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ABSTRACT. In this paper we study a particular aspect of the urban community policing: routine patrol

route planning. We seek routes that guarantee visibility, as this has a sizable impact on the community

perceived safety, allowing quick emergency responses and providing surveillance of selected sites (e.g.,

hospitals, schools). The planning is restricted to the availability of vehicles and strives to achieve bal-

anced routes. We study an adaptation of the model for the multi-vehicle covering tour problem, in which

a set of locations must be visited, whereas another subset must be close enough to the planned routes. It

constitutes an NP-complete integer programming problem. Suboptimal solutions are obtained with several

heuristics, some adapted from the literature and others developed by us. We solve some adapted instances

from TSPLIB and an instance with real data, the former being compared with results from literature, and

latter being compared with empirical data.

Keywords: vehicle routing, covering tour problem, heuristics, urban patrolling.

1 INTRODUCTION

Community policing aims to serve several objectives: to gather information related to the com-

munity needs, to prevent crimes, to quickly respond to emergencies, to monitor public buildings,
etc. The two most common ways of organizing patrol car operations are the allocation of a car
to a certain fixed geographical location and the allocation of a car to a certain route covering a

larger area. The second is the method usually chosen by the municipal guards and military police
in the state of São Paulo, Brazil. The planning of these routes rarely adopts a scientific approach,
empirical rules are used instead.

One of the most important features of community policing is the contact between the members
of the community and the patrolling officers, improving the exchange of information between
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the community and the police force. Balanced routes with respect to the number of visits can
improve the whole process of community patrolling, since this can reduce the number of persons
and visits per officer.

Using a fleet of known size, we consider how to efficiently construct routes in order to patrol a
given geographical area. The routes should satisfy the following criteria: a certain set of sites
must be included in the routes; a second set may or may not belong to the routes; a third set
is made up of sites that must be observed (covered) by the patrolling officer, in the sense that
these sites are not visited, but they must be close enough to at least one visited site; the number
of routes must equal the number of available vehicles; the routes must be balanced, that is, the
number of visited sites for each route is approximately the same; all routes must start and finish
at the same geographical point, the base of operations.

The problem is modeled as an integer programming problem. The model presented in this paper
is related to the multi-vehicle Covering Tour Problem (m-CTP), where we discard the vehicle
capacity constraints and include a certain balance among the vehicles. The resulting combinato-
rial optimization problem is NP-complete, which justifies the use of heuristics developed in this
paper to obtain suboptimal solutions of acceptable quality in reasonable time.

The heuristics were implemented in MATLAB R© and compared using several instances from
TSPLIB. These instances, together with real data from the city of Vinhedo, São Paulo, Brazil,
were used to validate the code.

In Section 2, we define the balanced multi-vehicle urban patrolling problem. The mathematical
formulation is described in Section 3. The heuristics developed in this paper are presented in
detail in Section 4. In Section 5, we present the numerical experiments. Finally, the conclusions
are given in Section 6.

2 BUILDING ROUTES FOR URBAN PATROLLING

In the problem considered in this paper, a set of geographical points that need to be visited during
a routine patrol was determined by the police force, which might include schools, hospitals,
public buildings, etc. Additionally, there is another set that must be at convenient distance from
the route, for instance, public parks, community centers, bank agencies, etc. Good designs of
routes are of crucial importance, due to the limited resources (the size of the fleet) available to
cover usually large geographical areas. Therefore, the patrolling officers must be guided from
one visit to another in order to avoid bad empirical circuits.

More specifically, we will build routes for urban patrolling for the city of Vinhedo. This city is
located approximately 80 km east of the city of São Paulo, Brazil. Its economy is mostly based on
agriculture, in particular the growing of grape and production of related goods, specially wine. It
occupies an area measuring roughly 81.742 km2, and, as of 2010, had about 63,500 inhabitants.
It is part of a group of cities known as the fruit circuit, which promotes three to four festivals per
year, the fig festival, the strawberry festival, for example. The per capita income is high and the
criminality rate is low.

Pesquisa Operacional, Vol. 35(3), 2015
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The Municipal Guard of the city of Vinhedo must assist the population in public safety matters,

crime prevention being the main objective to be achieved by the police force. Preventive mea-
sures that increase the contact between the patrolling officers and members of the community
are of fundamental importance to community policing (NEV/USP, 2009). This strategy aims to

build a partnership between the community and Municipal Guard based on the premise that a
collective effort must be made to improve public safety. This means that the people in a certain
area have to not only participate in the discussions about safety and establish priorites and strate-

gies, but also share with the officers that patrol this area the responsibility for the safety of the
region. We can highlight the following measures: organization of public audiences to discuss the
community problems in order to develop strategies and priorites; mobilization of the community

for self-protection and solving problems that generate crimes; motivate the frequent dialogue
between the officers and the community.

Ideally, the patrolling officers must stop in each visit point, interact with the people there, and
watch certain points of interest within viewing distance. Aiming a greater proximity with the

community, the chief of operations needs to designate a balanced set of visits for the patrolling
cars, reducing the number of persons per officer. However, in practice, the city is divided into
sectors (see Fig. 3), and a certain number of vehicles is assigned to a given sector. Moreover,
the patrolling officers make the circuit of visits empirically, based on their knowledge of the

geographical area, which may be unproductive. Figure 3 illustrates the distribution of five sectors
within the Vinhedo city region, denoted by A, B, C, D and E. Note that the geographical points
are not equally distributed within these sectors.

There are regions where the geographical points of interest are more concentrated than others,

due to the characteristics of a geographical area (e.g., the distances between two schools may
be much larger in peripheral areas than in central ones). Consequently, if we obtain balanced
routes, there might be shorter routes in the central regions than in peripheral ones. Therefore,

the fact that there are routes which are shorter than others is not inconsistent with our proposal
for building routes for urban patrolling, since the efficiency of the contacts established by the
patrolling officers with the members of the community outweighs the balance among the lengths

of routes.

In our approach, we aim to build routes in the context urban patrolling that balance the number
of visits without a prior division of the geographical area into sectors. The set of visits for each
patrolling car is decided by dividing the set of all visits into clusters. Once the set of visits for

a patrolling car is obtained, to determine the order to the visits, we have chosen to minimize
the overall length of all routes instead of choosing the order empirically. Thus, the problem is
modeled as an integer programming problem whose the main objective is to determine balanced

circuits in number of visits for each patrolling car.

A proper survey of the features of the problem was conducted with Vinhedo patrol professionals.
Ideally the distances (or travel times) among geographical points would be calculated separately
from real data, taking into account possible paths between nodes, average speeds, etc. This would

imply in non-symmetrical distances. Nevertheless, in the real instance considered, involving the

Pesquisa Operacional, Vol. 35(3), 2015
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city of Vinhedo, the true path lengths (corresponding to routes using the city streets) were not

known. Therefore, the Euclidean distance was chosen as an approximation to determine each
route. Note that once the order of visits is established, the patrolling officers can use their expe-
rience to decide how to go from one visit to the next.

There are similarities between the design of routes for urban patrolling and the model presented

in this paper, namely, the construction of circuits covering certain geographical points, while
visiting mandatory and optional ones. The number of visits is balanced and the number of routes
is fixed (we do not want cars and personnel idling at the base). Throughout the text we present

our model, and more importantly, our strategy to obtain approximate solutions.

The model involves a graph G = (V ∪W, E), whose nodes correspond to strategic geographical
points, e.g., intersections, certain locations, etc., that are either important on its own, or serve to
establish reference locations for the routes. The node set is partitioned into two subsets: V =
{0, . . . , n} is the set of nodes that may belong to routes and W = {n + 1, . . . , n+ �} is the set of
nodes that must be covered, but not visited. The set V contains a subset T of nodes that must be
visited. Node 0 ∈ T corresponds to the base. The set V \ {0} is denoted by V ∗. The symbol T ∗
denotes the set T \ {0}.
The set E contains all possible undirected arcs between nodes of V . The entry ci j , of the dis-
tance matrix C = (ci j ), contains the Euclidean distance between nodes i, j = 0, 1, . . . , n + �.
This assumption implies that C is symmetric with zero diagonal. In this case, we choose to

represent the set (undirected arc) {i, j } by the ordered pair (i∗, j ∗), where i∗ = min{i, j } and
j ∗ = max{i, j }. The size of the fleet is denoted by m and the admissible distance from a node
in the route to a node that must be covered is denoted by c. We need one last parameter, to

express our tolerance regarding the lack of balance between different routes. We compare routes
by means of the number of nodes each route contains. The number r denote the maximum dif-
ference allowed for the total visited nodes in any two routes.

