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ABSTRACT. In this work, a mixed integer nonlinear programming model combining direct service links,

demand uncertainty and congestion effects is proposed. This model is efficiently solved by Generalized

Benders Decomposition, for instances of moderate sizes and reasonable number of scenarios. The deployed

algorithms are further used for re-designing the Brazilian air transportation network, enabling the analysis

of future demand scenarios and providing decision support about the optimal investment policy for Brazil.

Keywords: hub-and-spoke networks, Benders Decomposition, large scale optimization, mixed integer

non-linear programming, demand uncertainty.

1 INTRODUCTION

In the last few years, the Brazilian air transportation network has gone through several operational
breakdowns. The apparent reason is the lack of capacity or infra-structure on the main airports
of the system. But a closer look of the network reveals that the total installed capacity is much
larger than the total traffic volume to be handled, indicating that the network seems to operate in
a sub-optimal way. As a consequence, the network performance has been severely compromised,
reducing the opportunity of the involved logistic operators for attaining the economies of scale
that lead to sustainable revenues.
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In order to provide the necessary operational efficiency to this system, as well as to define opti-
mal investment policies considering the system expansion and future demand sceneries, a mixed
integer non-linear programming formulation is proposed. This model aims to redesign the cur-
rent network, optimizing the use of the installed capacity and balancing the flows through the
network. Here, the underlying structure adopted for the Brazilian air transportation network is a
customized hub-and-spoke topology. The desired effect is eventually to deactivate some of the
current network hubs while activating several others to handle the additional third party traffic.

Hub-and-spoke systems have been largely employed in the telecommunication and transportation
areas (see [18, 43, 4, 42, 14]). This class of systems arises when commodities (passenger, cargo
parcels, telecommunication packets) of a set of origins must be sent to a set of destinations.
Instead of establishing a direct connection for each origin-destination pair, facilities that serve as
switching, transshipment, sorting and distribution nodes, designated as hubs, are used as the only
valid intermediate points in a path from an origin to a destination. Flows from different origins
are gathered at these hub facilities prior to be routed to an intermediate hub or to be delivered to
their final destinations.

The employment of these hub facilities and the routing of consolidated flows through inter-hub
links allow the centralization of commodity handling and the transportation cost per unit of flow
to be less expensive than directly shipping via a non-hub network structure. In other words, the
hub networks take advantage of scale economies on inter-hub connections [58, 59].

Usually, the main concerns of hub network design are the location of hub facilities and the al-
location of non-hub nodes to hubs at the least expensive network structure, accounting for that
the installation and the transportation costs. This is done by selecting node candidates as hubs
and assigning origin and destination nodes to these hubs, given the flow volumes between each
origin-destination node pair, the installation costs of hubs and the transportation costs between
nodes of the network. While hubs are in general fully connected among them, non-hub nodes can
be single allocated, meaning that a non-hub can be assigned to exactly one hub only; and mul-
tiple allocated, meaning that a non-hub can be connected to more than one hub of the network.
Alternative configurations can be considered in order to ensure the application of a specific pro-
tocol [62]. For further basic notions, different considerations and formulations of hub networks
see the comprehensive surveys of Campbell [12, 13] and of Campbell et al. [14] and of Alumur
& Kara [2].

The minimization of the installation and transportation costs approach generates solutions that
tend to overload a small number of hubs, forcing the congestion effects into consideration. The
hub literature has been dealing with the congestion cost effects on hub networks implicitly, when
these effects are represented by constraints, and explicitly, when the congestion costs are expres-
sed on the objective function.

Grove & O’Kelly [36] are among the first authors to study the effects of congestion on hub
networks. They have demonstrated how the schedule delays of airline systems are influenced
by the amount of flow at the hubs by simulating a single assignment hub network with fixed
hub locations.
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A great variety of researchers has tackled the congestion effects restricting the amount of flow
transiting through a hub by means of capacity constraints. Aykin [3] has devised a lagrangian
relaxation approach, while Ernst & Krishnamoorthy [27] have used simulated annealing and
random descent methods. Ebery et al. [23] have imposed capacities only on incoming flows.
They have developed a branch-and-bound based on a shortest path heuristic. Solutions obtained
by their method may have flows from a hub to itself routed via another hub as explained by
Campbell et al. [14]. Campbell et al. [17, 15, 16] have proposed the hub arc location problem, in
which the hub network is seen as a three-layered network. The bottom one has the origin nodes
of the demand, the middle layer has the hub nodes, and the top one has the destination nodes of
the demand.

Yaman & Carello [72] have addressed the problem of solving single allocation hub location
problems with modular link capacities. They have proposed a non-linear formulation where the
size of inter-hub connections are treated as stepwise, instead of the linear approach proposed by
Labbé et al. [44] to the quadratic capacitated hub location problem with single assignment. In
order to accomplish that, capacity restrictions have been imposed on the amount of traffic flowing
through the hubs rather than only considering the incoming traffic. The problem has been solved
by means of an branch-and-cut algorithm based on a linearization with an exponential number
of constraints and a two-level local search method. Both methods have been then combined in
a heuristic concentration (see [68, 67]) scheme. Marı́n [54] also has addressed the capacitated
multiple allocation hub location problems, but assumed that the flow between a given origin-
destination pair can be split into several routes.

Another interesting work is the one presented by Kara & Tansel [41]. They have modeled the
transient times at hubs in addition to the travel times, having as objective function the minimi-
zation of the latest-arrival times, and consequently, the excessive delays at the hubs. Yaman et
al. [73] have presented a similar formulation for a Turkish cargo delivery system where transient
times have been taken into account as well as journey times.

A work that stands out is the one of Marianov & Serra [53]. They have modeled the hub network
as an M/D/c queuing network, proposing capacity constraints based on the probability of waiting
customers in the system. Due to the computational complexity of these constraints, they have
linearized them and then solved the resulting model by a tabu search algorithm. A similar work
has been proposed by Rodriguez et al. [65], but a simulated annealing algorithm has been used.

Costa et al. [22] have presented a multi-criteria formulation to the capacitated single allocation
hub location problem. Besides the traditional cost minimizing function, they have considered
alternatively the minimization of the time the hubs take to process the flow or the minimization
of the maximum service time of the hubs. For instance, Rodriguez-Martin and Salazar-Gonzalez
[66] have proposed a Benders decomposition algorithm [6] to tackle a capacitated hub location
problem based on a multi-commodity formulation where the arcs connecting the hubs are not
assumed to create a complete graph. Their model is similar to the one presented by Sridhar and
Park [71] for the fixed-charge capacitated network design problem.
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Modeling congestion through capacity constraint on the flows does not mimic the exponential
nature of the congestion effects. Elhedhli & Hu [24] have been the first ones to consider the
costs of the congestion effects explicitly on the objective function. Using a convex cost function
that increases exponentially as more flows go through the hubs, they have proposed a non-linear
model to a single assignment hub location problem. The congestion convex cost function is a
power-law function of airport usage relative to its capacity and it has been widely used to estimate
delay costs [35]. They have linearized their model and then solved it using lagrangian relaxation.

