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ABSTRACT. We present a novel approach to the inverse data envelopment analysis (DEA) process, based
on the slacks-based measure (SBM) model in the presence of undesirable outputs. In the first step, we deter-
mine the minimum undesirable outputs levels that a decision-making unit (DMU) can produce, according
to the level of inputs and desired outputs, based on weak disposability. We then introduce counterpart (hy-
pothetical) units corresponding to each DMU. In the second step, we determine the optimal level of inputs
and outputs for the newly created units, based on the SBM model in the presence of undesirable outputs. We
present two new criteria models based on the SBM model, to compare the efficiency of the newly created
unit in the inverse DEA process with the original unit. We demonstrate that the efficiency scores obtained
from these two models are equal. Using the SBM-based inverse non-radial DEA process, we can use all
inefficiency slacks related to all input and undesirable output components in the inverse non-radial DEA
process to estimate inputs and outputs simultaneously.

Keywords: Data Envelopment Analysis, inverse DEA, undesirable output, efficiency, non-radial DEA.

1 INTRODUCTION

According to the World Environment Organization, adverse waste products and social activities,
such as air pollutants and hazardous waste, are increasingly being produced in the environment
and pose a serious threat to it. For example, the number of defective goods, amount of pollution
and waste, or release of CO2 in the production process are all undesirable and should be reduced.
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2 A NOVEL APPROACH BASED ON INVERSE NON-RADIAL DEA PROCESS

Therefore, evaluating the performance of organizations that produce undesirable outputs with-
out considering these outputs is not a logical or correct evaluation, and these outputs should be
included in the performance evaluation (Scheel, 2001; Sueyoshi and Goto, 2010, 2012). In this
regard, the DEA technique, which was first introduced by Charnes et al. (1978), is a suitable tech-
nique. When evaluating the performance of a DMU based on DEA models, we can use input or
output-oriented models. In the input-oriented models, by decreasing the inputs (or increasing the
outputs), we depict the inefficient unit on the efficiency frontier. In these models, the amount of
outputs (or inputs) does not change. However, if we have an undesirable output among the output
components, increasing these outputs will reduce the efficiency of the evaluated DMU. The DEA
models are important for dealing with undesirable outputs. The DEA technique uses the Pareto
optimality property in measuring efficiency. The efficient unit is denoted as non-dominated. In
this method, if the DMU can maximize the production of one desirable output, minimize one of
the undesirable outputs, or minimize one of the inputs, the DMUs can be regarded as efficient
without taking into account the number of other parameters linked with it. Only if a DMU does
not produce any undesirable outputs can it be considered efficient. Any amount of undesirable
output generated should decrease the efficiency measures. However, since the production of de-
sirable outputs normally comes with the generation of undesirable outputs, a certain quantity of
undesirable outputs should be permitted because they will be generated until the desirable out-
puts are achieved. In this method, if a DMU generates a moderate amount of undesirable output,
it still has a chance to be judged as efficient. The DMU is defined as inefficient if an excessive
level of undesirable outputs is produced (Liu et al., 2010; Kao and Hwang, 2021).

DEA models with undesirable inputs and outputs have been frequently discussed in DEA litera-
ture. For instance, Shi et al. (2010) considered undesirable outputs for assessing energy efficiency
in the Chinese manufacturing industry, and Yeh et al. (2010) compared the total factors of en-
ergy efficiency in China. Sueyoshi and Goto (2010) proposed a new DEA model to calculate
the efficiency of electric fossil fuels, taking into account the CO2 produced by each production
unit. Chen et al. (2017) proposed a stochastic network DEA model for evaluating Chinese air-
line efficiency under CO2 emissions and flight delays. Izadikhah and Saen (2018) developed a
chance-constrained two-stage DEA model to present undesirable factors for evaluating the sus-
tainability of supply chains. Ren et al. (2020) proposed a new chance-constrained DEA model to
measure the energy and carbon emission efficiency of regional transportation systems in China.