We want to construct m routes satisfying the following conditions:

• Each route is a circuit in G containing node 0.

• Each node in V ∗ must belong to at most one route.

• Each node in T ∗ must belong to exactly one route.

• There must be at least a visited node at a distance of at most c from each node in W .

• The number of nodes in any two routes differ by at most r.

Variants of this model have been used in many contexts. Labbé & Laporte (1986) discuss how
to simultaneously decide on the location of mailboxes and the planning of routes involving can-

didate sites, such that all users are close enough to some mailbox. The planning of routes for
medical mobile units (Brown & Fintor, 1995; Foord, 1995; Hodgson et al., 1998; Oppong &
Hodgson, 1994; Swaddiwudhipong et al., 1995) bears many similarities with the planning of
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urban patrol routes. In places where medical services for small villages are rendered by mobile

units, their routes must be planned in such a way that, in addition to visiting specific locations,
the villages not included in the tour must be within walking distance from some other village
included in the tour. The model can also fit situations in business sectors, see Simms (1989) for

an application in dairy practice.

The special case of m-CTP where V = T reduces to a vehicle routing problem (Laporte, 1992)
with unit demand. Baldacci et al. (2005) present three Scatter Search heuristic algorithms for the
1-CTP. Motta et al. (2001) use a GRASP approach to solve a variant of the 1-CTP, the Gener-

alized Covering Tour Problem, whose minimum length tour may pass through a subset of W .
In another point of view, Jozefowiez et al. (2004, 2007) present a multi-objective covering tour
problem, a generalization of the 1-CTP where the parameter c is omitted and replaced by an

objective. They propose a hybrid strategy approach that combines a multi-objective evolutionary
algorithm with a branch-and-cut algorithm to determine the Optimal Pareto sets.

Hà et al. (2013) obtained exact solutions for a variation of m-CTP, where the constraint on the
length of the routes is relaxed. They used a branch-and-cut algorithm and a metaheuristic (based

on the evolutionary local search) to obtain those solutions. Jozefowiez (2014) and Lopes et al.
(2013) used a branch-and-price algorithm, in which a column generation approach is applied
at each node of the search. Despite the recent applications for m-CTP using variations of the

exact methods branch-and-bound, branch-and-cut, and branch-and-price, we did not succeed in
solving large instances. In our application, in the context of urban patrolling, the instances are of
the order of more than two thousand points.

3 MATHEMATICAL FORMULATION OF THE PROBLEM

In order to facilitate the modeling of the covering restrictions, we define the set of nodes in V
within the allowed prescribed distance c from each node j ∈ W : S j = {i ∈ V | ci j ≤ c}. We
may suppose without loss of generality that |S j | ≥ 2, since if there is only one node i ∈ V close

enough to some j , then we may as well include i ∈ T and eliminate j from W . Similarly, we
may assume that S j ∩ T = ∅, for all j , since we do not need to worry about covering nodes that
are close enough to some node in T . With these assumptions, S j = {i ∈ V \ T | ci j ≤ c} and its

cardinality is at least two, for all j ∈ W .

The model contains two sets of binary variables. The variable yik is 1 if node i is visited by
vehicle k, and 0 otherwise, for i ∈ V , k = 1, . . . , m. The variable xi jk is 1 if vehicle k uses arc
(i, j ) in its route, and 0 otherwise.

Min
m∑

k=1

n−1∑

i=0

n∑

j=i+1

ci j xi jk , (1)

s.t.
m∑

k=1

∑

i∈S j

yik ≥ 1, j ∈ W, (2)

Pesquisa Operacional, Vol. 35(3), 2015
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m∑

k=1

yik ≤ 1, i ∈ V \ T, (3)

m∑

k=1

yik = 1, i ∈ T ∗, (4)

h−1∑

i=0

xihk +
n∑

j=h+1

xh jk = 2yhk, h ∈ V ∗, k = 1, . . . , m, (5)

∑

i ∈ S, j ∈ V \ S
or j ∈ S, i ∈ V \ S

xi jk ≥ 2yhk, S ⊂ V ∗, h ∈ S,

2 ≤ |S| ≤ n − 1, k = 1, . . . , m,

(6)

n∑

i=1

x0ik = 2, k = 1, . . . , m, (7)

n∑

i=1

yip −
n∑

i=1

yiq ≤ r, p, q = 1, . . . , m, (8)

n∑

i=1

yip −
n∑

i=1

yiq ≥ −r, p, q = 1, . . . , m, (9)

y0k = 1, k = 1, . . . , m, (10)

yik, xi jk ∈ {0, 1}, i, j ∈ V , k = 1, . . . , m. (11)

Using these variables, the “cost” of a solution, given in (1), is the cumulative length of all routes,
which we wish to minimize. The constraints are modelled as follows. The covering of node

j ∈ W is guaranteed by (2). Constraints (3) make sure that each node in V \ T belongs to at
most one route. The fact that every node in T must be visited by some tour is expressed in (4).
Constraints (5) imply that, if node h belongs to route k, then it has two neighbors in the route.

Constraints (6) avoid subtours, by forcing that, if node h ∈ S ⊆ V ∗ belongs to route k, then the
cut-set (S, V \ S) must contain at least two arcs of route k. (7) guarantees that each route has
two arcs incident to the base. The maximum difference between the number of nodes of different

routes is enforced by (8) and (9), i.e., the maximum difference

r̃ = max
1≤p,q≤m

∣∣∣∣∣

n∑

i=1

yip −
n∑

i=1

yiq

∣∣∣∣∣

obtained in the solution must be less than or equal to the parameter r. Constraints (10) force that

the base belongs to every route. The last set of constraints, (11), simply specifies the allowed
values for the variables.

4 HEURISTICS

The heuristics developed for the balanced multi-vehicle urban patrolling problem modeled in
the last section are divided into three phases. In Phase 1, subsets Vk and Wk, k = 1, . . . , m,

Pesquisa Operacional, Vol. 35(3), 2015
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are selected, where Vk and Wk are the nodes that may be visited and that should be covered by

route k, respectively. Phase 2 deals with m 1-CTP problems, defined on the subgraph induced
by Vk ∪Wk . At this point, m closely related problems are considered separately. The last phase
tries to improve the solution by taking this interrelation into account. The three-phase sequence

is repeated according to a criterion specific to the routine employed in Phase 1. The best solution
in the whole loop of three phases (or outer iterations) is selected.

Table 1 below summarizes the routines employed in each phase of the various heuristics. The
routine employed in Phase 1 will lend its name to the heuristic. Note that they share Phase 2, and

the first three heuristics use Balanced 2-opt in Phase 3, while the Sector Partition uses Multicover
Elimination.

Table 1 – Routines according to Phase.

Phase 1 Phase 2 Phase 3

Greedy
Selection

Sweep Modified Balanced

Routine 1-CTP 2-opt
Route-first/ Routine

Cluster-second
Sector Multicover

Partition Elimination

Our mathematical model resembles the model in Hachicha et al. (2000). However, in that model

the length and number of visits per tour are limited and the number of routes is variable, whereas
in this model the number of visits is balanced and the number of routes is fixed. In order to
take into account these differences, we consider modified versions of the sweeping algorithm,
Route-first/Cluster-second algorithm and 2-opt∗ algorithm presented in their paper. The Sweep

Routine corresponds to steps 1 and 2 of the sweeping algorithm. Similarly, Route-first/Cluster-
second is formed by steps 1 and 2 of the algorithm of same name. The Balanced 2-opt routine
contemplates improvements via arc swapping, and is adapted from the 2-opt∗ algorithm.

The Modified 1-CTP Routine is a modification of the heuristic described in Gendreau et al. (1997)
for the covering tour problem. The remaining routines were developed by us.