On the other hand, stochastic location problems where demand uncertainties are taken into ac-
count have been addressed by G. Albareda-Sambola et al. [1], Hochreiter & Pflug [40], Snyder
et al. [70], Gabor & Van Ommeren [31], Snyder & Daskin [69], Laporte et al. [46], Louveaux &
Peeters [48], Laporte et al. [45] and França & Luna [28]. In all these works, it is established that
stochastic modeling provides a superior design by considering uncertainty in important parame-
ters. When dealing with HS network design, it is interesting to consider the demand uncertainty,
since, according to Camargo et al. [10], the impact of demand components in the optimal HS
network under congestion is considerable. Another interesting conclusion of Camargo et al. [10]
is that under huge congestion, the marginal utility of installing a new hub in the HS network is
reduced. This counter-intuitive effect is due to the HS classical protocol – if a given demand is
considerably high, it is not interesting to have this link on the HS network, since it will always
imply in high congestion. It is clear that if a given node is overloaded with his own demand, it is
unable to handle third party traffic. It is also uninteresting to route such high flows trough a hub,
under penalty of severely impact the hub performance. A further step could be the allowance of
direct routes between non hub nodes, where no economy of scale is observed but no congestion
either.

In this paper, we explore further the congestion effects written as a convex cost function similarly
to [24], but addressing the multiple allocation hub location problem, considering also effects of
demand uncertainty combined with direct service links. We propose a non-linear mixed integer
programming problem based on a classical formulation [37] due to its linear programming bound
quality when compared to others [12, 25, 26, 61]. In our formulation the number of hubs on a
route is limited to two, even if there is a route with a lower cost using more than two hubs.

Although, one of the main strategies to handle non-linear problems is to linearize them, we have
developed a Generalized Benders Decomposition (GBD) [33] to cope with our non-linear mixed
integer program. The problem is decomposed in two smaller problems: at a higher level, named
as master problem (MP), the location decisions are made; while at an inferior level, known
as subproblem (SP), the flow balance and the congestion are handled. The MP is an integer
programming problem, while the SP is a non linear convex transportation problem. Using our
approach, we have been able to solve some large problems of the CAB and AP standard data sets
to optimality. We have also used the deployed algorithm to deal with a real hub location case,
studying the Brazilian air transportation network.

This paper is organized as follows: in Section 2, the model formulation and the used notation are
introduced. In Section 3, the Generalized Benders Decomposition is developed to solve the pro-
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blem and it is also demonstrated how the subproblems can be optimally solved. Computational
experiments and conclusion remarks are presented in Section 4 and 5, respectively.

2 MODEL FORMULATION

In this section the our model formulation efforts are presented. The basic components of the
model are the following sets: let N be the set of node locations that exchange traffic and let H be
the set of node candidates to become hubs, H ⊆ N . For any pair of nodes i and j (i, j ∈ N ), we
have wi j , the flow from origin i to destination j that is routed through either one or two installed
hubs. Usually, we have wi j 6= w j i .

Further, let fk be the fixed cost of installing a hub at node k ∈ H and let ci jkm be the transpor-
tation cost per unit of flow from node i to j routed via hubs k and m (i, j ∈ N and k, m ∈ H).
This transportation cost is the composition of three cost segments: ci jkm = cik + α ckm + cmj ,
where cik and cmj are the standard transportation cost per unit from location i ( j) to hub k
(m), and αckm is the discounted transportation cost between hubs k and m. The discount factor
0 ≤ α ≤ 1 represents the scale economies on the inter-hub connection. If only one hub is used
in a given route, we have k = m and no discount factor is applied.

The following decision variables are defined:

yk =

{
1, if hub k ∈ H is installed;
0, otherwise.

xi jkm ≥ 0 is the flow from origin i to destination j (i, j ∈ N ) that is routed through hubs
k and m (k, m ∈ H ) in that order.

In order to start the development of the congested version of the uncapacitated multiple allocation
hub location problem (UMAHLP), the formulation due to Hamacher et al. [37] is stated as:

min
∑

k

fk yk +
∑

i

∑

j

∑

k

∑

m

ci jkm xi jkm (1)

s. t.:
∑

k

∑

m

xi jkm = wi j ∀i, j ∈ N (2)

∑

m

xi jkm +
∑

m 6=k

xi jmk ≤ wi j yk ∀i, j ∈ N , k ∈ H (3)

xi jkm ≥ 0 ∀i, j ∈ N , k, m ∈ H (4)

yk ∈ {0, 1} ∀k ∈ K (5)

The model (1)-(5) is reputed to have a tight linear programming bound [37], being one of the
strongest formulations for the UMAHLP available. One of its major drawbacks is its size.
However, as demonstrated by the pioneering work of Geoffrion & Graves [32], structure is more
important than size when dealing with large scale mathematical programs.
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In Camargo et al. [11] the above formulation has been used to solve instances up to 200 nodes
with the aid of Benders decomposition. In this sense, formulation (1)-(5) is adopted as a basis
to develop a congested approach to hub location due to its nice theoretical properties and good
structure. Hamacher et al. [37] have demonstrated that constraints (3) are facet defining. In
addition, for a fixed hub structure, the remaining formulation is fully decomposable for each
i − j pair. In spite of this, O’Kelly & Brian [60] have shown that having the same discount factor
α for all the inter-hub connections may be unrealistic. Optimal solutions where large discounts
are given on links having small flows can be generated in this way. Overcoming this drawback, a
hub location formulation with flow-dependant economies of scale can be addressed, as proposed
by Camargo et al. [9].

In order to allow the use of direct service links, is necessary to add a new set of variables:

θi j ≥ 0 is the amount of flow transported through a direct connection for pair i − j .

It is also necessary to modify constraints (2) to include the direct paths, producing:

θi j +
∑

k

∑

m

xi jkm = wi j ∀i, j ∈ N (6)

Implying to rewrite the objective function as:

min
∑

k

fk yk +
∑

i

∑

j

∑

k

∑

m

ci jkm xi jkm +
∑

i

∑

i

ci j θi j (7)

Moreover, Marı́n et al. [55] have shown how formulation (1)-(5) can allow optimal solutions with
routes having more than two hubs when the triangular inequalities are not satisfied. Instead of
using the constraints derived by Marı́n to deal with those possible unfeasible paths, the following
additional constraints are preferable in a decomposition framework, since they preserve the i − j
pair decomposition:

xi ji j ≥ wi j (yi + y j − 1) ∀i, j ∈ N (8)

∑

k 6= j

xi j ik ≥ wi j (yi − y j ) ∀i, j ∈ N (9)

∑

k 6=i

xi jk j ≥ wi j (y j − yi ) ∀i, j ∈ N (10)

Constraints (8) make sure that the flow wi j goes through route i − j −i − j when i and j are hubs.
Constraints (9) and (10) limit the number of hubs to two when i or j are hubs. Furthermore,
the already deployed subproblem solution algorithm of Camargo et al. [11] can be partially
reused. Remark that the above cited origin-destination special structure is a consequence of the
interchangeability of indexes i, j, k and m, i.e. H ≡ N . It is also straight-forward to modify
the model and the deployed algorithms if H ⊆ N is required. Since we are considering the
congestion effects as a function of the total hub flow, we need an extra decision variable for each
hub to account it:
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gk ≥ 0 is the total flow which goes through hub k ∈ H .