One of the convenient methods proposed for dealing with undesirable outputs is the approach
introduced by Kao and Hwang (2021). They provided a suitable model for measuring the effect of
undesirable outputs on efficiency measurement by addressing the minimum level of such outputs
that can be allowed for each DMU. They used the results to create a new efficiency frontier of
production by introducing the concept of a counterpart (hypothetical) unit corresponding to each
of the DMUs. The efficiency of a production unit was presented based on the minimum level
of the undesirable output, and the new frontier was used to calculate the efficiency scores of a
manufacturing unit and compare with other units with the minimum level of undesirable outputs.
(For more detail see: Anderson, Daim, and Kim, 2008; Inman, Anderson, and Harmon, 2006;
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Lim, Anderson, and Shott, 2015). The difference between these two efficiencies was then used
to calculate the impact of creating too many undesirable outputs on a specific manufacturing
unit’s efficiency. Data transformation technologies can produce skewed efficiency measurements
(Färe and Grosskopf, 2004, & Kao, 2020). The approaches that use the source data to determine
efficiency are provided by Kao and Hwang (2021) for this purpose. The SBM model, one of
Kao’s (2017) three types of direct approaches, can distinguish between the observed amount and
the optimal one, making it suitable for analyzing the effect of creating a large level of undesirable
outputs in measuring efficiency. Therefore, the SBM idea is employed in this study to create
models in inverse DEA in the presence of undesirable outputs.

DEA models can be divided into radial and non-radial categories for evaluating efficiency (see:
Gerami et al. 2022). Radial models do not consider slacks in inputs and outputs, which are im-
portant components for evaluating efficiency. Radial approaches may not produce robust results
in efficiency evaluation based on radial reduction of inputs and outputs. All inverse DEA mod-
els are radial models, and as a result, they may help DMs estimate the level of outputs (inputs)
by ignoring the effects of slack variables corresponding to input and output components. How-
ever, radial models suffer from the limitation of being incapable of addressing the slacks in the
model. Limited studies have used non-radial inverse DEA models. For instance, Jahanshahloo
et al. (2014) proposed an inverse DEA model based on the Enhanced Russell Model, assuming
constant efficiency scores among dimensions. Zhang and Cui (2020) proposed a general inverse
DEA model for non-radial DEA, assuming unchanged overall efficiency scores but not for every
dimension. They presented a basic form of non-radial inverse DEA models, which was nonlinear
in a special case for the SBM model. They used nonlinear optimization methods to solve the
proposed model and one-dimensional search as a suitable method to solve it.

We have developed a non-radial SBM model for estimating optimal inputs and outputs in the
presence of undesirable outputs. The efficiency scores of each DMU are first obtained using the
non-radial SBM model, and then a non-radial SBM model is presented under the inverse DEA
process for simultaneous estimation of optimal inputs and outputs. The proposed approach can
deal with both non-radial measurements and undesirable outputs. In the first step, the optimal
level of undesirable outputs is obtained for each DMU using the approach proposed by Kao and
Hwang (2021). In the second step, the inverse DEA process is performed using the non-radial
SBM model to obtain the optimal levels of inputs and outputs for the created new units that have
the same efficiency scores as their corresponding original units. We present two new criteria
models for evaluating the efficiency of the created new units in the presence of counterpart units
and show that the efficiency of the created new units in the inverse DEA process is equal to that
of the original units.
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4 A NOVEL APPROACH BASED ON INVERSE NON-RADIAL DEA PROCESS

2 LITERATURE REVIEW

2.1 The undesirable outputs in DEA

When additional input and output parameters are included in the evaluation, the DEA approach
can yield higher efficiency scores for the DMUs being evaluated. This can lead to unreason-
able results. Moreover, when considering undesirable outputs in the efficiency measurement of
a DMU, the scores will either be equal to or higher than those that do not consider the undesir-
able outputs. To arrive at a more robust efficiency metric, we should develop traditional DEA
models and provide suitable models. In many manufacturing processes, undesirable outputs may
be generated unexpectedly along with the planned outputs. For instance, in the pulping process,
wastewater or sewage is created, and in the combustion of fossil fuels, CO2 and NOx are formed.
Although these undesirable outputs may not have a direct impact on the DMU generating them,
they have a negative impact on the environment. The production of such outputs should be min-
imized to protect the environment. However, due to the costs of preventing the production of un-
desirable outputs, they are usually kept at the minimum standard level allowed by law. If the costs
of preventing their production outweigh the costs of breaking the rules, the production units may
be forced to control the creation of undesirable outputs. Undesirable outputs are often ignored in
efficiency measurements, but understanding their impact on efficiency measurements is crucial
to increase environmental awareness. There are numerous ways to determine the efficiency of a
production unit, with the DEA framework being the most commonly used. This technique was
first developed by Charnes et al. (1978), who created efficiency evaluation models based on the
constant returns to scale (CRS) technology. Banker et al. (1984) further developed this method
for the variable returns to scale (VRS) technology. DEA measures the relative efficiency of a set
of DMUs that use multiple inputs to generate multiple outputs.