The Greedy Selection routine gradually selects sites using a criterion that selects the nearest
site to the one previously selected, forming a circular ordered list. The nodes in this list are then

partitioned into m subsets of approximately equal size, keeping the order of the original list and
starting with the first node in the list. In subsequent iterations, the selection step is not repeated.
Instead, we simply shift by one the order of the nodes in the list and redo the partitioning. This
is repeated approximately t/m times, where t is the cardinality of the list.

In the Sector Partition routine, we use a geographical approach to divide V , T , and W , into m
subsets, corresponding to circular sectors. Each outer iteration corresponds to a counterclockwise

Pesquisa Operacional, Vol. 35(3), 2015
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shift of the sectors. This simple geographical division is used to reduce the computational time

in Phase 1.

The Multicover Elimination checks whether some node in W is covered by more than one node
included in a route. If this is the case, there may be room for improvement, by removing one of
the superfluous nodes.

In the described routines, it is often necessary to know the subset of nodes in W covered by a

particular node in V . The subset covered by node i is denoted by Ci = { j ∈ W | i ∈ S j }.
Recall that S j = {� ∈ V \ T | c�j ≤ c}.

4.1 Greedy Selection

Initially we form a single route R = (h0, h1, . . . , hz) that contains all nodes in T and covers all
nodes in W as follows. The routine starts with h0 = 0, R = (h0) and L = T ∗ ∪W . The set L
is gradually emptied using the criterion that selects the nearest site to the one previously selected

in L . If the chosen node h belongs to T , it is simply appended to R, and {h} ∪ Ch is removed
from L . If h belongs to W , then one selects from Sh the node that covers the greatest number of
yet uncovered nodes, say node �, and appends it to R. Then C� is removed from L .

In the next two paragraphs, we detail the main differences between our approach and Hachicha’s

Sweep and Route-first/Cluster-second routines. There, the selection of the sets Vk and Wk, k =
1, . . . , m, is made in order to minimize the number of routes, while satisfying the demand, the
capacity of the vehicle and their constraints on the length of the routes. In our approach, we
choose Vk and Wk with approximately the same number of elements to keep the balance among

routes.

Here, and in the next two routines, once R is constructed we consider the sequence R∗ = R \ {0}
as a circular list. In order to apply Phase 2, we need to divide V , T , and W into m subsets that

are induced by a partition of R∗ as follows. Let p = �z/m, q = z − mp, where z denotes
the number of nodes in R∗ . Starting from the first node in R∗, we select q subsets of sequential
nodes of size p + 1, and m − q subsets of size p. The nodes in V (resp., T ) in the kth subset
union {0} are denoted by Vk (resp., Tk). The kth subset of W is Wk =⋃{Ci | i ∈ Vk}.
In the next round, the partition of R∗ will start at the second node, and then third, and so on, in a
total of p or p + 1 outer iterations, depending on whether z is a multiple of m or not.

4.2 Sweep Routine

The difference between this routine and the previous one is the strategy used to build the single

route R = (h0, h1, . . . , hz). The sweeping process is applied to the vertices T ∪W and several
solutions are generated. The routine starts with h0 = 0, R = (h0) and L = T ∗ ∪W . Choose an
arbitrary node h̄ ∈ L and consider a half line from h0 passing through h̄. The set L is gradually

emptied using the criterion that sweeps the nodes h ∈ L according to the ascending order of the

angles θh =̂h̄h0h. If the chosen node h belongs to T , it is simply appended to R, and {h} ∪ Ch

Pesquisa Operacional, Vol. 35(3), 2015
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is removed from L . If h belongs to W , then one selects from Sh the node that covers the greatest

number of yet uncovered nodes, say node �, and appends it to R. Then C� is removed from L .
Once R is constructed, the process continues as in the Greedy Selection routine.

4.3 Route-first/Cluster-second

Again, the difference between this routine and Greedy Selection routine is the strategy that

we build the single route R = (h0, h1, . . . , hz). Here, a feasible 1-CTP solution for V , T ,
and W is determined by means of the Modified 1-CTP Routine (section 4.5), say route R =
(h0, h1, . . . , hz), h0 = 0, that contains all nodes in T and covers all nodes in W . This tour is

then divided into smaller feasible routes as in the Greedy Selection routine.

4.4 Sector Partition

This routine is applicable only in cases where there is a geographical model of the problem.

The site associated with the base node is taken as the geographical center of a circular disk con-
taining all locations (nodes) under consideration. This disk is partitioned into m circular sectors
of same central angle. Nodes corresponding to sites in the kth partition form the sets Vk, Tk , and
Wk . The first partition is arbitrary. In the next iteration, the sectors are shifted counterclockwise

by 360◦/t , and this is repeated until we return to the original partition, a total of t outer iterations.
In the computer experiments, the value t = 10 was used. Due to its simplicity, if the distribution
of nodes is non-uniform, this way of choosing the partitions Vk, Tk , and Wk does not guarantee

the equilibrium among the number of nodes in each partition, possibly producing unbalanced
routes.

4.5 Modified 1-CTP Routine

Gendreau et al. (1997) developed a heuristic for the covering tour problem (1-CTP), using el-
ements of the GENIUS heuristic for the traveling salesman problem (TSP) of Gendreau et al.
(1992) and PRIMAL1 set covering heuristic of Balas & Ho (1980).

This heuristic uses the fact that, if the set of nodes that should be visited (that is, the support

of the optimal y) is known, then the covering tour problem reduces to a traveling salesman
problem. This suggests the construction of a covering problem by considering the “covering”
aspect separately, namely the combinatorial optimization problem (12) below. Notice that, since

m = 1, there is no need for the tour index k.

Min
∑

j∈V

c j y j ,

s.t.
∑

j∈Si

y j ≥ 1, i ∈ W, (12)

y j = 1, j ∈ T,

y j ∈ {0, 1}, j ∈ V .

Pesquisa Operacional, Vol. 35(3), 2015
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In PRIMAL1, variables y j are gradually included in the solution according to a greedy rule,

using one of three merit functions: (i) f (c j , b j ) = c j/(log2 b j ); (ii) f (c j , b j) = c j /b j ;
(iii) f (c j , b j) = c j ; where b j is the number of uncovered (in the current partial solution) nodes
in W that are covered by j , and c j is the cost to insert j in the current solution.

On the other hand, TSP routes are also constructed incrementally in GENIUS. During the con-

struction phase, a tentative tour is built starting with three arbitrarily selected nodes and using a
general insertion procedure (GENI), with rules for selecting candidates and rules for evaluating
the inclusion in the tour. Once a complete tour is obtained, one seeks to improve it by removing

and reinserting each node of the tour, in a post-optimization procedure called US (for Unstringing
and Stringing).

GENIUS and PRIMAL1 are combined to produce a covering tour heuristic as follows. Nodes are
gradually selected and added to the set of nodes that should be visited, and a new approximate

solution to the TSP involving each insertion of these nodes is obtained using GENIUS. This
procedure stops when all nodes in W have been covered. The selection of the each node is made
by considering the merit functions in PRIMAL1 heuristic using the coefficient c j (cost to insert

this node in the approximate solution to the TSP, calculated by GENI selection rules). At the end,
post-optimization is applied by removing superfluous nodes. The whole process is done for each
merit function, two sequences of the merit functions (i)-(ii)-(iii) and (i)-(iii)-(ii) are considered,

and the best solution is selected.

Numerical experiments with our code for the various heuristics showed that the GENI part was
fast and produced acceptable results, whereas the post-optimization US routine was quite costly.
After several trials, we arrived at a modified routine of Gendreau et al.’s covering tour heuristic,

in order to avoid the repeated construction of unnecessary approximate solutions of the TSP at
the insertion and removal of each node. This is done by inserting the new node using GENI rules
and removing superfluous nodes using US rules without discarding the previous TSP solution.

More details about the experiments with the different heuristics tried out, which showed a better

computational performance with these modifications, can be found in Oliveira (2008). In the
modified routine listed below, the merit functions are used in the sequence (i)-(ii)-(iii).

STEP 1. Let H ← T , z̄ ← ∞. Let f be the merit function specified in (i). Let z be the
value of the tour obtained applying GENIUS to the TSP involving the nodes in H . If all
nodes in W are covered, go to Step 2. Otherwise, go to Step 3.

