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ABSTRACT. The temporal bin packing problem with fire-ups (TBPP-FU) is a two-dimensional packing
problem where one geometric dimension is replaced by a time horizon. The given items (jobs) are char-
acterized by a resource consumption, that occurs exclusively during an activity interval, and they have to
be placed on servers so that the capacity constraint is respected at any time. For energy efficiency reasons,
an optimal assignment shall minimize a weighted sum of the number of servers in use and the number of
switch-on processes (so-called fire-ups) resulting from the selected configuration. The associated ILP for-
mulations are typically large in size, so that, in the recent past, several model improvements have already
been proposed in the literature. However, with only one exception, all these techniques do not address the
quality of the LP bound which is another crucial factor for the size of the branch-and-bound trees gen-
erated during the solution process. To this end, we present a new class of valid inequalities, contributing
to a stronger LP relaxation, and discuss their numerical benefits by computational experiments based on
benchmark instances and new test sets. Remarkably, the new cuts also lead to theoretical results about the
optimal value of the LP relaxation.

Keywords: cutting and packing, temporal bin packing, LP relaxation, valid inequalities.

1 INTRODUCTION

In view of the steadily growing energy demands of data centers in the IT industry, the low-
resource management of server clusters has become a central concern in computer science and
electrical engineering, see Andrae & Edler (2015); Jones (2018). In addition to concrete tech-
nical improvements, such as in the hardware components involved (see Fettweis et al. (2019)),
operations research methods for optimally assigning jobs to computing units are acquiring in-
creasing importance. Originating from early contributions to multiprocessor scheduling in the
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2 THEORETICAL INSIGHTS AND A NEW CLASS OF VALID INEQUALITIES

1970s (see Coffman Jr. et al. (1978)), a wide variety of new application areas for discrete opti-
mization has emerged as a result of these developments, see Lopez-Pires & Baran (2015) for a
well-structured overview. Many of these problems are based on the classical bin packing prob-
lem (BPP), where a set of given jobs (or items) has to be packed on as few servers as possible
(Delorme et al., 2016; Scheithauer, 2018; Valério de Carvalho, 2002). Among a large number
of possible generalizations, the stochastic BPP (SBPP) (see Cohen et al. (2019); Martinovic &
Selch (2021); Wang et al. (2011)) and the temporal BPP (TBPP) (see De Cauwer et al. (2016);
Dell’Amico et al. (2020)) have been identified as more application-oriented descriptions of the
underlying real-world scenario. While the SBPP, which is not considered here in more detail,
takes into account the generally imperfect information about the expected jobs, the TBPP pri-
marily introduces an additional time dimension. By that, we mean that each item is characterized
by a resource consumption occurring exclusively during a specific time interval. The given items
are then to be distributed among as few servers of a given capacity as possible, so that none of
the employed executing units is overcommitted at any time.

The TBPP was first described in a specific application from the field of computer science (see
De Cauwer et al. (2016)) and has been thoroughly studied in the context of only one purely
mathematical contribution, see Dell’Amico et al. (2020). In that publication, the authors present
various exact and heuristic solution approaches and shed light on their mutual (dominance) rela-
tions. Finally, based on extensive test calculations, a sophisticated branch-and-bound method is
identified as, currently, the best solution technique. Apart from that, the TBPP owes its theoretical
relevance to the fact that it is naturally related to a large number of other problems from cutting
and packing. These include, among others, knapsack problems (Cacchiani et al., 2022a,b), in
particular the temporal knapsack problem (Bartlett et al., 2005; Caprara et al., 2013, 2016), and
classical two-dimensional packing problems, such as the strip packing problem (Côté et al., 2014;
Iori et al., 2021). However, the latter class is typically based on another item placement policy1,
thus establishing the TBPP as an independent field of research.

Very recently, an extended problem called temporal bin packing problem with fire-ups (TBPP-
FU) was introduced in Aydın et al. (2020). In that scenario, a job-to-server assignment is assessed
by (i) the number of servers required and, in addition, (ii) the number of switch-on processes of
the servers in use, referred to as fire-ups. More precisely, a fire-up has to be counted whenever
a server goes from an inactive state (no load at all) into an active state (executing some job),
and the total number of fire-ups is added to the objective function in a weighted-sum fashion.
The resulting integer programs are typically very large in size, have many symmetric solutions,
and possess a fundamentally different solution set than the TBPP. Thus, previous work in this
area has mainly focused on possibilities to reduce the number of variables and constraints of the
associated ILP models and to improve their computational performance. More precisely, given
that the ILP models M1 and M2, introduced in Aydın et al. (2020), could not even successfully
cope with half of the benchmark instances in a reasonable time, some significant progress has

1A more detailed explanation is later contained in Fig. 1, since we would like to preface it with the introductory notation
in Section 2 for better understanding.
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been made in this regard by the reduction methods proposed in Martinovic et al. (2021) and
Martinovic et al. (2022), see Subsect. 4.1 for a short summary. However, the literature to date
does not convincingly elaborate on the extent to which the TBPP and the TBPP-FU differ from
a theoretical perspective. Moreover, some significant aspects and properties of the TBPP-FU
models have remained almost untouched so far and will therefore be examined in more detail
here. More specifically, the following main results are presented in this paper:

• We show that temporal decompositions cannot be applied to solve the TBPP-FU, in gen-
eral. By that, we present a new major difference between the TBPP and its extension
involving fire-ups. (→ Section 2)

• We introduce a new class of valid cuts (for M1) facilitating the correct recognition of
fire-ups and contributing to better LP bounds. (→ Section 3)

• We constructively solve the LP relaxations of M1 and M2. This is an advantage over
the only known result (Aydın et al., 2020, Proposition 4.1) in the literature and provides
further insights into which properties of an instance influence the various LP bounds.
(→ Section 3)

• Based on computational tests with benchmark instances and new test sets we show the
numerical benefits of the additional cuts for different versions of M1-type formulations for
the TBPP-FU. (→ Section 4)

2 PRELIMINARIES AND BASIC MODELS

We consider a set of n ∈N items, also referred to as jobs, indexed by i ∈ I := {1, . . . ,n}, that are
specified by a resource demand ci ∈N, and an activity interval [si,ei) with si < ei denoting the
starting time and ending time, respectively. Moreover, we define the following sets:

• T :=
⋃

i∈I{si,ei} as the set of all relevant time instants,

• TS :=
⋃

i∈I{si} and TE :=
⋃

i∈I{ei} as the set of all starting and ending times, respectively,

• It := {i ∈ I | t ∈ [si,ei)} as the set of all items being active at time t ∈ T .

We assume the items (i) to require the ci units of capacity at any time within their time win-
dow [si,ei) and (ii) to be ordered with respect to non-decreasing starting times, where ties are
broken arbitrarily. The TBPP-FU then searches for a feasible assignment of these items to a
set K := {1, . . . ,n} of servers each of which having capacity C ∈ N, so that an objective func-
tion consisting of a weighted sum of the number of used servers and the number of necessary
switch-on operations, resulting from the concrete arrangement of the jobs, is minimized.