Scheel (2001) categorized methods of measuring the efficiency of DMUs with the presence of
undesirable outputs into two categories: direct and indirect. Direct methods use original data,
while indirect methods involve data transformations. The concept of weak disposability is di-
rectly linked to direct approaches (Färe et al., 1989; Liu et al., 2010). Inverse input methods,
additive inverse, translated inverse, and multiplicative inverse methods are examples of indirect
methods. The direct approaches are classified by Zhao et al. (2008) into the directional distance
function (DDF), hyperbolic models (Kao, 2017), and the slacks-based measure (SBM). Vazquez-
Rowe et al. (2010) used the SBM-DEA model in the presence of undesirable outputs to assess
fisheries in Spain.

Undesirable outputs are considered in the evaluation of environmental efficiency, and Song et
al. (2012) classified the methods into three categories including disposability-related methods,
data transformation, and input reversal. In an extensive review of papers on performance bench-
marking in the presence of undesirable outputs, five approaches are classified by Dakpo et al.
(2016), including data transformation, materials balance principles, free disposability of the in-
puts, weak disposability of the undesirable outputs, as well as the two sub-technologies from the
biproportional production model of Murty et al. (2012), and the natural mammalian performance
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benchmarking model. Wu et al. (2013) considered wasting water, emission of toxic gases, and
the production of useless solid material as undesirable stochastic outputs in evaluating several
provinces in China.

Dakpo et al. (2016) proposed the drawbacks of each method. They evaluated the efficiency of 136
winter wheat farms in Poland under six DEA models with the life cycle assessment approach. The
methods included the ones that disregard the undesirable outputs, treat the undesirable outputs
as inputs, impact rate, data transformation, You and Yan’s (2011) ratio model, as well as the
slacks-based model. The comparison among the models showed that the slacks-based model
provided better results in differentiating the performance among the firms. However, they did not
discuss weak disposability. Pishgar-Komleh et al. (2020) classified DEA models in the face of
undesirable outputs as follows: a) ignoring undesirable outputs, b) treating undesirables as inputs
to the DEA model, c) data transformation, d) impact rate, e) ratio model. They discussed several
papers that used each method.

Cecchini et al. (2018) proposed a slack-based measure (SBM)-DEA model for analyzing the
environmental efficiency of dairy cattle farms with undesirable outputs in Italy. Adenuga et al.
(2018) used the directional output distance function DEA-based model to optimize both desirable
and undesirable outputs on dairy farms in Ireland. Dong et al. (2018) considered the SBM-DEA
model in the presence of undesirable outputs to evaluate the resource use in crop production in a
province in China. Angulo-Meza et al. (2019) proposed a multi-objective DEA model to reduce
the CF of organic blueberry orchards while maintaining high production levels.

Pishgar-Komleh et al. (2020) defined efficiency under different methods for incorporating un-
desirable outputs in an LCA+DEA framework. They applied the proposed approach to winter
wheat production in Poland. Kao and Hwang (2021) proposed an approach for measuring the
effects of undesirable outputs on the efficiency of production units. They developed a concept
for determining the minimum amount of undesirable outputs that a DMU is allowed to generate
based on the assertion of weak disposability and proposed a suitable approach for measuring the
effect of undesirable outputs on the efficiency measurement.