STEP 2. If z ≤ z̄, let z̄ ← z, H̄ ← H . If the definition used for the merit function is the
last, stop with the best solution so far, with value z̄ and set of visited nodes H̄ . Otherwise,
remove from H \ T nodes associated with multiple covered nodes in W using US. Go to

Step 3 with the next definition of the merit function f .

STEP 3. Select within V \H node h∗ using PRIMAL1, with cost coefficients c j calculated
using criteria defined in GENI. Insert h∗ in the route employing GENI, and let H ←

Pesquisa Operacional, Vol. 35(3), 2015
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H ∪ {h∗}. Repeat the process until all nodes in W are covered. Let z be the value of the

tour obtained. Go to Step 2.

When this routine is used in Phase 2, it is run m times with the sets Vk , Tk , and Wk, for

k = 1, . . . , m, constructed in Phase 1.

4.6 Balanced 2-opt

This is a modification of the 2-opt∗ heuristic. The changes introduced aim to keep the balance,
in terms of number of nodes, among the routes. Steps 1 and 2 are adaptations, since in their

approach, the number of the routes can decrease and changes between arcs are allowed provided
the length of the routes and number of visits are within the preset values, while in our approach,
those changes can be made only if the balance between routes is not destroyed and the number of

routes is not altered (we do not want cars and personnel idling at the base). Step 3 is different, it
considers swapping of nodes belonging to different routes. Notice that the exchanges considered
in this last step do not alter the number of nodes in each route.

At this point, the initial set of m routes constructed in Phase 1 has already undergone improve-

ment in Phase 2, and the following procedure is executed.

STEP 1. Let ρ be the smallest number of nodes per route, excluding the base node.

Transform the set of m routes into a single route by replacing the base node by m artificial
copies of the base node (see Fig. 1). Make a list of all possible pairs of distinct arcs in this
single route.

Figure 1 – How to build a single route for m = 3, and two patterns of arc-pairs.

STEP 2. In this step, the arc-pairs in the list are considered sequentially, until either
a better solution is reached and return to Step 1 or there is no pair left, continue with

Step 3. Let {{r, s}, {t, u}} be the current pair. Consider the two possibilities of replacement:
(i) {{r, t}, {s, u}}, (ii) {{r, u}, {s, t}}. The replacement may split the single route into two
routes (see Fig. 2). If this happens, the new routes correspond to a feasible solution only

if each of them contains at least one copy of the base node. Furthermore, the number of
nodes in the route(s) between each pair of copies of the base node (or in the case where
one of the subroutes created by the replacement contains only one copy of the base node)
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must be at least ρ. For each feasible solution, calculate its objective value. If there is an

improvement, recover m routes from the best improved single (or pair of) route(s) and go
back to Step 1. If the end of the list is reached without (feasible) improvement, recover m
routes from the best improved single (or pair of) route(s) and go to Step 3.

Figure 2 – Two cases of replacement of arc-pairs (Cases A and B in Figure 1).

STEP 3. Make a list of pairs of nodes, each distinct from the base node, and belonging to

different routes. Consider the pairs sequentially. For each pair, calculate the value of the
alternative solution obtained by swapping the nodes. Keep the solution with best objective
function value.

In Step 1 of the Balanced 2-opt, we transform the set of m routes into a single route (Fig. 1) in the
same manner as described in Lenstra & Rinnooy Kan (1975). Case A and Case B in Figure 1 are

two possible configurations of arc-pairs in distinct routes and in the same route, respectively. The
choice of ρ as the smallest number of nodes per route, and the fact that of the arc-pair exchanges
in Step 2 produces routes with at least ρ nodes guarantees the balance among routes.

The exchanges of arcs in Step 2, 2-opt moves, are particular cases of k-opt move algorithm (LK)

developed by Lin & Kernighan (1973). In Step 3 the swapping of nodes between different routes
can be considered as a 4-opt move, since the two arcs that share each exchanged node are deleted
and replaced by four new arcs. Although the extension and generalization LKH-2 algorithm

developed by Helsgaun (2009) greatly improves LK, we chose 2-opt and 4-opt moves, since
they have a reasonably good performance and the balance constraints can be easily checked.
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Several patterns resulting from k-opt moves are not suitable to our model, since they destroy

the balance and create disconnected subroutes. Figure 2 (as in Hachicha et al. (2000)) illustrates
some examples of configurations after the replacement of arc-pairs, where four cases are obtained
according to the relative position of each arc-pair, namely the arc-pairs being either in distinct

routes (Cases A1 and A2) or in the same route (Cases B1 and B2).

In Case A1, the two disconnected routes obtained are feasible once the balance constraints are
satisfied. Note that this exchange is not allowed in the k-opt moves. In Case A2, one can produce
unbalanced solutions depending on the number of nodes between the copy of the base and an arc-

pair node. Case B1 is infeasible since one chain does not contain a copy of the base. Finally, in
Case B2, there is a change in the order of nodes in a route, which may improve the solution.

4.7 Multicover Elimination

If a node in W is covered by more than one node, we may improve the solution by eliminating one
of the superfluous nodes. At this point, the initial set of m routes constructed in Sector Partition

has already undergone improvement in Phase 2. Note that only nodes in V \ T (the support of y
that are not in T ) may be removed from the solution. If a node i may be removed, we consider
the alternative solution obtained by deleting the arcs incident to i and adding the arc linking its

neighbors. Observe that, since the distances between nodes satisfy the triangle inequality, the
removal of a node always implies in the decrease of the objective function.

The possibility of removal of node i is checked in the brute force way: we delete it from the route
and check whether this results in some node in W being uncovered. This is a two-step procedure.

In the first step we build a list of candidates for removal, and in the second step we examine the
list sequentially, trying to remove as many nodes as possible.

STEP 1. Examine all nodes in the route that belong to V \T and build a list of superfluous
nodes in descending order with respect to the amount of decrease in the objective function

implied by their removal.

STEP 2. Consider the nodes in the list sequentially and remove the nodes whose removal
does not destroy the required coverage and balance among routes.

Note that this procedure is simpler than the Balanced 2-opt routine and it was chosen as the post-
optimization for Sector Partition heuristic in order to reduce the computational time in Phase 3.

5 NUMERICAL EXPERIMENTS

The heuristics were tested on a set of adapted instances from TSPLIB and on an instance con-
structed from official data of the city of Vinhedo, São Paulo. They were implemented in MAT-

LAB R© and tests were run on a PC with an Intel i7-4790S 3.20 GHz, with 8 GB of RAM DDR3
and Linux operating system. The characteristics of the adapted instances are described next,
followed by comments about the collection of data from the city of Vinhedo.
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We close this section with statistics summarizing the test results and comments on the perfor-

mances of the different heuristics.

Data Instances

The full characterization of an instance involves the following parameters: the cardinalities of

the sets V , T , and W ; the distance c calculated from the sets S j , j ∈ W ; the number m; and the
parameter r (the maximum difference allowed between the number of nodes in different routes).

In order to observe the behavior of the heuristics with respect to scale, we have designed five
classes of problems, where each class is defined by the total of nodes in V ∪W : the first class has

|V | = 50, |W | = 50 corresponding to KroA100, KroB100, KroC100, KroD100 and KroE100;
the second class |V | = 50, |W | = 100 corresponding to KroA150 and KroB150; the third class
|V | = 100, |W | = 100 corresponding to KroA200 and KroB200; the fourth class |V | = 100,

|W | = 218 corresponding to lin318; and the fifth class |V | = 200, |W | = 200 corresponding
to rd400. Each class is subdivided in three subclasses, according to the cardinality of T : the
subclass 1 has |T | = �|V |/8�; the subclass 2 has |T | = �|V |/4�; and the last one has |T | =
�|V |/2�.
Each instance is characterized by a collection of pairs {(xi , yi) | i = 1, . . . , |V | + |W |}, where
both xi and yi are interpreted as coordinates of points in the Euclidean plane. The base coordi-
nates are chosen from the collection so that it is centralized. Pairs corresponding to the nodes in

T ∗ are chosen sequentially in this list, and are followed by the pairs corresponding to the nodes
in V \ T . All other pairs correspond to nodes in W .