Note that the capacity represents a renewable resource at any time and that the placement of
an item, in contrast to classical two-dimensional packing problems, does not have to result in a
contiguous rectangle (see Fig. 1).
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4 THEORETICAL INSIGHTS AND A NEW CLASS OF VALID INEQUALITIES

1

23

4

5

6

7

8

1 2 3 4 5 6

Figure 1 – An assignment of eight items to one bin of size C = 7, following the basic idea from
(Dell’Amico et al., 2020, Fig. 2). The blue item i = 8 with [si,ei) = [2,5) and ci = 2 is not placed in a
contiguous manner. Hence, this configuration would not be feasible for classical 2D packing problems.

Moreover, the scaling parameter appearing in the objective function will be referred to as γ > 0.
For convenience, we will mostly bundle all the relevant input data in the following way:

Definition 1. A tuple E = (n,C,ccc,sss,eee,γ), where ccc,sss,eee ∈Zn
+ collect the item sizes, starting times,

and ending times, respectively, is called an instance (of the TBPP-FU).

The TBPP-FU was first mentioned in Aydın et al. (2020) along with two ILP formulations called
M1 and M2. To keep the explanations short, here we just focus on M1 which is composed of the
following types of binary variables:

• We use zk to indicate whether server k is used.

• We introduce xik to state whether job i is scheduled on server k.

• We have wtk to recognize whether server k is activated at time t.

• By ytk we express whether server k carries some items at time t.

Pesquisa Operacional, Vol. 44, 2024: e283503
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The specific domains of the indices appearing in the various variable types will be clarified in the
optimization problems presented below. According to Aydın et al. (2020), M1 is given by:

Model 1 (M1)

z(1) = ∑
k∈K

(
zk + γ · ∑

t∈TS

wtk

)
→ min (1)

s.t. ytk ≤ ∑
i∈It

cixik ≤ ytkC, k ∈ K, t ∈ T, (2)

∑
k∈K

xik = 1, i ∈ I, (3)

xik ≤ ysi,k, i ∈ I,k ∈ K, (4)

ytk ≤ zk, k ∈ K, t ∈ T, (5)

ytk − yt−1,k ≤ wtk, k ∈ K, t ∈ TS, (6)

xik ∈ {0,1}, i ∈ I,k ∈ K, (7)

ytk ∈ {0,1}, k ∈ K, t ∈ T, (8)

wtk ∈ {0,1}, k ∈ K, t ∈ TS, (9)

zk ∈ {0,1}, k ∈ K. (10)

The objective function (1) represents a weighted sum involving the number of servers in use and
the number of fire-ups necessary for their operation. For any feasible schedule, we need to ensure
that:

• the items placed on a server take capacity into account and also match the activity state
specified by the y-variables (see Constraints (2)),

• every item is assigned precisely once (see Constraints (3)),

• the variable types are coupled consistently (see Constraints (4)-(6)), so that, in particular,
the fire-ups are only counted when a server status changes from idle to active operation (see
Constraints (6)). Note that similar constraints can also be found in the field of production
planning with start-up costs (see Magnanti & Sastry (2002); Magnanti & Vachani (1990);
Wolsey (1989)).

For simplicity, we use t −1 to refer to the predecessor of t, and define yt−1,k := 0 for t = minT ,
where minT is the minimum element (w.r.t. <) of the finite set T ̸= /0.

As already recommended in Aydın et al. (2020), M1 and M2, the latter of which is not discussed
here in detail, can be directly improved by imposing a lower bound ∑k∈K zk ≥ h, where h ∈ N
is the number of servers obtained by column generation (applied to the ordinary TBPP), and
sorting the servers according to zk ≥ zk+1. We particularly note that, due to (Dell’Amico et al.,
2020, Property 4),

h ≥ max
t∈TS

{⌈
∑i∈It ci

C

⌉}
≥ 1, (11)

Pesquisa Operacional, Vol. 44, 2024: e283503



6 THEORETICAL INSIGHTS AND A NEW CLASS OF VALID INEQUALITIES

is always satisfied.

As a first main contribution, we clarify that the problem under consideration is indeed a signif-
icant extension of the TBPP (without fire-ups). In the literature, this question has so far been
examined on the basis of only one observation.

Theorem 1 (see Aydın et al. (2020)). Let E be an instance of the TBPP-FU. If γ ≤ 1/n holds, then
the number of servers in an optimal solution of the TBPP-FU is equal to the number of servers
in an optimal solution of the TBPP. For γ > 1/n, this statement does not hold, in general.

To hone the profile of the TBPP-FU as a truly independent optimization problem, let us further
study the possibility to partition a (difficult) instance into two (or more) smaller subinstances,
which can then be solved independently of each other. To be more precise, let us consider a
scenario in which the respective partition classes of I mutually do not overlap in a temporal
sense. In any such scenario, for the TBPP it is clear that an optimal solution can be determined
by a concatenation of the corresponding optimal schedules of the subproblems2. In the case of
the TBPP-FU, however, this is generally no longer the case, as the following new result shows.

Theorem 2. Let E be an instance of the TBPP-FU with

min
t∈[minTS,maxTS]

{
∑
i∈It

ci

}
= 0.

Then, we cannot apply temporal decomposition to solve E, in general.

Proof. Let us consider an instance E having capacity C = 3, n = 15 items, γ = 1, and the
following further input data:

ccc = (3,3,3,1,1,1,2,2,2,2,2,2,2,2,2),

sss = (1,1,1,1,1,1,3,3,3,5,5,5,5,5,5),

eee = (2,2,2,4,4,4,4,4,4,6,6,6,6,6,6).

So, in fact, there are four different item types (see also Fig. 2): three items with ci = 3 and
[si,ei) = [1,2), three items with ci = 1 and [si,ei) = [1,4), three items with ci = 2 and [si,ei) =

[3,4), and six items with ci = 2 and [si,ei) = [5,6).

We notice that there is no activity at time t = 4, so we could try to split the instance in two parts.
The first subinstance E1 would contain all items i∈ {1, . . . ,9}, i.e., the items that are executed be-
fore t = 4, while the second subinstance E2 collects all the remaining items i ∈ {10, . . . ,15}, i.e.,

2To some extent, this observation is linked to the construction of lower bounds, based on BPP instances with item set
It , t ∈ TS, proposed in (Dell’Amico et al., 2020, Section 4). A straightforward extension of that construction is given
by the fact that solving a TBPP for any proper subset I′ ⊂ I also leads to a lower bound for the optimal value of the
original TBPP instance. Hence, partitioning the item set I and considering the maximum TBPP value obtained from all
the partition classes is still a lower bound. This lower bound becomes exact if there are no temporal overlaps between the
considered partition classes.
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Figure 2 – Illustration of instance E

the items that have to be processed after t = 4. Now we can collect some important information
about the respective solutions:

• Any optimal solution of E1 requires four servers and seven fire-ups. One such solution is
given by the following partition of I: {1,7}, {2,8}, {3,9}, {4,5,6}.