Further, a set of additional coupling constraints have to be added in order to amount the total
flow in a given hub:

∑

i

∑

j

∑

m

xi jkm +
∑

i

∑

j

∑

m 6=k

xi jmk = gk ∀k ∈ H (11)

A congestion cost function τk(gk) is assumed as given for each installed hub k ∈ H . This
function is considered increasing on [0, +∞), proper convex and smooth. It is responsible for
distributing the flow load along each installed hub, thus reducing the overall congestion expressed
in monetary values. The congestion cost function used is a power law where τk = e gb

k , and
e and b are positive constants, b ≥ 1. This class of functions has been already used by [24]
to the single allocation case and by [10] in his recent work. The congested multiple allocation
hub location problem with direct service can now be stated as follows:

min
∑

k

[ fk yk + τk(gk)] +
∑

i

∑

j

∑

k

∑

m

ci jkm xi jkm +
∑

i

∑

j

ci j θi j (12)

s. t.:
∑

i

∑

j

∑

m

xi jkm +
∑

i

∑

j

∑

m 6=k

xi jmk = gk ∀k ∈ H (13)

θi j +
∑

k

∑

m

xi jkm = wi j ∀i, j ∈ N (14)

∑

m

xi jkm +
∑

m 6=k

xi jmk ≤ wi j yk ∀i, j ∈ N , k ∈ H (15)

xi jkm ≥ 0 ∀i, j ∈ N , k, m ∈ H (16)

gk ≥ 0 ∀k ∈ H (17)

yk ∈ {0, 1} ∀k ∈ H (18)

xi ji j ≥ wi j (yi + y j − 1) ∀i, j ∈ N (19)
∑

k 6= j

xi j ik ≥ wi j (yi − y j ) ∀i, j ∈ N (20)

∑

k 6=i

xi jk j ≥ wi j (y j − yi ) ∀i, j ∈ N (21)

θi j ≥ 0 ∀i, j ∈ N (22)

In the above model the objective function (12) minimizes the total cost, e.g., the sum of the
installation, congestion and linear transportation costs. Constraints (13) determine the total
amount of flow which goes through hub k. Constraints (14) assure that the flow for every pair
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i- j is routed via some hub pair or use a direct service link. Once again, if only one hub is used,
we have k = m. Constraints (15) guarantee that the flow going through a hub only happens if
that hub is installed. Constraints (19), (20) and (21) avoid problematic routes as discussed above.
Constraints (16), (17) and (22) are the non-negativity constraints of the continuous variables
xi jkm , ri j and gk , while the constraints (18) restrict the integer variables yk to be 0 or 1.

In order to consider effects of demand uncertainty it is possible to adopt a discrete set of states
of the world S, associating each one to a probability ps, s ∈ S, rewriting the demand parameter
as ws

i j , the flow from origin i to destination j in the state of the world s ∈ S. Clearly, the
formulation (12)-(22) must be generalized to deal with the new stochastic parameters. We have
chosen to replicate the sets of decision variables xi jkm , θi j , and gk and associated constraints
for each state of the world, in order to minimize the sum of fixed (installation) costs plus the
expected variable (linear transportation and congestion) cost components. The first step is to
redefine the above cited decision variables:

xs
i jkm ≥ 0 is the flow from origin i to destination j (i, j ∈ N ) that is routed through hubs

k and m (k, m ∈ H ) in that order, in the state of the world s ∈ S.

θ s
i j ≥ 0 is the amount of flow transported through a direct connection for pair i − j in the

state of the world s ∈ S.

gs
k ≥ 0 is the total flow which goes through hub k ∈ H in the state of the world s ∈ S.

Rewriting formulation (12)-(22) by introducing the new sets of decision variables leads to the
following stochastic programming problem, that we are calling hub location problem under hub
congestion and demand uncertainty:

min
∑

k

[

fk yk +
∑

s

ps τk(g
s
k)

]

+
∑

(i, j)

∑

(k,m)

∑

s

ps ci jkm xs
i jkm

+
∑

(i, j)

∑

s

ps ci j θ s
i j (23)

s. t.:
∑

(i, j)

∑

m

xs
i jkm +

∑

(i, j)

∑

m 6=k

xs
i jmk = gs

k ∀k ∈ H, ∀s ∈ S (24)

θ s
i j +

∑

(k,m)

xs
i jkm = ws

i j ∀i, j ∈ N , ∀s ∈ S (25)

∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk ≤ ws

i j yk ∀i, j ∈ N , k ∈ H, ∀s ∈ S (26)

xs
i jkm ≥ 0 ∀i, j ∈ N , k, m ∈ H, ∀s ∈ S (27)

gs
k ≥ 0 ∀k ∈ H, ∀s ∈ S (28)

yk ∈ {0, 1} ∀k ∈ H (29)
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xs
i j i j ≥ ws

i j (yi + y j − 1) ∀i, j ∈ N , ∀s ∈ S (30)

∑

k 6= j

xs
i j ik ≥ ws

i j (yi − y j ) ∀i, j ∈ N , ∀s ∈ S (31)

∑

k 6=i

xs
i jk j ≥ ws

i j (y j − yi ) ∀i, j ∈ N , ∀s ∈ S (32)

θ s
i j ≥ 0 ∀i, j ∈ N , ∀s ∈ S (33)

As the above model has not capacity constraints, there is always a feasible solution for (23)-(33).
Furthermore, for any given fixed structure of hubs, i.e. a feasible vector y, the model transforms
into a non-linear convex transportation model. This non-linear transportation problem can then
be solved by a feasible directions search method such as [29] or by the proximal decomposition
algorithm of Mahey et al. [52]. Gathering all of these features, we have been motivated in
deploying the Generalized Benders decomposition method (GBD) [6, 33] to tackle the problem.

Concerning GBD, the algorithm performance is very sensitive to the overall contribution of the
non-linear terms, since it is a first order approach. This is particularly true if the associated
mixed integer linear program has a poor linear programming bound (see [51, 28, 63]). For this
reason, formulations having less variables but weaker lower bounds, as those proposed by Ernst
& Krishnamoorthy [26], may be disregarded for this kind of application.

3 APPLYING THE GENERALIZED BENDERS DECOMPOSITION (GBD) METHOD

In 1962, Benders [6] proposed a partitioning method for solving mixed linear and nonlinear
integer programming problems. Benders has defined a relaxation algorithm which partitions
the original problem into two simpler problems: the relaxed master problem (RMP) and the
subproblem (SP). The first one is a relaxed version of the original problem with the set of integer
variables and its associated constraints; while the last one is the original problem with the values
of the integer variables fixed by the RMP.

In general terms, Benders decomposition relies on a projection problem manipulation, followed
by solution strategies of dualization, outer linearization and relaxation. The complicating vari-
ables (integer variables) of the original problem are projected out, resulting into an equivalent
model with fewer variables, but many more constraints. However, when attaining optimality,
a large number of these constraints will not be binding. Hence a strategy of relaxation can be
devised to ignore all but a few of these constraints.