2.2 Inverse DEA

The inverse DEA models, compared to the traditional DEA models, achieve the rate of output
variations by increasing inputs while maintaining the efficiency level of the unit under evaluation.
The inverse optimization problem is useful for the decision-maker (DM) to obtain information
regarding resource allocation. The traditional DEA models focus only on efficiency evaluation.
The idea of the inverse DEA was first introduced by Zhang and Cui (1999) and then formulated
by Wei et al. (2000) based on multi-objective programming techniques. The inverse DEA models
were then studied from various theoretical and practical perspectives. Hadi-Vencheh et al. (2008)
proposed an inverse DEA model for estimating inputs. They initially increased the outputs and
assumed that the efficiency of the unit under evaluation would not change. Zhang and Cui (2016)
integrated twelve different scenarios into the inverse DEA models. Other applications of the
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inverse DEA include input estimation for resource allocation (Xiaoya & Jinchuan, 2008) and
inter-temporal application (Jahanshahloo et al., 2015). Ghobadi (2018) presented inverse DEA
models with fuzzy data. Ghiyasi (2017) developed inverse DEA models based on the concepts of
cost and revenue efficiency. Other applications of the inverse DEA models include recent studies
on sustainability (Hassanzadeh et al., 2018), enterprise merger (Amin et al., 2017a, b), revenue
target management (Lin, 2010), and pricing strategy (Frija et al., 2011). Lertworasirikul et al.
(2011) proposed inverse DEA models in the VRS technology. Amin et al. (2017b) developed
a generalized inverse DEA model for restructuring, considering the number of original DMUs
as pre-restrictions for producing new units. Lim (2016) proposed an inverse DEA model based
on the frontier changes for new product target setting. He discusses an inverse DEA problem
that considered expected changes in the production frontier in the future by adding the inverse
optimization problem with a time series application of DEA to provide a tool for new product
target setting practices. Wegener and Amin (2019) applied an inverse DEA model in the oil and
gas industry. Emrouznejad et al. (2019) proposed an inverse DEA model to allocate undesirable
outputs. Ghiyasi (2019) proposed a new criterion model, reducing the computational compli-
cations in the inverse DEA. Ghiyasi and Zhu (2020) proposed an inverse semi-oriented radial
DEA in the presence of negative data. Amin and Ibn Boamah (2021) developed a two-stage in-
verse DEA approach for estimating potential merger gains in the US banking sector. Zeinodin
and Ghobadi (2020) examined the merger issue under the inter-temporal dependence structure.
Gerami et al. (2023) proposed a generalized inverse DEA model for firm restructuring based on
value efficiency.

3 MEASURING THE EFFICIENCY IN THE PRESENCE OF UNDESIRABLE
OUTPUTS BASED ON THE SBM NON-RADIAL MODEL

Suppose we have n decision units as DMU j = (x j,y j) , j = 1, . . . ,n. The input and output vectors
corresponding to DMU j, j = 1, . . . ,n are denoted as x j =

(
x1 j, . . . ,xm j

)
and y j =

(
y1 j, . . . ,ys j

)
.

Assume that sx
i , i = 1, . . . ,m and sy

r , r = 1, . . . ,s are the slacks of the inputs and outputs,
respectively. λ j is the intensity variable corresponding to DMU j.

The SBM model for measuring the efficiency of DMUk as a unit under evaluation in the variable
returns to scale technology was presented by Tone (2001) as follows:

min
1− 1

m ∑
m
i=1

sx
i

xik

1+ 1
s ∑

s
r=1

sy
r

yrk

s.t.
n

∑
j=1

λ jxi j + sx
i = xik, i = 1, . . . ,m,

n

∑
j=1

λ jyr j − sy
r = yrk, r = 1, . . . ,s,

n

∑
j=1

λ j = 1,λ j ≥ 0, sx
i ≥ 0,sy

r ≥ 0, i = 1, . . . ,m,r = 1, . . . ,s, j = 1, . . . ,n.

(1)

Pesquisa Operacional, Vol. 44, 2024: e278382



JAVAD GERAMI, MOHAMMAD REZA MOZAFFARI, PETER FERNANDES WANKE and YONG TAN 7

Suppose, (λ ∗,sx∗,sy∗) where sx∗ = (sx
1
∗, . . . ,sx

m
∗) and sy∗ =

(
sy

1
∗
, . . . ,sy

s
∗) is an optimal solution

of model (1).

Definition 1. DMUk is efficient in evaluation with model (1) if and only if the objective function
score of model (1) is equal to one or equivalent to sx

i
∗ = 0, i = 1, . . . ,m,sy

r
∗
= 0,r = 1, . . . ,s.

When there are undesirable outputs, such as u j =
(
u1 j, . . . ,u f j

)
, j = 1, . . . ,n, model (1) cannot

be used to assess the DMUs’ efficiency. In this regard, Kao and Hwang (2021) proposed a new
approach for efficiency evaluation in the presence of undesirable outputs. They first introduced
the concept of a counterpart (hypothetic) unit and presented the efficiency based on the minimum
level of undesirable output.