• Any feasible solution of E1 with six fire-ups uses exactly six servers. One such solution is
given by the following partition of I: {1}, {2}, {3}, {4,7}, {5,8}, {6,9}.

• The unique optimal solution of E2 requires six servers and six fire-ups, since any item has
to be placed on a separate server.

So, putting together the individual optimal solutions of E1 and E2, we would end up with six
servers and 13 fire-ups, i.e., an objective value of z = 19. However, it is better to combine a fea-
sible solution of E1 using six servers (and six fire-ups) together with the unique optimal solution
of E2 (also using six servers), only leading to z = 18. Hence, there is no combination of optimal
solutions of E1 and E2 which is optimal with respect to the complete instance E. □

Remark 1. As a direct consequence of Theorem 1, decomposing an instance of the TBPP-FU is
possible whenever γ ≤ 1/n holds.

Altogether, partitioning an instance of the TBPP-FU into two (or more) subinstances and recom-
bining the associated optimal solutions, does only lead to a feasible (but not necessarily optimal!)

Pesquisa Operacional, Vol. 44, 2024: e283503



8 THEORETICAL INSIGHTS AND A NEW CLASS OF VALID INEQUALITIES

solution of the original instance, in general. This observation even holds, if there is no activity
at all in some time interval. The latter fact represents a remarkable difference to the ordinary
TBPP, and underlines another challenging aspect of the TBPP-FU. In the light of the previous
observations, in this article we exclusively deal with the typically more difficult case γ > 1/n
that allows neither direct mathematical reference to the TBPP solution methods, in the sense of
Theorem 1, nor any kind of temporal decomposition.

3 A NEW REDUCTION METHOD FOR MODEL M1

In this section we introduce a new class of valid inequalities for M1. Even though, in the mean-
time, this formulation has been improved by numerous proposals in Martinovic et al. (2021) and,
later also, Martinovic et al. (2022), these techniques almost exclusively addressed the size of the
resulting ILP models or the symmetry of the solution space. However, at least since the publi-
cation of the famous book by Nemhauser & Wolsey (1988) it became widely accepted that, in
addition to these structural features, the quality of the LP bound also has a decisive influence on
the size of the branch-and-bound trees arising in the solution process and, thus, also on the over-
all performance. As regards the TBPP-FU, only one class of valid inequalities has so far been
contributed to significantly raising the LP bound (see (Martinovic et al., 2021, Inequality (18))).
Many other candidates

• either did not lead to any improvement at all, see, for example, Inequalities (19)-(21) in
Martinovic et al. (2021),

• or could only raise the LP bound to a vanishingly small extent, as witnessed in (Martinovic
et al., 2022, Subsect. 4.4)).

As a consequence of that observation, the new class of valid inequalities to be presented here is
not just an arbitrary additional item in what has become a handsome list meanwhile, but actively
contributes to bringing into focus an important aspect that has been dealt with rather insufficiently
so far.

Before describing all the mathematical details, let us start with a motivating numerical example:

Example 1. We consider an instance E with γ = 1, capacity C = 2, and n = 3 items having
sss = (1,1,3), eee = (4,2,4), and ccc = (2,1,2). When solving the LP relaxation of M1, we obtain the
optimal value z(1),⋆LP = 3.5. In the left-hand part of Fig. 3, one specific aspect of a corresponding
optimal solution is depicted. To be more precise, the sum of all activity variables, that is Yt :=
∑k∈K ytk, is displayed over time. It can be seen that the optimal solution is able to increase the
aggregated activity Yt at the ending time t = 2 of job i = 2, but this time point is not part of any
w-variable in the objective function. Hence, the current model is able to the hide a fraction of a
fire-up. To mend this flaw, we can make use of wtk and Constraints (6) for all t ∈ T which leads
to the better LP value z(1),⋆LP = 4, because any (fraction of a) fire-up will be noticed correctly and
counted by the objective function. Hence, we obtain the more natural scenario depicted in the

Pesquisa Operacional, Vol. 44, 2024: e283503
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right part of Fig. 3. Note that the complete data of the optimal solutions illustrated in Fig. 3 can
be found in Appendix A.
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Figure 3 – The summed activity Yt := ∑k∈K ytk over time in an optimal solution of E. The left picture

shows the development of Yt for Model 1, whereas the right picture visualizes the situation after having
modified the model by using wtk and Constraints (6) for all t ∈ T . In both cases, the red regions define

some lower and upper bounds for Yt that are derived from Constraints (2), (4), and (5) of M1. Even if this
is not clearly visible in the illustrations, please note that the value of Y4 is zero in both scenarios.

Given the observations of Example 1, we propose the following new improvement of M1 to
prevent the LP relaxation from hiding (fractional) fire-ups:

(R0) Corrected fire-up recognition: We introduce wtk ∈ {0,1} for all k ∈ K and t ∈ T (not
just t ∈ TS), and also count all these variables in the objective function of M1. Moreover,
we demand Constraints (6) for all k ∈ K and t ∈ T .

Note that we use the label (R0), since this improvement attaches directly to the original model
from Aydın et al. (2020) and, on the other hand, we have to respect the fixed identifiers for the
reductions already assigned in Martinovic et al. (2021) and Martinovic et al. (2022).

Remark 2. Even if (R0) concentrates on a correct detection of the fire-ups, it addresses both, the
w- and the y-variables (see also Fig. 3). Since the latter are not present in Model M2 from Aydın
et al. (2020), (R0) cannot be applied to that formulation.

Remark 3. As mentioned earlier, constraints of type (6) are also known from production planning
and machine scheduling problems involving start up or changeover costs (see Magnanti & Sastry
(2002); Magnanti & Vachani (1990); Wolsey (1989)). In these applications, production activity is
typically carried out in discrete time periods, and the operator has to decide to run a machine or
to shut it down for the entire period. Re-starting a machine or changing production from one item
to another may lead to delays which are measured by additional costs in the objective function. In
these scenarios, the time horizon consists of identical periods, and there is no difference between
starting and ending times. Hence, constraints of type (6) are typically included in the associated
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10 THEORETICAL INSIGHTS AND A NEW CLASS OF VALID INEQUALITIES

ILP models for all periods right from the beginning, because set-up costs may appear at any point
in time, even in the integer problem. However, for the TBPP-FU, the latter is not the case. Hence,
the cuts proposed in (R0) are problem-specific and cannot be transferred to the aforementioned
manufacturing problems.