Next we choose the constant c used in the definition of the neighborhood S j of node j ∈ W . That
is, the nodes in V which are close enough to j in the sense that j will be considered covered if the

route contains a node in S j . The following considerations guide our choice. We want |S j | ≥ 2,
for all j , so c must be greater than the maximum of the distances c jh( j), for all j ∈ W , where
h( j ) is the index of the node in V that is the second closest node to j . Furthermore, we want

that every node in V \ T covers some node in W , otherwise this node could be eliminated from
consideration in a pre-processing run. Thus, we also want c to be greater than mh , the distance
from node h to W , for all h ∈ V \ T . The value of c is thus the greatest of the two maximum

distances.

The number of routes m varied from 2 to 4 in the classes with 100 and 150 points, from 3 to 5 in
the classes with 200 and 318 points, and from 4 to 6 in the class with 400 points. Classes with
100 and 150 points have r = 2, the classes with 200 and 318 points have r = 3, and the class

with 400 points has r = 4.

City of Vinhedo Instance

The Municipal Guard of the city of Vinhedo provided two lists of addresses. The first list, with

101 addresses, corresponded to sites that needed to be visited during rounds, and the second,
with 133 addresses, contained the addresses of sites that should be covered. The geographical
coordinates of these sites were calculated, as well as the coordinates of all street intersections.
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The geographical coordinates of the Municipal Guard base gave us the base node location. This

real instance thus had 102 nodes in T , 133 nodes in W and 2496 nodes in V \T (the intersections).
Figure 3 shows the distribution of points within the city region.

Figure 3 – Distribution of relevant nodes in the City of Vinhedo.

Empirical experience in security acquired by the Municipal Guard leads to the conclusion that a

patrolling officer can watch each site up to a distance of 150 m, so we chose c = 150 m. This
allowed the elimination of 1563 nodes in V \ T , whose distances to W were greater than c. We
verify this by comparing the Figures 3 and 8. The latter illustrates a set of routes obtained in the

tests. Note in Figure 3 that the distribution of nodes in this instance is not uniform, for example,
in Sector D there is a higher concentration of nodes than in Sector A. Our real-data instance had
|T | = 102, |V \ T | = 933 and |W | = 133. The values considered for m were five, six and

seven, which are related to the likely number of cars available for community patrolling duties.
The parameter r was chosen as six in the first case (m = 5) and as eight in the remaining cases.
According to the Municipal Guard this choice does not overload the patrolling officers.
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Summary of Results for TSPLIB Instances

Figure 4 shows a typical solution of the problem. Notice that the three routes contain all nodes in

T (the star shaped nodes), but some nodes in V \ T (bullets) were not picked. The gray disks are
the neighborhoods of the nodes in W (circles). One can verify that the solution is feasible with
respect to coverage, as well as each gray disk contains at least one visited node. Furthermore,

the routes are balanced, differing by at most one node.

Figure 4 – Example of a feasible solution.

Tables 2, 3 and 4 summarize the relevant data collected in the numerical experiments with the
four heuristics listed in Table 1. The first column indicates the instance, the second column the
number of vehicle, and for each heuristic we report the r̃ (the maximum difference obtained
between the number of nodes of different routes in the approximate solution), the time (in sec-

onds) spent on each instance, the cost (total length of all tours) and the quality index (Q.I.) of
the heuristic. This last number is the cost divided by the minimum cost over all four heuristics,
showing how good the performance of that heuristic was, as compared to the one with the best

cost. Therefore, the Q.I. of the routine with the best cost is 1, and the table cell containing this
entry is shaded for emphasis.

For instances up to 150 points, Sector Partition has the biggest number of the Q.I. equals to 1,
approximate 71% of total, followed by Route-first/Cluster-second with 60% of total. The worst

Q.I. is 1.377 (37.7% worse than the best result), achieved by the Greedy Selection heuristic, and
the average value of Q.I. is 1.033. We conclude that the performances of the various heuristics
with respect to the quality aspect were very similar.

Pesquisa Operacional, Vol. 35(3), 2015



�

�

“main” — 2016/1/12 — 19:54 — page 633 — #17
�

�

�

�

�

�

WASHINGTON ALVES DE OLIVEIRA, ANTONIO CARLOS MORETTI and EDNEI FELIX REIS 633

T
ab

le
2

–
R

es
ul

ts
fo

r
su

bc
la

ss
|T
|=
�|V
|/8
�.

in
st

an
ce

G
re

ed
y

Se
le

ct
io

n
Se

ct
or

Pa
rt

iti
on

Sw
ee

p
R

ou
tin

e
R

ou
te

1st
/C

lu
st

er
2nd

m
r̃

tim
e

co
st

Q
.I

.
r̃

tim
e

co
st

Q
.I

.
r̃

tim
e

co
st

Q
.I

.
r̃

tim
e

co
st

Q
.I

.

K
ro

-1
00

2
0

17
.6

13
46

5
1.

37
7

1
7.

1
10

41
6

1.
06

5
0

14
.7

10
49

8
1.

07
4

0
9.

4
97

77
1

A
3

0
3.

8
14

96
2

1.
16

0
2

3.
2

12
89

6
1

1
2.

7
13

19
4

1.
02

3
0

3.
0

13
45

9
1.

04
4

4
1

1.
5

16
04

5
1.

07
8

1
2.

5
14

88
7

1
0

1.
2

15
18

6
1.

02
0

1
2.

8
15

01
8

1.
00

9

2
2

7.
9

88
27

1
2

3.
9

88
27

1
2

9.
3

88
27

1
0

3.
0

10
03

2
1.

13
7

B
3

2
2.

0
13

17
6

1.
19

7
1

2.
8

11
00

9
1

2
3.

1
13

18
3

1.
19

7
1

1.
6

12
84

7
1.

16
7

4
0

0.
9

13
52

6
1.

02
7

1
1.

7
13

17
3

1
0

1.
2

13
61

0
1.

03
3

1
1.

2
13

17
3

1

2
1

2.
5

10
60

6
1.

08
7

1
2.

6
97

59
1

1
1.

7
10

60
6

1.
08

7
1

2.
1

97
59

1
C

3
1

0.
9

12
09

5
1.

07
4

2
1.

4
11

26
0

1
1

0.
7

12
45

0
1.

10
6

0
1.

0
12

12
0

1.
07

6
4

1
0.

5
13

64
0

1.
06

0
2

1.
2

12
86

6
1

1
0.

6
13

69
9

1.
06

5
1

1.
1

13
02

0
1.

01
2

2
1

14
.0

10
52

6
1.

02
2

1
9.

6
10

29
8

1
1

14
.2

10
52

6
1.

02
2

1
8.

1
10

29
8

1
D

3
1

2.
8

13
30

6
1.

04
5

2
5.

0
12

73
9

1
1

3.
7

13
27

9
1.

04
2

0
2.

4
13

75
3

1.
08

0
4

1
1.

1
14

77
7

1.
03

4
1

3.
2

14
28

9
1

1
1.

7
14

47
4

1.
01

3
1

1.
8

14
51

0
1.

01
5

2
0

14
.9

12
19

1
1.

15
0

0
3.

8
10

63
6

1.
00

3
0

11
.7

11
53

4
1.

08
8

0
5.

8
10

60
5

1
E

3
1

3.
2

14
51

0
1.

05
1

2
2.

5
13

80
9

1
1

2.
8

14
50

4
1.

05
0

2
2.

2
14

33
1

1.
03

8
4

1
1.

2
16

39
2

1.
06

1
2

1.
7

15
79

0
1.

02
2

1
1.

3
16

78
7

1.
08

6
2

1.
8

15
45

3
1

K
ro

-1
50

2
1

15
.6

10
27

5
1

2
10

.5
10

60
6

1.
03

2
1

15
.4

10
27

5
1

1
11

.9
11

33
6

1.
10

3
A

3
1

4.
0

13
38

5
1.

03
0

2
4.

3
13

49
6

1.
03

9
2

4.
7

12
99

2
1

1
4.

6
13

82
8

1.
06

4
4

1
2.

2
14

79
0

1.
03

0
2

4.
5

14
85

3
1.

