results about the toughness of k-ribbons
and k-fans showing that for these classes, given n, k and �, the determination takes constant

time complexity. The reasoning of the proof provides the procedure for the determination of the
vertices of the separator S which takes O(n + m) time complexity. It is noteworthy that these
classes establish lower and upper bounds for the toughness of k-path graphs.

Regarding separators, Dirac [6] has proved an important characterization of chordal graphs.

Theorem 10 (Dirac [6]). G is chordal if and only if every minimal separator of G is a clique.

Theorems 11, 12 and 13 establish the toughness of k-ribbons and k-fans. Remember that, for a
2-path graph G, it is well known that τ(G) = 1.

Theorem 11. Let G be a k-ribbon graph, k ≥ 3 and n ≥ k + 2. Then, τ(G) = k
2 .

Proof. Every minimal separator S of a k-ribbon has cardinality k and G − S has two connected
components. Observing the structure of a k-ribbon, in order to obtain an additional component,

at least k vertices must be added to a separator.

Since tk
t+1 − k

2 = k(t−1)
2(t+1) > 0 ∴ k

2 < tk
t+1 , t ≥ 2, and the result follows. �

The study of toughness of a k-fan graph G is more interesting, as there are two cases to be con-
sidered, taking into account the value of �. A superior bound for the toughness of G is immediate,

τ(G) = k
2 . In this case, |S| = k. However, as the vertices of K� belong to all separators of the

graph, it may be possible to increase S with vertices that belong to separators of Rk−� in order
to determine a smaller value for the toughness. So, we observe that the inequality k+k−�

2+1 < k
2 is

true when k < 2�. Figure 3 presents an example of the determination of τ(G) < k
2 .

In the following results, we consider k ≥ 3, 1 ≤ � ≤ k − 1 and n ≥ k + 2.

Theorem 12. Let G = K� + Rk−� be a k-fan graph with k ≥ 2�. Then τ(G) = k
2 .

Proof. Since k ≥ 2�, k
2 ≤ k+t (k−�)

t+2 , t ≥ 1. Then, τ(G) = k
2 . �

Theorem 13. Let G = K� + Rk−� be a k-fan graph with k < 2�.

Pesquisa Operacional, Vol. 34(1), 2014
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If n < 2k − � + 3 then τ(G) = k
2 else

τ(G) =
⎧⎨
⎩

�+(q−1)(k−�)
q r = 0

�+q(k−�)
q+1 otherwise

where n − � = q(k − � + 1) + r and 0 ≤ r < k − � + 1.

S 

Figure 3 – 4-fan K3 + R1 of order 12 and τ(G) = 7
5 .

Proof. Let us denote the n − � vertices of Rk−� by v1, . . . , vn−� where v1 and vn−� are the
simplicial vertices. The vertices of K� are vn−�+1, . . . , vn .

A separator of a k-path graph must contain a minimal separator of the graph. So, |S| ≥ k. Ob-

serving the structure of a k-fan graph, a minimal separator generates two connected components.

Since the vertices of K� are universal in G they must belong to any separator. Let us build the
separator S. Consider, without loss of generality, S = {v2, . . . , vk−�+1, vn−�+1, . . . , vn}, i.e., S
is composed by {v2, . . . , vk−�+1} (a separator of Rk−�) and the vertices of K�. At this point the

vertex v1 is a component of G − S.

We can repeat the reasoning to the remaining component, which is a (k −�)-ribbon graph with at
least k −�+1 vertices. In order to obtain a lower value than k

2 for the toughness, n ≥ 2k −�+3
since n ≥ k + 2. So, considering this case, the next vertices to be added to S in order to establish

a new separated component is the clique {vk−�+3, . . . , v2(k−�)+3} where the vertex vk−�+2 is the
new component, and so on.

The number of cliques in Rk−� to be chosen in this process is
⌊

n−�
(k−�)+1

⌋
. The number of compo-

nents of the graph is
⌈

n−�
(k−�)+1

⌉
and since each component has exactly one vertex, it is maximum.

Consider q and r positive integers such that n−� = q(k−�+1)+r and 0 ≤ r < k−�+1. If r = 0
then

⌊
n−�

(k−�)+1

⌋
= q ,

⌈
n−�

(k−�)+1

⌉
= q+1 and τ(G) = �+(q−1)(k−�)

q otherwise
⌊

n−�
(k−�)+1

⌋
= q−1,⌈

n−�
(k−�)+1

⌉
= q and τ(G) = �+q(k−�)

q+1 . So, the result follows. �

Table 1 shows the toughness of 7-fan graphs with n ≤ 18.

Pesquisa Operacional, Vol. 34(1), 2014
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Table 1 – τ(G) of 7-fan graphs.

n

k � k − � 9 10 11 12 13 14 15 16 17 18

7 1 6
2 5 3.5

3 4

4 3 3.33 3.33 3.33 3.33 3.25 3.25
5 2 3 3 3 2.75 2.75 2.75 2.6

6 1 2.67 2.67 2.25 2.25 2 2 1.83 1.83

The smallest toughness of G = K� + Rk−� for a fixed n is obtained when � = k − 1. The proof
of Corollary 14 is immediate.

Corollary 14. Let G be a k-fan graph such that k < 2� and n ≥ 2k − � + 3. The lowest value
of toughness is obtained when � = k − 1.

By the reasoning presented in Theorem 13, vertices that belong to several minimal separators of
the graph are key elements of separators which produce a lower toughness. In k-fan graphs these

vertices are the universal vertices. For k-path graphs in general, it is easy to see that the same
happens. The k-fan graphs are actually the k-path graphs which minimize the number of vertices
added to a separator in order to obtain a new component. The next corollary summarizes this

observation.

Corollary 15. Let G be a k-path graph, k ≥ 2 and the k-fan graph Kk−1 + R1 . Then,⎧⎪⎪⎨
⎪⎪⎩

n + k − 2

n − k + 2
≤ τ(G) ≤ k

2
if n − k is even

n + k − 3

n − k + 1
≤ τ(G) ≤ k

2
if n − k is odd.
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