On top of raising the LP bound, adding (R0) to M1 also allows us to explicitly state a solution
of the corresponding LP relaxation. To this end, we consider the so-called aggregate relaxation,
where the variables summed up over k are central (see also Example 1). Thus, having defined
Z := ∑k∈K zk as well as Yt := ∑k∈K ytk and Wt := ∑k∈K wtk for t ∈ T , we obtain the

Aggregate Relaxation of M1+(R0)

z(1)agg = γ · ∑
t∈T

Wt +Z → min (12)

s.t. Yt ≤ ∑
i∈It

ci ≤ Yt ·C, t ∈ T, (13)

1 ≤ Ysi , i ∈ I, (14)

Yt −Yt−1 ≤Wt , t ∈ T, (15)

Yt ∈ [0,n], t ∈ T, (16)

Wt ∈ [0,n], t ∈ T, (17)

Z ∈ [h,n], (18)

where ∑k∈K xik = 1, i ∈ I, was used. Note that the aggregated form of Constraints (5), i.e., Yt ≤ Z,
does not appear explicitly, because Z ∈ [h,n] is more restrictive due to (11) and (13). In addition,
the optimal value of the LP relaxation does not change when applying this type of constraint
aggregation.

Lemma 1. The optimal value of the aggregate relaxation (of M1 + (R0)) is equal to the optimal
value of the ordinary LP relaxation (of M1 + (R0)).

Proof. First of all, we note that after having combined some of the constraints, the feasible set
cannot be smaller than before, so that the aggregate relaxation cannot have a larger optimal value
than the classic LP relaxation. On the other hand, any feasible point of the aggregate relaxation
directly leads to a feasible point of the LP relaxation by defining

xik :=
1
n
, zk :=

Z
n
, ytk :=

Yt

n
, wtk :=

Wt

n

for any respective index or index pair. By that, we do not change the objective value, so that the
optimal value of the aggregate relaxation cannot be smaller than that of the LP relaxation. Both
observations together make sure that the claim is proved. □

Hence, we end up with an equivalent but less difficult optimization problem not containing k
anymore. The solution of this new problem can be stated as follows.

Pesquisa Operacional, Vol. 44, 2024: e283503



JOHN MARTINOVIC and NICO STRASDAT 11

Theorem 3. Let E be an instance of the TBPP-FU. Then, an optimal solution of the aggregate
relaxation of M1+(R0) is given by Z := h and

Yt :=

min
{

∑i∈It ci,max
{

Yt−1,
∑i∈It ci

C

}}
, if t /∈ TS,

min
{

∑i∈It ci,max
{

1,Yt−1,
∑i∈It ci

C

}}
, if t ∈ TS,

(t ∈ T ),

Wt := max{Yt −Yt−1,0} , (t ∈ T ),

where Yt := Y0 := 0 for t = minT is used in the above definitions.

Proof. We start by noting that Z = h has to hold due to Constraint (18). As a consequence of
(15), in an optimal solution we definitely require Wt = max{Yt −Yt−1,0} for all t ∈ T . Hence,
we just need to justify the choice of Yt , t ∈ T , presented above. To this end, let Y0 := 0 represent
an auxiliary initial state. Then, for given Yt−1, there are several aspects to be considered when
defining the best possible follow-up variable Yt :

• local view: To keep Wt as small as possible (due to (12)), we should always favor small
values of Yt . Hence, Yt should be equal or close to ∑i∈It ci

C (for t /∈ TS) and max{1, ∑i∈It ci
C }

(for t ∈ TS) as a consequence of Constraints (13) and (14).

• global view: Reducing the value of Yt below that of Yt−1 is not required, since Wt would
not change. Moreover, such unnecessary reductions of Yt could later, say at time τ ∈ T ,
lead to a situation where Yτ has to be increased too much compared to Yτ−1, so that Wτ and
the overall objective function might increase with no need. Hence, for an optimal choice
of Yt the value of Yt−1 should also serve as a lower bound. So far, the maximum appearing
in the definition of Yt in the theorem is justified.

• feasibility: Trying to keep the status Yt =Yt−1, as it is intended by the ’global view’ obser-
vation, is only possible if this is allowed by the left-hand side in Constraints (13). If not,
then Yt has to fall down below Yt−1, but only until it reaches the bounding value ∑i∈It ci im-
posed by that restriction. This prevents the trajectory of Yt from making unnecessarily high
jumps later in time, which would again cause too large values for some fire-up variables.
This fact leads to the additional outer minimum operator in the definition of Yt presented
above.

Altogether, the point specified in the theorem is feasible and the values of Yt , t ∈ T , are chosen
optimally. □

Remark 4. The intention behind the item called ’global view’ in the proof of Theorem 3 is also
visible in the right picture in Fig. 3. At t = 2, it would be possible to reduce the total activity
Yt =Y2, but this would lead to a larger jump at t = 3, so that the fire-up variable Wt =W3 will be
larger than necessary.
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12 THEORETICAL INSIGHTS AND A NEW CLASS OF VALID INEQUALITIES

Remark 5. Effectively, the nested minimum and maximum appearing in the definition of Yt in
Theorem 3 can be arranged a bit more clearly.

• If Yt−1 ≥ ∑i∈It ci holds, the value of Yt is always given by Yt = ∑i∈It ci. This is correct
because the hypothesis would also lead to

Yt−1 ≥ ∑
i∈It

ci ≥
∑i∈It ci

C
and Yt−1 ≥ ∑

i∈It

ci ≥ 1,

where the latter just holds for t ∈ TS, in general. However, the maximum appearing in the
definition of Yt would always be given by Yt−1, which would then be beaten by the term
∑i∈It ci in the outer minimum.

• If Yt−1 < ∑i∈It ci holds instead, then we can at least skip the outer minimum, meaning that

Yt :=

max
{

Yt−1,
∑i∈It ci

C

}
, if t /∈ TS,

max
{

1,Yt−1,
∑i∈It ci

C

}
, if t ∈ TS,

is true for any t ∈ T . Indeed, due to

∑i∈It ci

C
≤ ∑

i∈It

ci and 1 ≤ ∑
i∈It

ci,

where the latter at least holds for all t ∈ TS, the minimum is always given by the term that
has won the inner maximum before.

The procedure described in Remark 5 is relatively easy to implement so that also the LP relax-
ation of M1+(R0) can be solved without requiring any optimization software. However, given
the rather technical terms derived before, we do not state an explicit formula for the optimal LP
value here.

Remark 6. Similarly, the LP bound of M2 from Aydın et al. (2020) can be shown to be equal to
z(2),⋆LP = h+ γ ·g(E), with g(E) :=

∣∣{t ∈ TS
∣∣∃i ∈ I : t = si, δ

+
i = /0

}∣∣. In particular, any instance
with

min
t∈[minTS,maxTS]

{
∑
i∈It

ci

}
> 0,

i.e., any instance without mandatory “temporal gaps”, leads to an LP bound comparable to h
and, thus, of rather poor quality.

The new results from Theorem 3 and Remark 6 thus extend the existing literature in that they

• contain explicit constructions and closed-form terms of the solutions to the considered LP
relaxations,

• provide further insights on the relation z(1),⋆LP ≥ z(2),⋆LP which was just stated on an abstract
level in (Aydın et al., 2020, Proposition 4.1).
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As can be clearly seen in Remark 6, the LP relaxation of M2 is only able to perceive “integer
steps” in the fire-up term appearing in the objective function – but they can only appear for
instances having temporal gaps. In any other case, the associated LP bound is very close to
the material bound and rather weak. In contrast, the LP relaxation of M1+(R0) also collects
fractional increases of the activity variables ytk, which typically leads to much better bounds due
to Constraints (6). By that, we provide a new theoretical justification for the poor performance
of M2, closing an open question from Aydın et al. (2020).