03
5

2
2.

4
14

35
7

1
1

2.
9

14
89

0
1.

03
7

2
1

14
.1

10
39

5
1.

04
3

1
10

.1
10

08
3

1.
01

2
1

9.
6

10
08

3
1.

01
2

0
4.

3
99

64
1

B
3

1
3.

9
12

96
7

1.
11

4
2

5.
9

11
64

2
1.

00
0

1
2.

8
12

96
7

1.
11

4
1

2.
8

11
63

7
1

4
0

2.
0

13
76

9
1.

06
3

2
3.

4
13

14
9

1.
01

5
1

1.
7

13
69

6
1.

05
8

1
2.

4
12

95
1

1
K

ro
-2

00
3

1
5.

9
14

96
2

1.
03

8
2

11
.5

14
40

8
1

1
10

.0
15

32
7

1.
06

4
1

13
.2

14
96

2
1.

03
8

A
4

0
3.

9
16

64
6

1.
00

2
2

15
.0

16
86

9
1.

01
5

0
5.

5
16

61
6

1
0

9.
3

17
25

0
1.

03
8

5
2

3.
2

18
21

2
1.

03
0

2
8.

6
17

67
4

1
1

3.
5

19
73

8
1.

11
7

1
8.

0
18

15
1

1.
02

7

3
1

69
.1

16
64

8
1.

04
1

1
95

.3
15

99
3

1
1

68
.3

16
01

6
1.

00
1

2
66

.8
16

16
1

1.
01

0
B

4
2

33
.5

19
14

8
1.

09
6

2
91

.9
17

93
3

1.
02

6
2

31
.6

17
93

3
1.

02
6

2
28

.0
17

47
3

1
5

2
13

.4
21

19
2

1.
04

7
2

59
.1

20
44

0
1.

01
0

2
12

.9
20

82
7

1.
02

9
2

20
.9

20
24

3
1

3
2

44
.3

15
29

3
1.

03
9

2
27

.6
14

71
3

1
1

32
.6

16
63

0
1.

13
0

lin
31

8
4

2
23

.0
19

22
9

1.
03

0
2

17
.5

18
67

0
1

0
17

.7
19

18
5

1.
02

8
5

2
13

.5
22

00
9

1
2

11
.2

22
97

6
1.

04
4

1
13

.3
23

39
0

1.
06

3
4

3
99

8
84

05
1.

15
8

4
96

7
72

56
1

1
65

0
72

74
1.

00
2

rd
40

0
5

3
75

4
89

16
1.

10
3

3
43

3
80

84
1

2
34

0
82

32
1.

01
8

6
2

49
5

93
11

1.
09

4
4

27
0

87
61

1.
02

9
3

24
3

85
12

1

Pesquisa Operacional, Vol. 35(3), 2015



�

�

“main” — 2016/1/12 — 19:54 — page 634 — #18
�

�

�

�

�

�

634 THE MULTI-VEHICLE COVERING TOUR PROBLEM: BUILDING ROUTES FOR URBAN PATROLLING

T
able

3
–

R
esults

for
subclass|T|=

�|V|/4�.
instance

G
reedy

Selection
SectorPartition

Sw
eep

R
outine

R
oute

1
st/C

luster
2

nd

m
r̃

tim
e

cost
Q

.I.
r̃

tim
e

cost
Q

.I.
r̃

tim
e

cost
Q

.I.
r̃

tim
e

cost
Q

.I.

K
ro-100

2
2

13.0
11781

1.076
2

12.7
10951

1
2

12.1
10951

1
1

9.0
11409

1.042
A

3
1

2.5
14943

1.195
2

6.8
12505

1
1

2.2
14216

1.137
1

3.0
13733

1.098
4

1
1.4

15026
1

1
5.0

15336
1.021

1
1.3

15203
1.012

1
1.5

15250
1.015

2
1

15.9
10975

1
1

33.5
11102

1.012
1

16.5
12340

1.124
1

15.0
10975

1
B

3
0

3.3
13245

1
2

3.1
13416

1.013
0

3.9
13245

1
0

5.8
13768

1.039
4

1
1.7

16358
1.029

2
1.8

16161
1.017

1
2.4

16511
1.039

1
2.8

15897
1

2
2

4.2
12982

1
2

25.5
12982

1
0

4.2
13224

1.019
2

4.1
12982

1
C

3
0

1.3
14211

1.012
1

12.0
14143

1.007
0

1.3
14043

1
0

1.4
14528

1.035
4

0
0.8

17227
1.100

2
8.5

15667
1

0
0.8

17328
1.106

0
0.8

17227
1.100

2
1

11.9
12739

1.101
1

18.3
11572

1
1

14.0
11855

1.024
1

12.8
11572

1
D

3
0

2.6
13522

1
2

2.6
13883

1.027
0

2.7
13522

1
0

3.4
13524

1.000
4

1
1.4

16552
1.075

2
8.2

15399
1

1
1.4

16033
1.041

1
2.8

15846
1.029

2
2

21.2
11700

1.093
2

15.5
11044

1.032
1

23.9
11029

1.031
1

16.8
10700

1
E

3
0

6.7
14252

1.072
2

8.3
13679

1.029
2

6.2
13296

1
0

3.4
14097

1.060
4

1
3.8

16947
1.061

2
6.3

15970
1

1
3.2

16855
1.055

1
2.7

16077
1.007

K
ro-150

2
0

18.6
11413

1.030
1

14.1
11077

1
1

13.7
11077

1
1

9.1
11077

1
A

3
1

3.8
14333

1.064
2

6.8
13468

1
1

3.5
14113

1.048
1

3.2
13858

1.029
4

1
2.3

15239
1.039

2
6.2

15203
1.037

1
2.1

15166
1.034

1
2.3

14666
1

2
1

11.1
12685

1.032
2

17.5
12297

1
1

10.9
12384

1.007
1

10.3
12384

1.007
B

3
1

4.0
14170

1.003
1

5.4
14133

1
1

3.3
14843

1.050
1

3.7
14567

1.031
4

1
2.2

17697
1.125

2
6.1

15735
1

1
2.3

17186
1.092

1
2.9

15908
1.011

K
ro-200

3
1

46.6
18033

1.061
3

88.9
16992

1
1

40.4
17187

1.011
1

45.0
17166

1.010
A

4
1

25.7
19745

1.026
3

103
19319

1.004
1

21.6
19246

1
1

26.3
19579

1.017
5

1
13.1

22718
1.038

3
14.1

22645
1.035

1
9.8

21888
1

1
14.9

21920
1.001

3
1

199
17489

1.024
3

166
17818

1.043
1

158
17184

1.006
0

105
17084

1
B

4
2

100
19142

1.043
3

118
18813

1.025
2

83.1
19017

1.036
1

50.8
18357

1
5

2
49.0

21647
1.018

3
43.6

21705
1.021

2
37.2

21266
1

0
23.8

21787
1.024

3
2

268
16821

1
2

202
16866

1.003
1

126
16975

1.009
lin318

4
2

126
20804

1.013
2

95.0
20810

1.013
1

114
20541

1
5

2
56.8

23984
1.011

2
39.6

23727
1

1
33.5

23996
1.011

4
2

1243
9338

1.184
3

670
7886

1
1

959
8334

1.057
rd400

5
2

760
9602

1.140
3

410
8424

1
2

678
8736

1.037
6

1
510

10631
1.150

2
285

9246
1

1
345

9301
1.006

Pesquisa Operacional, Vol. 35(3), 2015



�

�

“main” — 2016/1/12 — 19:54 — page 635 — #19
�

�

�

�

�

�

WASHINGTON ALVES DE OLIVEIRA, ANTONIO CARLOS MORETTI and EDNEI FELIX REIS 635

T
ab

le
4

–
R

es
ul

ts
fo

r
su

bc
la

ss
|T
|=
�|V
|/2
�.

in
st

an
ce

G
re

ed
y

Se
le

ct
io

n
Se

ct
or

Pa
rt

iti
on

Sw
ee

p
R

ou
tin

e
R

ou
te

1st
/C

lu
st

er
2nd

m
r̃

tim
e

co
st

Q
.I

.
r̃

tim
e

co
st

Q
.I

.
r̃

tim
e

co
st

Q
.I

.
r̃

tim
e

co
st

Q
.I

.