Benders [6] has suggested a procedure to add these constraints on demand, adopting two levels
of coordination. At a higher level, the RMP is responsible for fixing the values of the integer
variables and for providing a lower bound for the problem. At a lower level, the subproblem is
solved in order to obtain an upper bound and a violated cut on the master problem space. This
valid inequality is known as Benders cut and will enrich the RMP in the next iteration. The
procedure stops when the upper bound and lower bound converge towards the optimal value.
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The Benders decomposition has been successfully applied on solving large scale problems since
the pioneering paper of Geoffrion and Graves [32], the uncapacitated network design problem
with undirected arcs of Magnanti et al. [49], the locomotive and car assignment problem of
Cordeau et al. [20, 21], the cellular manufacturing system design of Heragu & Chen [38], the
multicasting network design problems of Miranda [57] and Randazzo & Luna [64] and the hub
location problem with economies of scale of Camargo et al. [9]. The original procedure has
been specialized to deal with stochastic programming problems, receiving sometimes the name
of L-Shaped Decomposition Method on the literature of stochastic programming, due to the form
of the constraint matrices generated, amenable to dual decomposition techniques.

Several authors have addressed other extensions and improvement of the Benders decomposi-
tion method. Magnanti & Wong [50] have proposed an approach for selecting the dual variables
and thus improving the overall performance of the algorithm. McDaniel & Devine [56] have
developed an algorithm for accelerating the decomposition by removing temporarily the integra-
lity constraints of the RMP. Balas & Bergthaller [5] have devised a nice approach for generating
strong cuts prior of the beginning of the Benders iterations. Geoffrion [33] has extended the basic
algorithm to non-linear problems, formulating the Generalized Benders Decomposition (GBD).
The GBD has been employed on different problems. Cai et al. [8] have used it on a nonconvex
water resource management problem, Hoang [39] has applied it on a nonlinear model for network
design, while Mahey et al. [51] have solved capacity and flow assignments in telecommunication
networks by means of GBD.

When GBD is used to tackle the congestioned hub design problem, the RMP chooses a hub
structure configuration represented by the decision variables y, and the SP solves the non-linear
transportation problem with price sensitive demands on the resulting network. The dual solution
of the transportation problem is then used to generate a Benders cut that will redefine the hub
structure configuration in the next iteration. Adjustment of the non-linear objective function is
necessary at the subproblem. This is accomplished by dualizing the coupling constraints asso-
ciated to the non-linearity. After dualization, the resulting subproblems are relatively easy to
solve.

In the next Sections 3.1 and 3.2, we present the relaxed master problem and the subproblem,
respectively, of the congestioned hub-and-spoke network design problem.

3.1 Relaxed Master Problem (RMP)

From the viewpoint of mathematical programming, a projection of the problem (24)-(33) onto
the space of the structural variables y can be done, resulting on the following problem to be
solved:

min
y∈Y

∑

k

fk yk +
∑

s

ps z(y)s (34)

where Y = {y ∈ {0, 1} | for y fixed, there are feasible flows satisfying (24)-(28) and (30)-(33) }
and z(y)s is the following subproblem to be solved for each state of the world s:

z(y)s = min
(x,g,θ)∈G

∑

k

τk(g
s
k) +

∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm +

∑

(i, j)

ci j θ s
i j (35)
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subject to (26),(30)-(32) for y fixed and the appropriate s, and where

G =
{
(x, g, θ) | x ≥ 0 and g ≥ 0 and θ ≥ 0, satisfying (24), (25), (27), (28), (33)

}
.

For any hub structure configuration there is a feasible path connecting the pair of demands i- j ,
hence, there is no need for further feasibility constraints on the domain of the projected problem
(34). Further, since the subproblem has a convex differentiable objective function and linear
constraints, its Karush-Kuhn-Tucker conditions are necessary and sufficient for optimality. This
makes the problem consequently amenable to dualization techniques (see [33, 47]).

After associating the vectors of dual variables u ≥ 0, v ≥ 0, t ≥ 0 and r ≥ 0 to the coupling
constraints (26), (30)-(32) and since there is no duality gap, the optimal value of the subproblem
(35) for any y ∈ Y can be given by:

z(y)s = max
u,v,r,t≥0





min

(x,g,θ)∈G

∑

k

τk(g
s
k) +

∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm +

∑

(i, j)

ci j θ s
i j

+
∑

(i, j)

∑

k

us
i jk




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk − ws

i j yk





+
∑

(i, j)

vs
i j

(
ws

i j (yi + y j − 1) − xs
i j i j

)
+

∑

(i, j)

rs
i j



ws
i j (yi − y j ) −

∑

k 6= j

xs
i j ik





+
∑

(i, j)

t s
i j



ws
i j (y j − yi ) −

∑

k 6=i

xs
i jk j










Recalling the interchangeability of indexes i , j , k and m, z(y)s can be rewritten in a more com-
pact form as:

z(y)s = max
u,v,r,t≥0






∑

k



−
∑

(i, j)

us
i jk ws

i j +
∑

m 6=k

ws
km(vs

km + rs
km − t s

km)

+
∑

m 6=k

ws
mk(v

s
mk − rs

mk + t s
mk)



 yk −
∑

k

∑

m 6=k

vs
kmws

km + min
(x,g,θ)∈G

{
∑

k

τk(g
s
k)

+
∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm −

∑

(i, j)

∑

k

us
i jk




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk





+
∑

(i, j)

vs
i j xs

i j i j +
∑

(i, j)

∑

k 6= j

r s
i j xs

i j ik +
∑

(i, j)

∑

k 6=i

t s
i j xs

i jk j +
∑

(i, j)

ci j θ s
i j










(36)

Defining �s
k as:

�s
k = −

∑

(i, j)

us
i jk ws

i j +
∑

m 6=k

ws
km

(
vs

km + rs
km − t s

km

)
+

∑

m 6=k

ws
mk

(
vs

mk − rs
mk + t s

mk

)
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for all k ∈ H , (36) can now be stated as:

z(y)s = max
u,v,r,t≥0






∑

k

�s
k yk −

∑

k

∑

m 6=k

vs
kmws

km + min
(x,g,θ)∈G

{
∑

k

τk(g
s
k)

+
∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm −

∑

(i, j)

∑

k

us
i jk




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk





+
∑

(i, j)

vs
i j xs

i j i j +
∑

(i, j)

∑

k 6= j

r s
i j xs

i j ik +
∑

(i, j)

∑

k 6=i

t s
i j xs

i jk j +
∑

(i, j)

ci j θ s
i j










(37)

Hence, the whole problem (34) is equivalent to:

min
y∈Y






∑

k

fk yk +
∑

s

ps max
u,v,r,t≥0






∑

k

�s
k yk −

∑

k

∑

m 6=k

vs
kmws

km

+ min
(x,g)∈G






∑

k

τk(g
s
k) +

∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm −

∑

(i, j)

∑

k

us
i jk




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk





+
∑

(i, j)

vs
i j xs

i j i j +
∑

(i, j)

∑

k 6= j

r s
i j xs

i j ik +
∑

(i, j)

∑

k 6=i

t s
i j xs

i jk j +
∑

(i, j)

ci j θ s
i j
















As the supremum is the least upper bound, the mathematical program (23)-(32) can be represen-
ted as the following master problem (MP) with the help of variable η ≥ 0:

min
η, y∈Y

∑

k

fk yk +
∑

s

ps ηs (38)

s. t.:

ηs ≥
∑

k

�s
k yk −

∑

k

∑

m 6=k

vs
kmws

km + min
(x,g,θ)∈G

{
∑

k

τk(g
s
k)

+
∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm −

∑

(i, j)

∑

k

us
i jk




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk





+
∑

(i, j)



vs
i j xs

i j i j +
∑

k 6= j

r s
i j xs

i j ik +
∑

k 6=i

t s
i j xs

i jk j





+
∑

(i, j)

ci j θ s
i j





∀ u, v, r, t ≥ 0, ∀s ∈ S (39)

ηs ≥ 0 ∀s ∈ S (40)
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Problem (38)-(40) is solved by the GBD through a strategy of relaxation, i.e. ignoring all but a
few of the constraints (39). This strategy requires a procedure which adds iteratively the cons-
traints to the MP as needed. So, at any iteration h, the optimal value z(yh)s is found from (37)
after solving the non-linear transportation subproblem for a given installed hub structure yh and
recovering the vector of optimal multipliers (us)h , (vs)h , (rs)h and (t s)h (us = (us)h, vs =
(vs)h, rs = (rs)h and t s = (t s)h). Thus the optimal value of z(yh)s is given by:

z(yh)s =
∑

k

(�s
k)

h yh
k −

∑

k

∑

m 6=k

(vs
km)hws

km + min
(x,g,θ)∈G

{
∑

k

τk(g
s
k)

+
∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm −

∑

(i, j)

∑

k

(us
i jk)

h




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk





+
∑

(i, j)

(vs
i j )

h xs
i j i j +

∑

(i, j)

∑

k 6= j

(rs
i j )

h xs
i j ik +

∑

(i, j)

∑

k 6=i

(t s
i j )

h xs
i jk j

∑

(i, j)

ci j θ s
i j





(41)

From (39), we have the following constraint associated to uh , vh , rh and th for the state of the
world s:

ηs ≥
∑

k

(�s
k)

h yk −
∑

k

∑

m 6=k

(vs
km)hws

km + min
(x,g,θ)∈G

{
∑

k

τk(g
s
k)

+
∑

(i, j)

∑

k

∑

m

ci jkm xs
i jkm −

∑

(i, j)

∑

k

(us
i jk)

h




∑

m

xs
i jkm +

∑

m 6=k

xs
i jmk





+
∑

(i, j)



(vs
i j )

h xs
i j i j +

∑

k 6= j

(rs
i j )

h xs
i j ik +

∑

k 6=i

(t s
i j )

h xs
i jk j



 +
∑

(i, j)

ci j θ s
i j






Isolating the minimum given by (41), we get the following Benders cut based on the yh and
(us)h , (vs)h , (rs)h and (t s)h for the state of the world s:

ηs ≥ z(yh)s +
∑

k

(�s
k)

h(yk − yh
k )

Resulting then on the following relaxed master problem:

min
η, y∈Y

∑

k

fk yk +
∑

s

ps ηs (42)

s. t:

ηs −
∑

k

(�s
k)

h(yk − yh
k ) ≥ z(yh)s ∀s ∈ S, ∀ h = 1, . . . , L (43)

ηs ≥ 0 ∀s ∈ S (44)
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where L is the maximum number of Benders cuts to be taken in order to attain the optimal
solution. Note that, at each iteration h, new Benders cuts of the form (43) can be generated
provided that the optimal values of z(yh)s and the vector of multipliers (us)h , vs)h , (rs)h and
(t s)h have been recovered. These values are attained by solving the subproblems, the subject of
the next Section 3.2.

3.2 Subproblems

For a hub structure yh fixed by the RMP at iteration h, the subproblem z(yh)s , see equation (35),
to be solved at the state of the world s is given by:

min
∑

k

τk(g
s
k) +

∑

(i, j)

∑

(k,m)

ci jkm xs
i jkm +

∑

(i, j)

ci j θ s
i j (45)

s. t.:
∑

(i, j)

∑

m

xs
i jmk +

∑

(i, j)

∑

m 6=k

xs
i jkm = gs

k ∀k ∈ H, ∀s ∈ S (46)

θ s
i j +

∑

(k,m)

xs
i jkm = ws

i j ∀i, j ∈ N , ∀s ∈ S (47)

∑

m

xs
i jmk +

∑

m 6=k

xs
i jkm ≤ ws

i j yh
k ∀i, j ∈ N , k ∈ H, ∀s ∈ S (48)

xs
i j i j ≥ ws

i j (yh
i + yh

j − 1) ∀i, j ∈ N , ∀s ∈ S (49)
∑

k 6= j

xs
i j ik ≥ ws

i j (yh
i − yh

j ) ∀i, j ∈ N , ∀s ∈ S (50)

∑

k 6=i

xs
i jk j ≥ ws

i j (yh
j − yh

i ) ∀i, j ∈ N , ∀s ∈ S (51)

xs
i jkm ≥ 0 ∀i, j ∈ N , k, m ∈ H, ∀s ∈ S (52)

gs
k ≥ 0 ∀k ∈ H, ∀s ∈ S (53)

Since the function τk(gs
k) is increasing, the coupling constraints (46) can be dualized by asso-

ciating the Lagrangian multipliers βs ≥ 0. Thus the resulting problem is separable into two
subproblems: a linear transportation problem, dL(βs), having only the xs

i jkm and the θ s
i j varia-

bles; and another, a convex flow assignment transportation problem, dN L(βs), having only the
gs

k variables;

dL(βs) = min
∑

(i, j)

∑

k

(ci jkk + βs
k ) xs

i jkk +
∑

(i, j)

∑

(k,m)
k 6=m

(ci jkm + βs
k + βs

m) xs
i jkm

subject to constraints (47)-(52).

dN L(βs) = min
g≥0

∑

k

(τk(g
s
k) − βs

k gs
k)

Pesquisa Operacional, Vol. 31(2), 2011



“main” — 2011/7/27 — 12:34 — page 333 — #15

GILBERTO DE MIRANDA JUNIOR et al. 333

With the correspondent dual variables βs ∈ R, the optimal value z(yh)s can then be computed
as:

z(yh)s = max
β≥0

{
dL(βs) + dN L(βs)

}

Recalling that dN L(βs) has a convex differentiable objective function and linear constraints, its
Karush-Kuhn-Tucker conditions are necessary and sufficient for optimality. So, for each k ∈ H
and a fixed hub structure yh

k , the optimal solution of (βs
k )

h should minimize its correspondent
parcel of the dN L(β) objective function, what implies, for iteration h:

(βs
k )

h = τ ′
k(g

s
k)

h ∀ k ∈ H (54)

The optimal values of (gs
k)

h can be obtained by employing an algorithm based on the Flow
Deviation algorithm (FD) [34], described in the Section 3.2.1.

3.2.1 The Non-linear Transportation Problem

The subproblem z(yh)s , given by (45)-(53), is a non-linear transportation problem that can be
solved by means of a feasible directions search method such as [29] or the proximal decompo-
sition algorithm of Mahey et al. [52]. In the present paper, a specialized Flow Deviation [34]
algorithm has been deployed.