4 COMPUTATIONAL TESTS

In this section, we consider the numerical effects of the proposed model improvement using
various test calculations. For this purpose, we first briefly repeat the most important parameters
of a benchmark set from the literature and use this to gain initial insights into the effect of (R0)
on different variants of the model M1. In the second part, we then define a new set of benchmark
instances that is parameterized, among other things, by the percentage of pure ending times.
For these instances, the positive effects of (R0) will be particularly evident in the numerical test
calculations.

4.1 General Information and Methodology

To discuss the numerical effects of (R0), we consider 160 benchmark instances described in
(Aydın et al., 2020, Section 5), consisting of a total of 32 groups of 5 instances each. Each of
these groups is uniquely described by a combination of the following four indicators:

• Number of items: We consider n ∈ {50,100,150,200}.

• Time horizon: The starting times si, i ∈ I, are uniformly distributed on [0, s̄]∩Z+, where
s̄ ∈ {n,1.2n} either represents a rather dense (s̄ = n) or a more relaxed (s̄ = 1.2n) scenario
with respect to possible item interactions.

• Duration: The item durations di := ei − si, i ∈ I, are either chosen to be short (i.e., di ∈
[10,30]∩Z+) or long (i.e., di ∈ [20,60]∩Z+). For convenience, these constellations will
be abbreviated by dS and dL, respectively.

• Item sizes: The capacity demands of the items can be low (i.e., ci ∈ [25,50]∩Z+) or high
(i.e., ci ∈ [25,75]∩Z+). In the following, we will refer to these scenarios by cL and cH ,
respectively.

In the numerical test calculations, we will not only investigate the effects of (R0) on the original
model M1 from Aydın et al. (2020), but also incorporate this strategy into two more competitive
versions of M1, namely the variants M1⋆ and M1⋆⋆ introduced in Martinovic et al. (2022). For
the sake of a better understanding, we therefore briefly list here the changes that have occurred
over time from M1 to M1⋆⋆ adhering to the notation used in the respective references. At first,
let us start with the contributions from Martinovic et al. (2021):
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(R1) To reduce symmetry, we only consider job-to-server assignments (i,k) with k ≤ i. By that,
we also can move to server-dependent time sets T (k) and TS(k).

(R2) We introduce valid cuts zk ≤ ∑t∈TS(k) wtk for any k ∈ K so that at least one fire-up is per-
ceived on any server in use. By that, we establish a mutual dependency of the two variable
types appearing in the objective function.

(R3) We lift the item sizes ci, i ∈ I, to possibly raise some coefficients appearing in the set of
constraints (see Dell’Amico et al. (2020)). To be more precise, we first define the sets
Qi :=

{
j ∈ I \{i}

∣∣ [si,ei)∩ [s j,e j) ̸= /0
}

for all i ∈ I. Then, we compute

ε(i) := max

{
∑
j∈Qi

c j · x j

∣∣∣∣∣ ∑
j∈Qi

c j · x j ≤C− ci, x j ∈ {0,1} for all j ∈ Qi

}
,

i.e., the maximum capacity required for a temporal knapsack containing job i. Whenever
ε(i)<C− ci holds, ci can be modified to c̃i :=C− ε(i).

On top of that, the following techniques were proposed in Martinovic et al. (2022):

(a) We apply a set of smaller modifications to the inequality chain (2) in M1.

(b) We limit the possible item combinations by using clique-based cuts.

(c) We use heuristic information to massively reduce the number |K| of servers to be
initialized.

All six contributions, i.e., (R1)–(R3) and (a)–(c), lead to an intermediate version of M1, called
M1⋆ in Martinovic et al. (2022), showing convincing numerical results. However, the application
of further cuts known from Wolsey (1989) for a neighboring problem even lead to a slightly more
powerful ILP formulation, called M1⋆⋆.

In all the following experiments, we coded the formulations in Python (version 3.7.7) and applied
Gurobi (version 9) with a time limit of tmax = 30 minutes to handle the ILP models. Moreover, we
note that the computations were run on an AMD A10-5800K processor with 16 GB RAM. Given
the large number of instances attempted, we typically just display average results. However, for
the strongest ILP formulations, referred to as M1⋆⋆ and M1⋆⋆+(R0) in the remainder of this
section, the log-files produced by the ILP solver can be found at https://github.com/wotzlaff/
tbpp-cf3/tree/main/logs. From these files, the instance-specific results can be deduced.

4.2 Computational Results for the Instances from Aydın et al. (2020)

First, in Table 1 we investigate the impact of the new cuts on the LP bound by listing the average
LP values of three different basic configuration, namely (i) the literature version of M1 as given
in Section 2, (ii) the version M1⋆ that has gone through all six improvement steps (see Martinovic
et al. (2022)), and (iii) the currently best version M1⋆⋆, which emerged from M1⋆ by adding the
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Table 1 – An overview of the (average) LP bounds obtained from different variants of
M1-type formulations.

n s̄ di ci M1 M1+(R0) M1⋆ M1⋆+(R0) M1⋆⋆ M1⋆⋆+(R0)
50 50 dS cL 18.0 19.2 19.6 19.6 19.6 19.6

cH 22.2 24.4 25.6 25.6 25.6 25.6
dL cL 26.8 29.4 30.0 30.0 30.0 30.0

cH 40.0 43.8 46.0 46.0 46.0 46.0
60 dS cL 15.4 16.6 16.8 16.8 16.8 16.8

cH 19.6 22.0 23.6 23.6 23.6 23.6
dL cL 27.0 28.8 29.6 29.6 29.6 29.6

cH 35.2 39.6 41.6 41.6 41.6 41.6
Average 25.5 28.0 29.1 29.1 29.1 29.1
100 100 dS cL 18.8 21.8 22.4 22.4 22.4 22.4

cH 25.2 30.8 33.6 33.6 33.6 33.6
dL cL 31.0 34.2 34.4 34.4 34.4 34.4

cH 41.6 47.4 49.2 49.2 49.4 49.4
120 dS cL 17.2 19.6 20.0 20.0 20.0 20.0

cH 22.0 25.6 27.2 27.4 27.4 28.4
dL cL 25.0 30.0 30.8 30.8 30.8 30.8

cH 37.8 42.8 44.4 44.4 44.4 44.4
Average 27.3 31.5 32.8 32.8 32.8 32.9
150 150 dS cL 17.8 21.6 21.6 21.6 21.6 21.6

cH 29.2 32.0 34.8 36.0 34.8 36.8
dL cL 33.0 38.4 38.8 38.8 38.8 38.8

cH 43.8 50.8 52.8 52.8 52.8 52.8
180 dS cL 15.2 19.2 19.6 19.6 19.6 19.6

cH 21.8 26.4 28.0 31.2 28.0 32.4
dL cL 26.6 31.0 31.6 31.6 31.6 31.6

cH 37.6 44.6 47.6 47.6 47.6 47.6
Average 28.1 33.0 34.4 34.9 34.4 35.1
200 200 dS cL 18.8 23.6 24.4 24.4 24.4 24.4