K
ro

-1
00

2
2

12
2

13
06

2
1

2
19

6
13

15
0

1.
00

7
0

12
3

13
21

6
1.

01
2

0
12

3
13

21
6

1.
01

2
A

3
0

39
.3

15
96

6
1.

07
9

2
14

6
14

80
1

1
0

39
.9

15
41

0
1.

04
1

0
38

.6
16

62
8

1.
12

3
4

0
7.

8
17

93
7

1
2

11
.2

17
98

0
1.

00
2

0
7.

9
17

94
0

1.
00

0
0

8.
3

18
10

7
1.

00
9

2
2

11
6

14
05

2
1.

11
4

2
12

7
12

60
9

1
0

11
8

14
07

5
1.

11
6

0
11

7
14

11
1

1.
11

9
B

3
0

38
.4

18
61

9
1.

11
3

2
35

.7
17

49
7

1.
04

6
0

38
.9

16
90

3
1.

01
1

0
39

.7
16

72
7

1
4

0
7.

6
19

16
5

1.
02

3
2

6.
7

18
87

9
1.

00
7

0
7.

4
18

74
4

1.
00

0
0

7.
8

18
74

2
1

2
0

12
8

15
28

7
1

2
13

4
15

39
5

1.
00

7
0

13
0

15
28

7
1

0
13

0
15

28
7

1
C

3
0

40
.4

17
15

7
1.

01
2

2
16

6
16

96
1

1
0

41
.7

17
03

4
1.

00
4

0
40

.4
17

29
2

1.
02

0
4

0
7.

6
19

57
7

1.
00

1
2

8.
1

19
57

0
1.

00
1

0
7.

6
19

73
1

1.
00

9
0

7.
9

19
55

6
1

2
0

11
8

13
85

4
1.

04
6

2
14

5
13

24
8

1
0

11
9

13
68

0
1.

03
3

0
11

6
13

67
5

1.
03

2
D

3
0

38
.8

16
37

5
1.

01
2

1
41

.2
16

36
7

1.
01

2
0

39
.5

16
17

8
1

0
39

.4
16

77
7

1.
03

7
4

0
10

.1
18

15
8

1.
01

2
2

12
1

18
25

9
1.

01
7

0
9.

5
18

44
2

1.
02

8
0

9.
3

17
94

6
1

2
0

11
5

12
54

2
1

0
10

2
12

54
2

1
0

11
2

12
54

2
1

0
11

1
12

54
2

1
E

3
0

38
.8

16
83

7
1.

03
0

1
36

.3
16

42
3

1.
00

4
0

39
.1

16
35

2
1

0
38

.7
16

83
7

1.
03

0
4

0
9.

2
18

22
9

1.
03

8
2

70
.8

17
56

7
1

0
9.

2
18

08
6

1.
03

0
0

9.
4

17
75

5
1.

01
1

K
ro

-1
50

2
0

15
8

13
88

1
1.

00
5

0
17

1
15

30
4

1.
10

8
0

15
8

13
88

1
1.

00
5

0
15

8
13

80
9

1
A

3
0

44
.9

16
36

6
1.

09
0

2
68

.1
15

02
1

1
0

43
.6

16
48

1
1.

09
7

0
43

.5
15

86
2

1.
05

6
4

0
13

.3
18

79
5

1.
02

8
1

15
.4

18
39

9
1.

00
6

0
13

.3
19

38
9

1.
06

1
0

13
.5

18
28

1
1

2
0

16
9

15
09

6
1

2
19

1
15

18
1

1.
00

6
0

16
9

15
23

6
1.

00
9

0
16

9
15

09
6

1
B

3
0

44
.5

17
21

1
1.

01
5

0
75

.4
16

95
1

1
0

43
.4

16
95

1
1

0
43

.8
16

95
1

1
4

0
12

.3
19

58
2

1.
01

8
2

18
.4

19
34

9
1.

00
6

0
12

.0
19

34
1

1.
00

6
0

12
.6

19
23

0
1

K
ro

-2
00

3
1

70
2

22
61

0
1.

16
6

3
98

0
19

38
5

1
1

77
8

19
51

3
1.

00
7

1
75

1
19

83
6

1.
02

3
A

4
1

34
9

23
65

8
1.

07
4

3
76

7
22

22
0

1.
00

9
1

37
5

22
01

9
1

1
37

5
22

23
2

1.
01

0
5

0
18

2
27

28
1

1.
13

0
3

60
8

24
43

7
1.

01
2

0
19

4
24

41
5

1.
01

1
0

18
8

24
15

2
1

3
1

72
0

23
55

2
1.

15
1

3
95

7
20

94
6

1.
02

3
1

75
5

20
47

1
1

1
76

2
20

53
4

1.
00

3
B

4
1

36
1

25
71

1
1.

18
6

3
76

1
22

03
2

1.
01

6
1

37
9

21
68

3
1

1
37

9
22

04
2

1.
01

7
5

0
18

6
27

89
3

1.
15

5
3

55
3

24
70

3
1.

02
3

0
19

5
24

57
2

1.
01

8
0

19
5

24
14

9
1

3
1

11
58

17
72

4
1.

00
4

1
11

70
17

66
0

1
1

85
6

18
08

8
1.

02
4

lin
31

8
4

2
68

8
21

10
1

1.
01

8
2

70
0

21
31

1
1.

02
8

1
46

6
20

72
4

1
5

2
43

6
23

74
0

1
2

45
8

24
39

8
1.

02
8

1
33

0
24

08
3

1.
01

4
4

1
26

10
10

20
7

1.
10

3
1

26
30

92
52

1
1

26
41

93
21

1.
00

7
rd

40
0

5
1

15
68

11
50

1
1.

16
0

1
16

03
99

17
1

1
15

72
10

34
5

1.
04

3
6

1
10

98
11

61
2

1.
09

1
1

10
77

10
64

5
1

1
11

03
11

25
6

1.
05

7

Pesquisa Operacional, Vol. 35(3), 2015



�

�

“main” — 2016/1/12 — 19:54 — page 636 — #20
�

�

�

�

�

�

636 THE MULTI-VEHICLE COVERING TOUR PROBLEM: BUILDING ROUTES FOR URBAN PATROLLING

T
able

5
–

C
om

parison
w

ith
m

ethod
of

H
à
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For remaining instances, Sweep Routine has the biggest number of the Q.I. equals to 1, approx-

imate 53% of total. Since the distribution of points in the instances with 318 and 400 points is
non-uniform, the Sector Partition could not produce balanced routes in those instances. And the
average value of Q.I. is 1.032, which again indicates similar performances with respect to the

cost.

We observed discrepancies in the computational effort (measured by the average time spent) of
the heuristics, as illustrated by the charts in Figures 5 and 6. The disparity of ranges led to the
construction of two distinct charts. Figure 5 contains data relative to subclasses 100-1 to 150-3,

the data of the remaining subclasses are in Figure 6.

Figure 5 – Average times for subclasses 100-1 to 150-3.

In the first set of subclasses, the Route-first/Cluster-second is the fastest, except for the subclass
150-3, where Sweep Routine does slightly better. This pattern is maintained as the size increases,
with the exception of class 400-2, where its time is 45% bigger than the minimum time.

This analysis shows that the Sector Partition is well-adapted to smaller instances, where points

are uniformly distributed. For larger instances the Sweep Routine obtained solutions with better
cost. In terms of speed, the Route-first/Cluster-second obtained better computation times overall,
but the performances of all heuristics were very similar in this aspect.

Next, we make a comparison between our results and the ones obtained in Hà et al. (2013), which

considers the closest problem variation found in the literature. The main differences between the
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Figure 6 – Average times for subclasses 200-1 to 400-3.

formulations are that in theirs, the number of routes is not fixed, there is a constraint for the

number of visits allowed on each route, and the routes may not be balanced.

In order to make a fair comparison, we consider instances in which the number of vehicles in the
solution is the same in both approaches, and the maximum number of visits in our solution does
not exceed their value.