The Flow Deviation algorithm is an optimization method designed to find the minimum of a
convex function subject to linear constraints. The algorithm has been shown to be efficient since
the early works of Fratta et al. [30] and Cantor & Gerla [19]. In order to apply the method to the
subproblem (45)-(53) and thus compute the optimal values of gs

k , a more adequate formulation
has to be applied. An arc-node formulation with side constraints has been used. The role of the
side constraints is to restrain the set of feasible paths from an origin to a destination.

The specialized Flow Deviation algorithm takes advantage of the fact that each commodity may
only follow a reduced set of routes. Because of this, when evaluating the shortest path for a
given i − j pair, it is not necessary to deploy an algorithm like Dijkstra, but only enumerate this
reduced set. Furthermore, as it is not necessary to assess the flow of each commodity in each arc
during the running of the algorithm, but just the total flow in each arc, specially for each hub, it
is possible to save computer memory and processing time.

Once computed the values of (gs)h and hence the values of (βs)h (see (54)), the subproblem
dL(βs) can now be solved, subject of the next Section 3.2.2.

3.2.2 The Linear Transportation Problem

After fixing the optimal values of (βs)h and (gs)h , the subproblem dL(βs) can now be solved
and thus the values of (us)h , (vs)h , (rs)h and (t s)h are now available. Instead of solving the
dL(βs) by means of simplex or interior point methods, it can be solved by specializing an al-
gorithm which relies on the complementary slackness condition and on the linear programming
duality theory.
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As proved in Camargo et al. [11] the primal problem dL(βs) is always feasible and bounded for
any fixed feasible yk satisfying constraints (47)-(52) as well as its dual. The linear programming
dual is also decomposable for each i − j pair and state of the world s:

max ws
i j ρs

i j −
∑

k

ws
i j yh

k us
i jk + ws

i j (yh
i + yh

j − 1) vs
i j

+ ws
i j (yh

i − yh
j ) rs

i j + ws
i j (yh

j − yh
i ) t s

i j (55)

s. t.:

ρs
i j − us

i jk ≤ ci jkk + βs
k ∀ k 6= i, k 6= j (56)

ρs
i j − us

i jk − us
i jm ≤ ci jkm + βs

k + βs
m ∀ k 6= i, k 6= m, m 6= j (57)

ρs
i j − us

i ji + rs
i j ≤ ci ji i + βs

i (58)

ρs
i j − us

i j j + t s
i j ≤ ci j j j + βs

j (59)

ρs
i j − us

i ji − us
i j j + vs

i j ≤ ci ji j + βs
i + βs

j (60)

ρs
i j − us

i ji − us
i jk + rs

i j ≤ ci jik + βs
i + βs

k ∀ k 6= i, k 6= j (61)

ρs
i j − us

i j j − us
i jk + t s

i j ≤ ci jk j + βs
k + βs

j ∀ k 6= i, k 6= j (62)

ρs
i j ≤ ci j (63)

ρs
i j ∈ R (64)

us
i jk ≥ 0 ∀ k (65)

vs
i j ≥ 0 (66)

rs
i j ≥ 0 (67)

t s
i j ≥ 0 (68)

Proposition 3.1. The optimal solution of the dual problem (55)-(67) can be found by inspection.

Proof. The solution of (55)-(68) is started by setting ρs
i j as the shortest path for a given i − j

pair considering the installed structure yh at the state of the world s (see Proposition 2 of [11]).

ρs
i j = min

{
ci j , min

k 6=m

{
ci jkm + βs

k + βs
m

}
, min

k

{
ci jkk + βs

k

}
}

Starting values for us
i jk are already available, when k 6= i and k 6= j , from the algorithm proposed

in [11] by adding the respective values of βs to the linear transportation costs. In order to find
the optimal values of the other dual variables, please refer to the four steps procedure described
in Proposition 1 of [10], repeating it to each state of the world s. �
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4 COMPUTATIONAL EXPERIMENTS

This section is composed by three distinct subsections, each one aiming to explore a different
feature of the proposed model and deployed algorithms. In the first subsection, the superior
quality of the stochastic design is illustrated by comparing the outcomes of deterministic and
stochastic modeling for a toy instance. The second subsection investigates the scalability of the
deployed algorithms, testing them for benchmark data sets. In the third section, the case study is
described in detail, and the obtained results are properly discussed.

4.1 Deterministic versus stochastic hub-and-spoke network design

The goal here is to show the superior quality of stochastic hub location if compared to deter-
ministic hub network design. The adopted parameters for the hub congestion functions were
e = 0.0001 and b = 2. These experiences have been made using XPRESS-MP QMIP solver.
As working problem instance, an adapted version of CAB10 has been produced. The generated
demand matrix is showed below, having only three distinct sceneries:

Scenery 1:
























0 1617.25 1907.25 5009 1172.5 1548.5 2922 560.75 2214.25 1812
1617.25 0 3249.75 3423 830.5 1394 969.5 800.5 1674.75 1049.5
1907.25 3249.75 0 8783.75 1489 3530.25 1487.75 1442 4144.5 1060.5

5009 3423 8783.75 0 4773.5 8779.75 5355.75 6835.5 12835.25 3956.5
1172.5 830.5 1489 4773.5 0 1821 775.5 390.5 1795 479.25
1548.5 1394 3530.25 8779.75 1821 0 1255.75 878 2604.75 885.75
2922 969.5 1487.75 5355.75 775.5 1255.75 0 2889.25 1619.75 8565.25

560.75 800.5 1442 6835.5 390.5 878 2889.25 0 1403.75 1773.75
2214.25 1674.75 4144.5 12835.25 1795 2604.75 1619.75 1403.75 0 1112

1812 1049.5 1060.5 3956.5 479.25 885.75 8565.25 1773.75 1112 0
























Scenery 2:
























0 6469 7629 20036 4690 6194 11688 2243 8857 7248
6469 0 12999 13692 3322 5576 3878 3202 6699 4198
7629 12999 0 35135 5956 14121 5951 5768 16578 4242

20036 13692 35135 0 19094 35119 21423 27342 51341 15826
4690 3322 5956 19094 0 7284 3102 1562 7180 1917
6194 5576 14121 35119 7284 0 5023 3512 10419 3543

11688 3878 5951 21423 3102 5023 0 11557 6479 34261
2243 3202 5768 27342 1562 3512 11557 0 5615 7095
8857 6699 16578 51341 7180 10419 6479 5615 0 4448
7248 4198 4242 15826 1917 3543 34261 7095 4448 0
























Scenery 3:





















0 11320.75 13350.75 35063 8207.5 10839.5 20454 3925.25 15499.75 12684
11320.75 0 22748.25 23961 5813.5 9758 6786.5 5603.5 11723.25 7346.5
13350.75 22748.25 0 61486.25 10423 24711.75 10414.25 10094 29011.5 7423.5

35063 23961 61486.25 0 33414.5 61458.25 37490.25 47848.5 89846.75 27695.5
8207.5 5813.5 10423 33414.5 0 12747 5428.5 2733.5 12565 3354.75
10839.5 9758 24711.75 61458.25 12747 0 8790.25 6146 18233.25 6200.25
20454 6786.5 10414.25 37490.25 5428.5 8790.25 0 20224.75 11338.25 59956.75