cH 25.2 30.0 31.6 32.4 31.6 33.2
dL cL 32.4 37.4 38.0 38.0 38.0 38.0

cH 43.4 51.4 53.6 53.6 53.6 53.6
240 dS cL 16.0 20.6 21.2 21.2 21.6 21.6

cH 23.8 28.2 30.6 34.6 30.6 37.0
dL cL 27.6 31.8 32.4 32.4 32.4 32.4

cH 36.6 43.4 46.0 46.2 46.0 46.2
Average 28.0 33.3 34.7 35.3 34.8 35.8
Total: Average 27.2 31.5 32.7 33.0 32.8 33.2
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constraints introduced in Wolsey (1989) (see (Martinovic et al., 2022, Subsect. 4.4)). To any of
these variants, we also add (R0) resulting in a total of six versions of M1.

The main findings are:

• From the average LP values, we see that Reduction (R0) is able to improve each of the
three given states of M1. The influence of (R0) is, of course, particularly large (roughly
16%) for the raw version from the literature where no other reduction is involved yet.

• Typically, with increasing number of applied reductions it becomes, on the one hand, more
difficult to further improve the LP bound, but on the other hand the interaction of different
types of valid inequalities may also result in an additional booster effect. For instance, the
latter can be observed for the hardest subset of instances with n = 200 items. Here, we
see that adding (R0) to the intermediate version M1⋆ is able to improve the LP bound by
approximately 1.7%, whereas the already more refined version M1⋆⋆ benefits from (R0)
by almost 3% better LP values.

• According to Table 1, (R0) seems to be particularly useful for the configuration (dS,cH).
This observation is logical, because in these scenarios the occurrence of fire-ups is typically
more likely than for the other choices, due to the relatively short jobs, which at the same
time have to be distributed over many servers because of their high resource demands.

Altogether, it can be concluded that applying (R0) is recommended for each variant of the M1-
type formulation. Remarkably, even the LP bounds of the currently best known version M1⋆⋆ can
still benefit to a non-marginal amount from the new valid inequalities.

Remark 7. In Aydın et al. (2020), further more difficult instance sets are introduced, but only
treated heuristically. In fact, they cannot be solved exactly even with the improved compact
models from Martinovic et al. (2021) or Martinovic et al. (2022). Nevertheless, the data col-
lected in Table 2 underlines that the previous observations all apply also to these very large and
challenging instances and, moreover, even gain more importance.

On average, for n = 500 (R0) is able to raise the LP bound of the currently best compact for-
mulation M1⋆⋆ by an additional 11%, while for n = 1000 the increase is already above 23%.
Particularly remarkable effects of between 50% (for n = 500) and 70% (for n = 1000) improve-
ment can be observed for the configuration (dS,cH) that typically contains many fire-ups. Thus,
especially for those cases, the much better lower bounds can be used to assess the quality of
heuristic solutions much more accurately than before.
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Table 2 – An overview of the (average) LP bounds obtained from different variants of
M1-type formulations for very large instances.

n s̄ di ci M1 M1+(R0) M1⋆ M1⋆+(R0) M1⋆⋆ M1⋆⋆+(R0)
500 500 dS cL 19.6 24.0 24.8 25.4 24.8 26.0

cH 28.2 34.0 37.0 47.0 37.6 49.2
dL cL 32.6 40.0 40.8 40.8 40.8 41.0

cH 44.4 55.0 59.2 59.2 59.2 59.4
600 dS cL 16.6 21.8 22.4 23.0 22.4 25.0

cH 22.8 28.0 30.8 46.6 32.6 49.8
dL cL 27.8 35.2 35.6 35.6 35.6 35.6

cH 39.4 48.0 50.0 50.8 50.0 51.0
Average 28.9 35.8 37.6 41.0 37.9 42.1
1000 1000 dS cL 20.2 24.4 24.8 26.6 25.0 28.2

cH 30.6 37.0 45.4 72.6 47.4 77.6
dL cL 32.4 39.0 39.6 39.6 39.6 39.6

cH 48.0 58.6 63.2 64.6 63.2 65.2
1200 dS cL 17.0 21.4 22.0 26.0 22.0 29.2

cH 26.8 31.8 41.2 71.2 44.8 76.4
dL cL 30.6 35.0 36.0 36.0 36.0 36.0

cH 40.2 48.4 52.0 52.0 52.0 53.4
Average 30.7 37.0 40.5 48.6 41.2 50.7

In a second experiment, we now focus on a broader range of performance metrics, but only for
the currently best formulation M1⋆⋆ presented in Martinovic et al. (2022). To this end, we solve
the integer programs related to the 160 benchmark instances introduced in Subsect. 4.1 and list
the results in Table 3. The abbreviations used therein for the first time are as follows

• nvar, ncon, and nnz refer to the average number of variables, constraints, and nonzero
coefficients, respectively, appearing in the integer program.

• opt counts the number of instances solved to proven optimality, whereas t is the average
time required for computation. Whenever an instance is not solved to proven optimality,
the time t is set to the time limit.

• The row called ’Exit gap’ measures the relative deviation of the best objective value avail-
able at the end of the time limit compared to the best lower bound, meaning that an
optimally solved instance does not add anything to that row.

It can be observed that (R0) is responsible for an increase of about 8% in terms of variables
and 12% in terms of constraints, so that the ILP model becomes a bit larger. Relative to these
values, however, the number of non-zero elements in the constraint matrix does not increase
proportionally, but to a much lesser extent. We attribute this to the fact that any of the new
inequalities just contains two variables so that the rows corresponding to (R0) are very sparse.
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Table 3 – A brief numerical comparison for two versions of M1⋆⋆, with and without (R0).
The column ’Diff’ measures the percentage difference between the new and the old value.

indicator units M1⋆⋆ M1⋆⋆+(R0) Diff
nvar 103 6.1 6.6 +8.2%
ncon 103 12.6 14.1 +11.9%
nnz 103 110.0 114.0 +2.7%
zLP — 32.8 33.2 +1.2%

Exit gap % 3.4 3.0 −11.8%
opt — 104 106 +1.9%

t s 705.5 703.7 −0.3%

Despite this (slightly) increased model size, however, there is a positive effect in the overall
performance of the setting M1⋆⋆+(R0), which again underlines the contribution of the improved
lower bounds. More precisely, within the identical average computation time, two additional
instances are solved to proven optimality and the average exit gap decreases by almost 12%, so
that in many cases (when reaching the time limit) a better objective function value can also be
expected.