To obtain the amount of efficiency corresponding to each of the DMUs on the basis of the pro-
jection of the unit under evaluation on the new frontier created based on the counterpart units
(for more detail see: Entani et al. 2002), they used this new frontier to calculate the efficiency
scores that produce the least undesirable output. The difference between these two efficiencies is
then used to calculate the impact of creating too many undesirable outputs on a production unit’s
efficiency. The counterpart units have the same input and output levels as the original units, but
their undesirable output level is lower than that of the original units. To determine the level of
undesirable outputs from these DMUs, assume that su

f , f = 1, . . . ,h are slacks of the undesirable
outputs, we can solve the following model (Kao and Hwang, 2021):

max
h

∑
f=1

sh
f

s.t.
n

∑
j=1

λ ju f j + su
f = u f k, f = 1, . . . ,h,

n

∑
j=1

λ jyr j = yrk,r = 1, . . . ,s,

λ j ≥ 0, j = 1, . . . ,n,su
f ≥ 0, f = 1, . . . ,h.

(2)

Suppose (λ ∗,su∗) where su∗ =
(

su
1
∗, . . . ,su

f
∗
)

is an optimal solution of model (2). In model (2),
the level of desirable outputs remains constant, and DMUk is allowed to generate the lowest
undesirable outputs as below:

ucp
f k = u f k − su

f
∗, f = 1, . . . ,h.
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On the basis of the frontier constructed from the counterpart DMUs, namely DMUcp
j =(

x j,y j,u
cp
j

)
, j = 1, . . . ,n, the efficiencies can be calculated through the following model (Kao

and Hwang, 2021):

min
1− 1

m+h

(
∑

m
i=1

sx
i

xik
+∑

h
f=1

su
f

u f k

)
1+ 1

s ∑
s
r=1

sy
r

yrk

s.t.
n

∑
j=1

λ jxi j + sx
i = xik, i = 1, . . . ,m,

n

∑
j=1

λ ju
cp
f j + su

f = u f k, f = 1, . . . ,h,

n

∑
j=1

λ jyr j − sy
r = yrk, r = 1, . . . ,s,

n

∑
j=1

λ j = 1,λ j ≥ 0, j = 1, . . . ,n,

sx
i ≥ 0,su

f ≥ 0,sy
r ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h,r = 1, . . . ,s.

(3)

In model (3), sx
i , i = 1, . . . ,m, sy

r , r = 1, . . . ,s, and su
f , f = 1, . . . ,h, are slacks of the inputs,

desirable and undesirable outputs, respectively. λ j is the intensity variable corresponding to
DMU j. In model (3), the undesirable outputs are reduced relative to the desirable output under
weak disposability. Suppose, (λ ∗,sx∗,su∗,sy∗) where sx∗ =(sx

1
∗, . . . ,sx

m
∗), su∗ =

(
su

1
∗, . . . ,su

h
∗) and

sy∗ =
(
sy

1
∗
, . . . ,sy

s
∗) is an optimal solution of model (3).

Definition 2. DMUk is called efficient in evaluation with model (3) if and only if the objective
function score of model (3) is equal to one or equivalent sx

i
∗ = 0, i= 1, . . . ,m,sy

r
∗
= 0,r = 1, . . . ,s,

su
f
∗ = 0, f = 1, . . . ,h.

Now, based on model (3), we present the input-oriented non-radial SBM model as follows:

ψk = min 1− 1
m+h

(
m

∑
i=1

sx
i

xik
+

h

∑
f=1

su
f

u f k

)

s.t.
n

∑
j=1

λ jxi j + sx
i = xik, i = 1, . . . ,m,

n

∑
j=1

λ ju
cp
f j + su

f = u f k, f = 1, . . . ,h,

n

∑
j=1

λ jyr j ≥ yrk,r = 1, . . . ,s

n

∑
j=1

λ j = 1,λ j ≥ 0, j = 1, . . . ,n,

sx
i ≥ 0,su

f ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h.

(4)
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In model (3), sx
i , i = 1, . . . ,m, and su

f , f = 1, . . . ,h, represent the slacks of the inputs and un-
desirable outputs, respectively. λ j is the intensity variable corresponding to DMU j. Model (4)
obtains the efficiency scores of the DMU under evaluation. Suppose, (λ ∗,sx∗,su∗) is an optimal
solution of model (4) where sx∗ = (sx

1
∗, . . . ,sx

m
∗) and su∗ =

(
su

1
∗, . . . ,su

h
∗)

Definition 3. DMUk is efficient in evaluation with model (4) if and only if the objective function
score of model (4) is equal to one, i.e., ψk = 1 or equivalently, sx

i
∗ = 0, i = 1, . . . ,m and su

f
∗ = 0,

f = 1, . . . ,h.