3925.25 5603.5 10094 47848.5 2733.5 6146 20224.75 0 9826.25 12416.25
15499.75 11723.25 29011.5 89846.75 12565 18233.25 11338.25 9826.25 0 7784

12684 7346.5 7423.5 27695.5 3354.75 6200.25 59956.75 12416.25 7784 0





















The adopted probability vector was p = [0.333 0.333 0.333]T . In order to establish a fair compa-
rison, a deterministic equivalent demand matrix has been produced by taking wi j =

∑
s∈S psws

i j .
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This deterministic equivalent instance was solved by formulation (12)-(22). The resulting opti-
mal hub structures (y vectors) are depicted ahead:

Deterministic: y∗ = [0 1 0 0 1 0 0 1 0 1]T

Stochastic: y∗ = [0 0 0 0 1 0 0 1 0 1]T

In spite of the detailed report of a single experience – for the sake of simplicity – several other
tests have been carried out. They were done by tuning the probability vector and the hub installa-
tion costs. In general, the stochastic hub network design is a bit more conservative, saving fixed
costs, when compared to the deterministic solution. It is also true that the same hub structure
has been observed many times, meaning that a deterministic solution is almost always optimal or
near-optimal. However, considering the costs involved in such networks and the long term impact
on its performance, the risk of designing a non-optimal network by disregarding the uncertainty
is definitely not affordable.

4.2 The GBD Algorithm Scalability

In order to test the performance of the deployed generalized Benders decomposition algorithm,
the CAB data set of the US Civil Aeronautics Board and the AP data set introduced by Ernst and
Krishnamoorthy [25, 27] have been used. The former includes problems with 10, 15, 20 and 25
nodes, while from the later problems with 10 to 200 nodes can be obtained.

The hub installation costs have been generated for all instances using a gaussian distribution with
average equals to fo and variance set to 40% to assess how the different fixed costs vary in real
problems. Where fo represents the scaled difference in objective value between a scenario in
which there is a virtual hub located in the center of mass and a scenario in which all nodes are
hubs, as introduced by Ebery et al. [23]. For alternative works considering these test beds see
[60, 24, 23, 7, 11, 10]. Furthermore, as done by Ebery et al. [23], the nodes with higher flows
have been selected to have the higher fixed costs, hardening, in general, the selection of potential
hubs.

The generalized Benders decomposition algorithm was implemented with the aid of the general
purpose mixed integer programming package XPRESS-MP from Dash optimization. The pac-
kage routines have been used on the solution of the mixed integer master program. The experi-
ments have been carried out on a regular desktop micro-computer equipped with a Intel-Pentium
IV 3.0 GHz processor and 2Gb of RAM memory. The value of ε has been set to 0.0001%.

The attained results are displayed in Table 1. In this table, the columns Variables and Iterations
account for the total number of decision variables of the solved instance (integer, nonlinear and
continuous) and the total number of global iterations of GBD algorithm. The column SP time
fraction (%) accounts the ratio of time spent to solve all the subproblems and the total solution
time. The optimization of hub location problems under uncertainty is expensive, specially con-
cerning the subproblem solution where a large scale non-linear program may be solved for each
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scenery of each iteration. In spite of this fact, some large problems could be solved in reasonable
time, for a long term strategic decision problem.

Table 1 – GBD algorithm scalability test.

Instance Variables Iterations Time [s] SP time fraction (%)

CAB10 90020 167 1960.33 42.78

CAB15 472530 342 2435.34 52.69

CAB20 1520040 387 3658.35 45.13

CAB25 3750050 170 9563.67 72.34

AP10 90020 165 1301.45 61.84

AP20 1520040 383 2637.35 73.11

AP30 7830060 246 9345.78 66.92

AP40 24960080 473 27840.45 75.83

AP50 61250100 692 73256.34 81.24

The large number of iterations is explained by the aggressive congestion cost functions that were
adopted. For all these tests the parameters e and b were taken as 0.5 and 2 respectively, implying
a congestion cost ratio [10] scaling from 20% to 40%. Since GBD is an outer linearization
strategy, it is particularly sensitive as the nonlinearities become dominant in a given MINLP.

4.3 Designing the Brazilian Air Transportation Network

Brazil is the fifth largest country of the world, and its area is 8.5 millions of squared kilometers,
occupying about 47% of the area of South American continent. The population of the country is
184 million of inhabitants. Due to its great territorial extension and to the size its population, the
country needs to have a great number of airports to allow the transportation of passengers and
cargo. Nowadays, the country has 1759 private airports and 739 public airports, totaling 2498
airports.

Brazil is the second country of the world that more it possesses airports, behind just of the
United States of America. The boards of INFRAERO and ANAC, two government agencies, are
in charge of the management of 67 of those airports, that concentrate 97% of the commercial air
transportation of the country. Those airports move about 2 million landings and takeoffs, and
almost 50 million passengers and 1.2 million of tons per year (basis: year 2007).

In the last few years, Brazilian GDP is growing more than the average global GDP increase,
around 5% year. This means an expected high demand increase for air transportation, since each
1% of increase on GDP means 1.15% of demand increase in the air transportation matrix. The
passenger traffic in Brazil is strongly concentrated in few airports located in the cities of São
Paulo, Rio de Janeiro and Brası́lia. The existent airports in those cities are the current passenger
hubs of the Brazilian network.

Since the governmental investment profile has not matched the increasing traffic of the last few
years, these hubs are severely overloaded, and the whole network is experiencing huge delays
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and several flight cancelations. On the other hand, several other airports appear to have idle
capacity, such as the airports in the cities of Belo Horizonte, Salvador and Curitiba.

In order to use the deployed algorithms, several modeling assumptions have been made. Because
of the large computational costs involved, only the 30 larger Brazilian airports were selected
to compose the experience. Since INFRAERO and ANAC (Brazilian Civil Aeronautics Board)
have historical series of the observed demands for each origin-destination pair in the network, as
well as the distance matrix, the data mining phase was not a trouble. Another assumption was
the use of the most economic available aircrafts, since the airlines always seek for the lowest
operational costs.

The hub installation costs were estimated on the minimal infra-structure investment necessary
to promote a node to the hub status. In some cases, this investment means only to improve
air traffic control capabilities or to enlarge the passengers terminal or the cargo manipulation
area. Sometimes this may imply to enlarge the runway length or to duplicate the existent runway
or even to provide a better transportation system to reach the airport. These parameters were
established according to the information provided by ANAC and INFRAERO.

Table 2 – Hub nominal capacity array for the Brazilian case study (passengers/year).