A more detailed overview of which subset of instances was tackled more successfully by which
of the two formulations can be found in Table B1 in Appendix B. Given the observations from our
earlier discussions, the new cuts especially help to find integer optimal solutions of previously
unsolved instances for the configuration (dS,cH). Due to the same reasons, we sometimes have
an almost opposite effect for the case of short jobs with low resource demands (scenario (dS,cL)).
There, the probability of fire-ups in a feasible assignment is still rather high due to the relatively
short job durations, but much fewer active servers are required in an optimal solution. Thus,
much denser packings are typically possible, also in the LP relaxation, which is supported by the
optimal LP values in Table 1. Hence, although all instances of both tested models are solved in
a comparatively short time, the variant M1⋆⋆+(R0) requires more than twice as much computing
time in some of these cases.

4.3 An Outlook: The Impact of (R0) on Further Instance Classes

Although we were able to identify some beneficial aspects of the new valid cuts (R0), the bench-
mark sets given in the literature are not sufficient to fully cover the impact of that type of model
improvement.

Remark 8. Apart from the instances already considered, there is just one other relevant bench-
mark set which has been proposed in Dell’Amico et al. (2020) in the context of the classical
TBPP. However, these instances are characterized by |T |= |TS|+1, basically meaning that each
ending time is the starting time of another job. So, in fact, there is no difference at all between
the models M1⋆⋆ and M1⋆⋆+(R0).
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Hence, to observe some more pronounced effects of (R0), new sets of benchmark instances have
to be designed. In doing so, we mainly focus on an aspect that has not been part of the numerical
studies so far. More precisely, in the light of Remark 8, a measure related to the “percentage” of
pure ending times seems to be a promising additional parameter in the construction of instance
sets. By “pure ending time”, we mean that the time point considered does not represent the start-
ing time of another job. To this end, we basically overtook the ideas applied to build the instances
from Aydın et al. (2020), but post-processed them in a way that the temporal characteristics of
every single instance are consistent with a given value r ∈ [0,1) defined by

r :=
|{i ∈ I : si ∈ TE}|

n
.

Observe that this definition of the parameter r is just one possibility to quantify the aforemen-
tioned percentage of pure ending times. More precisely, r = 0 means that there is no intersection
between starting and ending times, whereas r → 1 leads to scenarios comparable to those of
Dell’Amico et al. (2020) described in Remark 8. Since the two models to be compared are (al-
most) identical for r → 1, here we just consider the values r ∈ {0,0.25,0.5,0.75}. Moreover, we
restrict our experiment to n ∈ {100,150,200} and the setups with short jobs (dS), according to
the lessons learned in Subsect. 4.2. For any pair (n,r), a set of 20 instances, derived from the
original instances appearing in Aydın et al. (2020), will be investigated. To focus on the general
trends, we usually do not specify the various indicators (like dS or cL) in the following tables, but
include them in the discussion if necessary.

Remark 9. For completeness, we mention that the r value for the original data set from Aydın
et al. (2020) averages 0.54, if the same classes n ∈ {100,150,200} and dS are considered. Note
that, in contrast to our newly generated instances, this average value is not a constant one for
any single instance. Instead, the instance-specific value ranges from 0.39 to 0.66, so that the
original set of instances is sufficiently different from the scenario r = 0.5 in our new experiment.

In a first experiment, we study the development of the average LP values (see Table 4).

Table 4 – The average LP bound obtained from M1⋆⋆ and M1⋆⋆+(R0). By ’Gap’, here we mean the
relative discrepancy between the two LP values (transformed into a percentage scale).

The averages are built based on 20 instances each.

r = 0.00 r = 0.25 r = 0.50 r = 0.75
n M1⋆⋆ M1⋆⋆+(R0) M1⋆⋆ M1⋆⋆+(R0) M1⋆⋆ M1⋆⋆+(R0) M1⋆⋆ M1⋆⋆+(R0)

100 25.9 26.6 25.9 26.4 25.9 26.1 25.9 26.0
150 25.9 27.9 25.9 27.9 26.0 27.6 26.2 27.3
200 27.0 30.3 27.0 29.6 27.0 29.2 27.3 28.8

Aver. 26.2 28.3 26.3 27.9 26.3 27.6 26.5 27.3
Gap 8.0% 6.0% 4.6% 3.0%
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The main observations can be summarized as follows:

• On average, we see that the difference between the two LP bounds decreases if r grows.
More precisely, the percentage gap goes down from 8.0% (for r = 0.00) to 3% (for r =
0.75). Note that, for small values of r, a relatively large number of additional cuts (of type
(R0)) is added to M1⋆⋆, since there are many ending times not representing the starting
time of another job. Of course, adding many inequalities considerably restricts the solution
space and, thus, increases the probability to obtain better LP values.

• We also see that, with increasing value of r, the average LP value of M1⋆⋆ increases,
whereas the opposite trend can be observed for the improved model. The former is related
to the fact that hiding a fire-up is more and more restricted (if r grows), so that better LP
values have to be expected. On the other hand, instances with small values of r naturally
possess more fire-ups in an optimal solution since many ending times do not represent the
starting time of another job. By that, the LP value typically decreases (if r grows), unless
the fire-ups can be saved from being perceived in the objective function (like in M1⋆⋆).

A more detailed look at the individual results (not tabulated here) reveals that the LP value of
M1⋆⋆+(R0) is typically strictly better than that of M1⋆⋆ in most of the constellations (dS,cH). For
(dS,cL), a similar effect can only be observed for small values of r, i.e., scenarios where many
cuts are added.

Let us now study the numerical behavior of the two models when solving the integer problems
associated to the given instances. The average results can be found in Table 5 and Table 6. Among
others, we highlight the following observations:

• For any choice of r, the new model is able to solve at least 3 (out of 60) additional instances.
In total, the number of additionally solved instances sums up to 22. This represents an
increase of 15.5% compared to M1⋆⋆. This positive trend is also supported by a constantly
better exit gap for M1⋆⋆+(R0) in any scenario.

• In general, the lower the value r the fewer instances can be solved to proven optimality by
either of the models. Note that small values of r correspond to large sets T (since starting
and ending times highly differ from each other) leading to large integer programs to be
solved. Hence, we see the lowest numbers of optimal solutions for r = 0. Similarly, the
decreasing average solution time (for increasing values of r) can be justified.

• Interestingly, the largest benefits of (R0) can be observed for r = 0.25. We attribute this
to a trade-off between two conflicting trends. First, for large choices of r, the two ILP
models become more and more similar. On the other hand, for very small values of r the
ILP models are more likely to be too large in size, so that many instances can neither
be solved in the original nor in the improved setup. In our experiments, it seems that for
r = 0.25 the new cuts help to obtain tractable formulations in many cases. To some extent,
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this empirical observation together with Remark 9 may also explain why there was less
success for the original data set from Aydın et al. (2020).