4 SBM-BASED INVERSE NON-RADIAL DEA

We present a new approach based on the non-radial SBM model for dealing with the presence
of undesirable outputs. We use the input-oriented SBM model, which calculates the efficiency
of DMUs based only on the slack values of the inputs and undesirable outputs. Therefore, we
first solve model (4) to obtain the efficiency and slacks of the inputs and undesirable outputs.
Suppose (λ ∗,sx∗,su∗) is an optimal solution of model (4) where sx∗ = (sx

1
∗, . . . ,sx

m
∗) and su∗ =(

su
1
∗, . . . ,su

h
∗), To estimate the input, desirable output, and output components in the inverse DEA

process, we created a new corresponding DMUk as follows, taking into account the level of inputs
and outputs:

DMUnew
k = (xk +∆xk,yk +∆yk,uk +∆uk) .

where ∆xk,∆yk, ∆uk, show the deviations of the inputs, desirable and undesirable outputs of
DMUk, respectively. In the inverse DEA process based on the SBM model, the optimal inputs
and outputs of the newly created DMU, i.e. DMUnew

k , are determined in such a way that this unit’s
efficiency is the same as that of the corresponding unit, i.e. DMUk. To obtain the optimal inputs
and outputs of the newly created unit, we solve the following model in the inverse non-radial
DEA process:

ϕ
inv
k = min 1− 1

m+h

(
m

∑
i=1

sx−inv
i

xik +∆xik
+

h

∑
f=1

su−inv
f

u f k +∆u f k

)

s.t.
n

∑
j=1

λ jxi j +λ
new
k (xik +∆xik)+ sx−inv

i = xik +∆xik, i = 1, . . . ,m,

n

∑
j=1

λ ju
cp
f j +λ

new
k
(
u f k +∆u f k

)
+ su−inv

f = u f k +∆u f k, f = 1, . . . ,h,

n

∑
j=1

λ jyr j +λ
new
k (yrk +∆yrk)≥ yrk +∆yrk, r = 1, . . . ,s,

n

∑
j=1

λ j +λ
new
k = 1,λ new

k ≥ 0, λ j ≥ 0, j = 1, . . . ,n,

xik +∆xik ≥ 0, u f k +∆u f k ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h,

yrk +∆yrk ≥ 0, r = 1, . . . ,s,

sx−inv
i ≥ 0,su−inv

f ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h.

(5)
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In model (5), sx−inv
i , i = 1, . . . ,m, and su−inv

f , f = 1, . . . ,h, are the slacks of the inputs and unde-
sirable outputs, respectively. λ j is the intensity variable corresponding to DMU j, and λ new

k is the
intensity variable corresponding to DMUnew

k . Additionally, ∆xik, i = 1, . . . ,m,∆yrk,r = 1, . . . ,s,
∆u f k, f = 1, . . . ,h, represent the deviations of the inputs, desirable and undesirable outputs of
DMUk, respectively. The constraint xik + ∆xik ≥ 0, u f k + ∆u f k ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h,
yrk +∆yrk ≥ 0,r = 1, . . . ,s, ensures that the optimal level the newly created unit’s inputs and
outputs, i.e. DMUnew

k , is non-negative.

If we present model (5) with the slack values corresponding to the desirable output components,
the linearization process of is not easy. Therefore, we only present the input-oriented model
(5) with the slack values corresponding to the input and undesirable output components. Model
(5) is a nonlinear model used to determine the efficiency of the created new unit, i.e., DMUnew

k .
However, the optimal level of the new unit’s inputs and outputs, i.e., DMUnew

k , is unclear, making
it difficult to solve model (5) and determine its efficiency. Additionally, the optimal solution of
this model may be zero. To determine the efficiency score of the created new unit, i.e., DMUnew

k ,

we need to obtain the optimal level of inputs and outputs corresponding to it. However, due to
the non-linear shape of model (5), we need to present a new linear model. This model assumes
that the created new unit’s efficiency, i.e., DMUnew