City Airport Capacity City Airport Capacity

São Paulo SBSP 15000000 Belo Horizonte SBBH 1500000

Brası́lia SBBR 10000000 Goiânia SBGO 1000000

Guarulhos SBGR 17000000 Natal SBNT 1000000

Rio de Janeiro SBGL 15000000 Cuiabá SBCY 1000000

Salvador SBSV 6000000 Campinas SBKP 1000000

Rio de Janeiro SBRJ 1800000 Foz do Iguaçu SBFI 1000000

Curitiba SBCT 3500000 Maceió SBMO 1000000

Porto Alegre SBPA 4000000 Porto Seguro SBPS 1000000

Recife SBRF 5000000 Campo Grande SBCG 1000000

Confins SBCF 10000000 São Luı́s SBSL 1000000

Fortaleza SBFZ 1000000 Uberlândia SBUL 1000000

Belém SBBE 2700000 Londrina SBLO 1000000

Florianópolis SBFL 1000000 Navegantes SBNF 1000000

Vitória SBVT 1000000 Aracajú SBAR 1000000

Manaus SBMN 1000000 Ribeirão Preto SBRP 1000000

In addition, a slightly different congestion function was used to account the congestion costs. For
this set of experiences a function were the congestion effects are perceived only if a flow above
75% of the hub nominal capacity is reached was adopted:

τk(gk) = max
{
0, e(gk − ak)

b}

This assumption is consistent with the most works on the literature about congestion cost functi-
ons. The capacity array for the Brazilian airports has been provided by ANAC and INFRAERO
and is given in Table 2. All the capacities are expressed in passengers per year.
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A standard discount factor α of 0.5 for the inter-hub connections was adopted, since almost all the
airlines establish a minimum of 50% of tickets sold by flight leg to be sustainable. The values of
the parameters e and b were taken as 1.0 and 2 producing very aggressive congestion effects (see
[10]). To mimic the trend of growth of the traffic matrix, a triangular probability distribution was
adopted, from 2011 to 2023. The central trend was taken forecasting a mean growth of 5.75%
per year, corresponding to 5% of mean growth in GDP. The optimistic and pessimistic forecasts
– the extremes of the triangular distribution – were based on the historical data from ANAC.
Discrete distributions with ten sceneries were taken as approximations of the adopted triangular
distributions. This small number of sceneries is necessary to ensure a reasonable computational
cost, dealing with a little loss of accuracy.

The obtained optimal hub structures – y vectors – and the expected total traffic for each hub are
shown in Table 3. All the proposed instances have run in computing times under 15 hours of
CPU. We must remark that only the flows on the hubs were displayed in Table 3, meaning that if
a node is not a hub his traffic is not shown in Table 3. The resulting network designs are plotted
graphically in Figures 1, 2, 3 and 4. In these figures, the relative thickness of a given link is a
measure of its traffic intensity.

It is important to recall that the capacity array informs just the nominal capacities, since the true
capacity of an airport is not known with accuracy. For instance, in 2007 SBSP has registered
more than 18 millions of passengers, but its nominal capacity is only 15 millions. So, it is not
unexpected to observe flows slightly above that nominal value, if it is preferable to tolerate some
congestion to avoid the installation of new hubs. Other effect that is remarkable is the transfer
of part of the increasing demand to the direct service links, as a way to save fixed or conges-
tion costs. This flow transfer explains why the total hub traffic does not grows in the exact
expected rate.

It is possible to see that the infrastructure investment may be directed to the airports of Belo
Horizonte (SBCF), Recife (SBRF), Curitiba (SBCT) and Salvador (SBSV). These potential new
hubs have idle capacity and may be better exploited in order to reduce the operational costs
and flight delays on the Brazilian air transportation network. It is possible to see that it is also
necessary to develop a strategy of expansion of all the network hubs, under penalty of a new
traffic saturation in the near future. This expansion is particularly easy for SBCF and SBSV,
complaining with data of INFRAERO and ANAC.

It was also observed an increasing transfer of traffic to the direct service links in order to avoid
the hub congestion costs in 2019 and 2023, what recalls the urgency of a system expansion
strategy. Another interesting effect is that the very huge traffic volume of the pair SBSP-SBRJ
was not enough to make SBRJ a hub, since this particular airport has no capacity to deal with
third party traffic.

Another specially problematic airport is SBSP, having a preferential location and huge demands,
but also having an insufficient infra-structure and being hard to expand, since it is inside the city
of São Paulo. As the demand is increased from 2007 to 2023, no hub is removed but several hubs
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Table 3 – Computational Results for the Brazilian case.

Year 2011 2015 2019 2023

Airport y Total Traffic y Total Traffic y Total Traffic y Total Traffic

SBAR 0 0 0 0 0 0 0 0

SBBE 0 0 0 0 0 0 0 0

SBBH 0 0 0 0 0 0 0 0

SBBR 1 0.80E+07 1 0.80E+07 1 0.80E+07 1 0.80E+07

SBCF 1 1.07E+07 1 0.36E+07 1 0.75E+07 1 1.28E+07

SBCG 0 0 0 0 0 0 0 0

SBCT 1 0.28E+07 1 0.20e+07 1 0.20e+07 1 0.90e+07

SBCY 0 0 0 0 0 0 0 0

SBFI 0 0 0 0 0 0 0 0

SBFL 0 0 0 0 0 0 0 0

SBFZ 0 0 0 0 0 0 0 0

SBGL 1 1.20E+07 1 1.09E+07 1 1.20E+07 1 1.20E+07

SBGO 0 0 0 0 0 0 0 0

SBGR 0 0 1 1.00E+07 1 1.16E+07 1 1.36E+07

SBKP 0 0 0 0 0 0 0 0

SBLO 0 0 0 0 0 0 0 0

SBMN 0 0 0 0 0 0 0 0

SBMO 0 0 0 0 0 0 0 0

SBNF 0 0 0 0 0 0 0 0

SBNT 0 0 0 0 0 0 0 0

SBPA 0 0 0 0 0 0 0 0

SBPS 0 0 0 0 0 0 0 0

SBRF 1 0.40E+07 1 0.40E+07 1 0.40E+07 1 0.40E+07

SBRJ 0 0 0 0 0 0 0 0

SBRP 0 0 0 0 0 0 0 0

SBSL 0 0 0 0 0 0 0 0

SBSP 1 1.20E+07 1 1.20E+07 1 1.20E+07 1 1.20E+07

SBSV 0 0 1 0.57E+07 1 0.96E+07 1 0.96E+07

SBUL 0 0 0 0 0 0 0 0

SBVT 0 0 0 0 0 0 0 0

are added to the network. This result is quite interesting and could not be anticipated a priori.
Additional research may investigate how these network designs are affected by allowing capacity
expansions. However, capacity expansion costs are hard to estimate for several of the airports
under study, except for SBCF and SBSV (where these costs are assumed small).
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5 CONCLUDING REMARKS

In this article a model for accounting demand uncertainty and congestion costs for designing
multiple allocation hub and spoke networks has been proposed. In addition, the proposed model
allows the establishment of direct service links if they are economically interesting.

Generalized Benders decomposition was the selected technique to tackle the proposed problem.
This technique has shown enough computing power to overcome large instances in reasonable
time, although the computing times observed were expressively superior to those in [10], due to
the most stressing congestion cost functions chosen.

The deployed algorithms were also used to redesign the Brazilian air transportation network,
and the attained designs were properly discussed. The resulting network designs indicate that is
necessary to redistribute flow on several hubs of the network in order to reduce the flight delays
and other congestion effects. It has also pointed out that a system expansion is necessary in the
near future under penalty of a new saturation of the installed infra-structure.

Future work must be devoted on evaluating how the capacity expansion of the major hubs may
impact the proposed optimal hub-and-spoke networks.
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