Table 5 – Average solution times and number of instances solved to optimality (in brackets) for M1⋆⋆ and
M1⋆⋆+(R0) where r ∈ {0,0.25}. Moreover, the average exit gap (UB−LB)/LB given by the solver at the

end of the time limit is reported. The averages are built based on 20 instances each.

r = 0.00 r = 0.25
n M1⋆⋆ M1⋆⋆+(R0) M1⋆⋆ M1⋆⋆+(R0)

100 870.9 (11) 774.3 (12) 831.2 (12) 467.5 (18)
150 976.9 (10) 1013.5 (9) 902.4 (11) 868.6 (11)
200 1201.6 (7) 1042.7 (10) 1192.7 (7) 915.0 (10)

Total 1016.5 (28) 943.5 (31) 975.4 (30) 750.4 (39)
Exit Gap 14.7% 11.1% 6.1% 3.8%

Table 6 – Average solution times and number of instances solved to optimality (in brackets) for M1⋆⋆ and
M1⋆⋆+(R0) where r ∈ {0.5,0.75}. Moreover, the average exit gap (UB−LB)/LB given by the solver at

the end of the time limit is reported. The averages are built based on 20 instances each.

r = 0.50 r = 0.75
n M1⋆⋆ M1⋆⋆+(R0) M1⋆⋆ M1⋆⋆+(R0)

100 288.1 (18) 91.0 (20) 142.4 (19) 39.7 (20)
150 773.2 (12) 662.7 (14) 612.0 (16) 396.5 (17)
200 1081.6 (9) 910.7 (10) 918.9 (10) 809.8 (13)

Total 714.3 (39) 554.8 (44) 557.7 (45) 415.3 (50)
Exit Gap 6.1% 3.8% 8.2% 5.7%

Altogether, (R0) is able to boost the performance of M1⋆⋆ to a more pronounced extent for the
new benchmark instances discussed in this subsection. In addition to the fact that short jobs turn
out to favor the success of (R0), we also identified another impactful parameter of an instance
that was not dealt with before in the literature. More precisely, since (R0) is meant to avoid
hidden fire-ups at ending times, the percentage of pure ending times (here quantified by r) plays
an important role for the extent, the new valid cuts can improve the computational behavior of
M1⋆⋆. While there is an obvious contribution of (R0) for any choice of r considered, its impact
is specifically high when r ≈ 0.25 holds for a given instance.

5 CONCLUSIONS

In this article we have dealt with selected theoretical and numerical aspects of the TBPP-FU,
which have so far received only little attention in the relevant literature. First, we succeeded in
disproving the validity of temporal decompositions for the TBPP-FU, thus working out a signif-
icant difference of both optimization problems and establishing the TBPP-FU as an independent
problem in cutting and packing. Furthermore, a new class of valid inequalities was proposed
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leading to improved versions of M1-type formulations, also according to our test calculations. In
particular, these additional cuts contribute to a noticeable increase of the LP bound even when
other reduction methods have already been applied. From a theoretical point of view, this also
paves the way to theoretically analyze the relationship of the LP bounds of the compact models
M1 and M2 from the literature, thus extending a previously only very abstract result from Aydın
et al. (2020). In an outlook section, we also introduced a new set of benchmark instances, involv-
ing a parameter controlling the percentage of pure ending times. For these instances, the effect of
(R0) was even more pronounced, and we were able to identify some general features of instances
supporting the success of (R0).

For the future, it is of great interest to see whether the insights into the structure of the LP
solution can be extended to the improved models from Martinovic et al. (2021) and Martinovic
et al. (2022) as well. Furthermore, it would be desirable to be able to specify the optimal value as
precisely as possible even for the very large instances with n ∈ {500,1000}. This requires both
good heuristics and strong bounds for evaluating the approximate solutions thus obtained. As we
have seen in particular in Remark 7, the latter could be clearly promoted, especially for some
instance parameters, in the context of this work.
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APPENDIX A DETAILED SOLUTION FOR EXAMPLE 1

• Model M1: Optimal value z(1),⋆LP = 3.5 given by z1 = z2 = 1 and

xik 1 2 3
1 0.5 0.5 0
2 1 0 0
3 0.5 0.5 0

ytk 1 2 3
1 1 0.5 0
2 1 1 0
3 1 1 0
4 0 0 0

wtk 1 2 3
1 1 0.5 0
3 0 0 0

• Model M1+(R0): Optimal value z(1),⋆LP = 4 given by z1 = z2 = 1 and

xik 1 2 3
1 0.5 0.5 0
2 1 0 0
3 0.5 0.5 0

ytk 1 2 3
1 1 1 0
2 1 1 0
3 1 1 0
4 0 0 0

wtk 1 2 3
1 1 1 0
2 0 0 0
3 0 0 0
4 0 0 0

In M1, there are no w-variables for t = 2, so the increase of ytk on server k = 2 cannot be detected.
In M1+(R0), this inconsistency does not appear anymore. From an overall point of view, note that
the two solutions depicted succeed in not shutting down the servers (i.e., in saving fire-ups) due
to the fractional x-variables and the left-hand side of Constraints (2).
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APPENDIX B DETAILED NUMERICAL RESULTS

Table B1 – An overall comparison of M1⋆⋆ and M1⋆⋆+(R0). We use boldface to
indicate the better formulation (with respect to instances solved to proven optimality,

breaking ties by the smaller required computation time).

M1** M1**+(R0)
n s̄ di ci t opt t opt
50 50 dS cL 2.3 (5) 4.0 (5)

cH 2.5 (5) 1.3 (5)
dL cL 360.3 (4) 360.8 (4)

cH 0.4 (5) 0.5 (5)
60 dS cL 1.7 (5) 1.2 (5)

cH 1.8 (5) 1.7 (5)
dL cL 1.6 (5) 11.2 (5)

cH 1.3 (5) 0.6 (5)
Average (Sum) 46.5 (39) 47.7 (39)
100 100 dS cL 1.1 (5) 3.6 (5)

cH 120.3 (5) 78.6 (5)
dL cL 1442.7 (1) 1449.8 (1)

cH 1090.1 (2) 1092.9 (2)
120 dS cL 69.2 (5) 85.3 (5)

cH 474.8 (4) 83.6 (5)
dL cL 433.2 (4) 685.9 (4)

cH 628.1 (4) 546.9 (4)
Average (Sum) 532.4 (30) 503.3 (31)
150 150 dS cL 49.8 (5) 85.7 (5)

cH 1722.5 (1) 1464.1 (1)
dL cL 1182.8 (2) 1462.2 (1)

cH 1485.7 (2) 1372.0 (2)
180 dS cL 15.1 (5) 37.2 (5)

cH 939.8 (3) 853.9 (3)
dL cL 1408.5 (2) 1198.4 (3)

cH 1509.8 (1) 1494.0 (1)
Average (Sum) 1039.2 (21) 995.9 (21)
200 200 dS cL 44.4 (5) 99.2 (5)

cH 1800.0 (0) 1800.0 (0)
dL cL 1494.2 (1) 1800.0 (0)

cH 1496.1 (1) 1624.6 (1)
240 dS cL 83.6 (5) 123.1 (5)

cH 1800.0 (0) 1693.9 (2)
dL cL 1110.7 (2) 1201.9 (2)

cH 1800.0 (0) 1800.0 (0)
Average (Sum) 1203.6 (14) 1267.8 (15)
Total: Average (Sum) 705.5 (104) 703.7 (106)
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