The results are summarized in Table 5, which is divided into two parts, the first part contains

the results from literature, namely the name of the instance, the cardinality of T , the maximum
number p of points allowed on each route, the number of vehicles, the computational time and
the cost. The second part contains the our results for the same instances from TSPLIB, which

satisfy the proposed conditions for the comparison. This part contains the name of the instance,
|T |, the maximum number p̃ of points obtained on each route, m, the value of r̃ (the maximum
difference obtained between the number of nodes of different routes in the solution), the heuristic

considered, time, cost, and the ratio of the cost of our heuristic to theirs.

Analyzing the table we can notice that most of the costs obtained in our solutions were very
close to the ones obtained in Hà et al. (2013), and the ratio of all instances varied between 0.828
and 1.185. However, it is important to emphasize that even though we are comparing the same

instances from TSPLIB, it was not possible to reproduce the choices of T , V \ T and W , since
only the number of points in each set was provided in their paper. Another point worth noting

Pesquisa Operacional, Vol. 35(3), 2015
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Table 6 – Results from the Vinhedo instance.

Cost
Q.I.

Time
r r̃ Vehicles Heuristic

(Km) (sec)

106.271 1.12099 55024 6 3 5 Greedy Selection

94.801 1 50590 6 2 5 Sweep Routine

99.486 1.04942 41759 6 3 5 Route 1st/Cluster 2nd

134.857 1.42253 – 6 18 5 Empirical

114.022 1.08799 38887 8 4 6 Greedy Selection

104.800 1 36110 8 3 6 Sweep Routine

104.806 1.00006 27084 8 1 6 Route 1st/Cluster 2nd

140.735 1.34289 – 8 35 6 Empirical

121.494 1.10100 25013 8 4 7 Greedy Selection

110.349 1 23913 8 4 7 Sweep Routine

111.234 1.00802 18670 8 2 7 Route 1st/Cluster 2nd

147.700 1.33848 – 8 35 7 Empirical

is that there is no guarantee that their solutions are balanced. Finally, the proximity of the costs
obtained in both formulations can be used to measure the quality of our heuristics.

Vinhedo Instance: Comparison of Heuristics

In practice, a patrolling car is assigned to a geographical area, and the patrolling officers know

the locations of the visits and the points that must be observed in this area. More precisely, due
to the non-uniform distribution of the geographical points, whenever the number of available
patrolling cars is five, two of them are assigned to Sectors A, B and C, two cars are assigned to
Sector D, and one car to Sector E. If six cars are available, one car is assigned to each of the

sectors A, B, C and E, and two cars to Sector D. Finally, if seven cars are available, one car is
assigned to each of the sectors A, B, C and E, and three cars to Sector D. After interviewing the
patrolling officers, we noticed that given a geographical sector and set of points to be visited, the

officers generally choose their routes according to a greedy rule (Empirical routes), where the
next point to be visited is the nearest from the current one, which may be unproductive.

Table 6 reports the cost (in kilometers), quality index (Q.I.), time (in seconds), the value chosen
for the parameter r, the value r̃ obtained, the size of the fleet, and the heuristic considered to-

gether with the empirical routes used by the patrolling officers. The numerical experimental data
are collected in three cases: fleet of size five, six or seven.

The Sector Partition heuristic is omitted from Table 6 because it did not obtain balanced feasible
solutions, due to the extremely non-central location of the base of operations. Recall that in the

adapted instances from TSPLIB, the base coordinates was chosen from the collection data so that
the base was centralized. Thus, in this case, the partition produced by the heuristic obtained a set
of balanced routes.
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Table 7 – Comparative between Sweep Routine and Empirical Routes.

Sweep Routine Empirical

Cost (Km) Visits Cost (Km) Visits

Route 1 22.3154 37 29.3413 33

Route 2 22.9958 39 38.9261 47
Route 3 15.0461 37 15.9927 29

Route 4 17.3789 39 24.0204 39

Route 5 17.1356 37 26.5766 40

Average 18.9744 26.9714

Unfortunately, this did not happen in the Vinhedo instance. The geographical sites considered fit
in a rectangular area of aspect ratio 1.5, that is, the width to height ratio (see Fig. 8, which shows

the routes built by the Sweep Routine heuristic in the 5-vehicle case). If we were to consider the
“base region” adopted for the TSPLIB instances, the base of operations should be located in a
rectangle of sides 30% of the bigger rectangle, with same center. In the Vinhedo instance the base

lies below and outside this ideal rectangle, missing the region by 6% of the vertical dimension.

Furthermore, the geographical distribution of sites that need to be visited or covered is highly
non-uniform. If we divide the shaded rectangle of Figure 8 in four rectangles by drawing vertical
and horizontal lines intersecting at the base, we will find 75.3% of all nodes concentrated in the

northwest rectangle, 15.2% in the northeast, 6.8% in the southwest and only 2.7% in the southeast
rectangle. As a result, the Sector Partition heuristic produced quite unbalanced routes, with the
maximum difference obtained between two routes exceeding the value of the parameter r.

The speed exhibited by the Sector Partition heuristic suggests that it is worthwhile to further

investigate its possibilities. One direction for future research is that of a non-uniform division
in sectors, choosing the central angles in such a way that the number of nodes in each sector is
approximately equal.

Compared with the artificial instances, the bad performance of the Greedy Selection heuristic

was confirmed in the (very large scale) Vinhedo instance, with the highest Q.I. in every test
considered. However, the Empirical routes obtained by the Vinhedo police were worse than any
of the heuristics considered. Figure 7 illustrates the solution for five cars, where two cars are

responsible for Sectors A, B and C, two cars are assigned to Sector D, and one car is responsible
for Sector E. Considering the overall length of the routes in the first two columns of Table 6,
the Empirical routes were about 33% to 42% worse than the Sweep Routine (see a example of

a solution for five vehicles in Fig. 8). When compared with the Greedy Selection, the Empirical
routes were about 21% to 27% worse.

In discordance with the previous tests, the Sweep Routine scored better objective function values,
although not by much, than the Route-first/Cluster-second heuristic, in all cases considered, as

indicated by the shaded cells in Table 6. However, the Sweep Routine exhibited 13% to 25%
larger times than Route-first/Cluster-second.
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Figure 7 – Routes obtained empirically by patrolling officers.

Since the geographical points of interest are more concentrated in some sectors, the Empirical
routes were very unbalanced, which can be seen in the fifth column of Table 6. Note that there
are routes differing by 35 nodes. Moreover, in the case of five vehicles, Table 7 shows the length

and number of visits for each individual route. There is a difference of up to 18 visits and the
average route lengths in the Sweep Routine is about 30% lower.

The solutions obtained were considered acceptable since a patrolling car may cover this distance
several times during a work shift. This contemplates very well the objective of providing a good

coverage with the available resources.

6 CONCLUSIONS AND FUTURE WORK

We developed, implemented and tested various heuristics for the construction of routes in the
context of urban patrolling. They were compared in numerical tests involving a set of adapted

instances from TSPLIB, and variants of a problem defined with real data from the city of
Vinhedo, Brazil.
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Figure 8 – Routes obtained by the Sweep Routine for the Vinhedo instance.

We developed a modified Sweep Routine, which produced solutions with lower costs for larger
instances, while the Sector Partition heuristic, developed by us produced solutions with lower

costs for smaller instances (up to 150 points). The computational time was quite uniform for all
heuristics.

The heuristics were tested using the Vinhedo instance. The Greedy Selection heuristic, when
compared with the other heuristics, produced solutions with lower quality. The solutions of our

modifications of the Sweep Routine and Route-first/Cluster-second Routine had similar quality,
though the former was always better. On the other hand, the latter was consistently faster.

The solutions obtained in the Vinhedo instance show the advantage of using this kind of model-
ing and heuristics for large scale problems, since the numerical results show that the Empirical

routes used by the Municipal Guard are not balanced, interfering with the contact between the
patrolling officers and the members of the community, which is the main objective of the com-
munity policing. We conclude that the division in sectors used by the Guard can be improved by

using our solutions (see Figs. 7 and 8).
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We observed that the Sector Partition heuristic needs improvement in order to be applied in

real instances having highly non-uniform distribution of nodes, turning it into a competitive and
robust routine. This will be the subject of future research.
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