k , is the same as that of the corresponding
original unit, i.e., DMUk, and that we obtain the efficiency score corresponding to DMUk from
model (4). To do this, we need to present the model in a way that includes the optimal values of
the slack variables regarding the input and undesirable output components resulting from model
(4) corresponding to the unit under evaluation, i.e., DMUk. This ensures that the optimal values
of the slack variables regarding the input and undesirable output components corresponding to
the unit under evaluation, i.e., DMUk, from model (4) are equal to the ones of the created new
unit, i.e., DMUnew

k , from model (5) in a special case:

sx−inv
i

xik +∆xik
=

sx
i
∗

xik
, i = 1, . . . ,m,

su−inv
f

u f k +∆u f k
=

su
f
∗

u f k
, i = 1, . . . ,m, f = 1, . . . ,h. (6)

In this case, we can guarantee that the created new unit’s efficiency, i.e. DMUnew
k is the same

as the one of the corresponding original unit, i.e. DMUk, and with this assumption, the created
new unit’s optimal inputs and outputs are obtained. Equation (6) is equivalent to the following
equation:

sx−inv
i = sx

i
∗
(

1+
∆xik

xik

)
, i = 1, . . . ,m,su−inv

f = su
u
∗
(

1+
∆u f k

u f k

)
, f = 1, . . . ,h. (7)
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We can now use the slacks values of the input and undesirable output components corresponding
to the newly created unit, i.e., DMUnew

k , in the SBM-based inverse non-radial DEA process to
determine the optimal level of this unit’s inputs and outputs. We propose model (8) as follows:

ψ
inv
k = min

(
m

∑
i=1

∆xik +
h

∑
f=1

∆u f k

)

s.t.
n

∑
j=1

µ jxi j + sx
i
∗
(

1+
∆xik

xik

)
= xik +∆xik, i = 1, . . . ,m,

n

∑
j=1

µ ju
cp
f j + su

f
∗
(

1+
∆u f k

u f k

)
= u f k +∆u f k, f = 1, . . . ,h,

n

∑
j=1

µ jyr j ≥ yrk +∆yrk, r = 1, . . . ,s,

n

∑
j=1

µ j = 1,µ j ≥ 0, j = 1, . . . ,n,

xik +∆xik ≥ 0,u f k +∆u f k ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h,

yrk +∆yrk ≥ 0,r = 1, . . . ,s.

(8)

Model (8) obtains the minimum level of inputs and undesirable outputs from the created new unit,
i.e. DMUnew

k , in a manner that the created new unit’s efficiency, i.e. DMUnew
k , is equal to that of

the corresponding unit, i.e. DMUk. In this model, we use the optimal values of the slack variables
regarding the input and undesirable output components corresponding to the created new unit.,
i.e. DMUnew

k from model (5), which we obtain in equation (7), according to the optimal values of
the slack variables regarding the input and undesirable output components corresponding to the
unit under evaluation, i.e. DMUk from model (4). We apply model (8) to determine the minimum
level of inputs and undesirable outputs from the created new unit, i.e., DMUnew

k . In model (8),
the optimal level of inputs, desirable outputs, and undesirable outputs of the created new unit,
i.e. DMUnew

k , is determined based on the counterpart DMUs, namely, DMUcp
j =

(
x j,y j,u

cp
j

)
,

j = 1, . . . ,n.

Suppose (µ∗,∆xk
∗,∆yk

∗, ∆uk
∗ ) such that ∆xk

∗ = (∆x1k
∗, . . . ,∆xmk

∗) ,∆yk
∗ = (∆y1k

∗, . . . ,∆ysk
∗)

and ∆uk
∗ = (∆u1k

∗, . . . ,∆uhk
∗) is an optimal solution of model (8). In this case, the optimal levels

of the created new unit’s inputs and outputs corresponding to i.e. DMUk based on model (8) are
considered as follows:

DMUnew
k = (xk +∆xk

∗,yk +∆yk
∗, uk +∆uk

∗) .

∆xk
∗,∆yk

∗, ∆uk
∗show the optimal deviations of the inputs, desired outputs, and undesirable out-

puts of DMUk, respectively. In the following, to show that the created new unit’s efficiency,
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i.e. DMUnew
k , in the inverse non-radial DEA process is the same as the one of the original unit

corresponding to it, first we provide the following criterion model:

ψ
cr
k = min 1− 1

m+h

(
m

∑
i=1

sx−cr
i

xik +∆xik
∗ +

h

∑
f=1

su−cr
f

u f k +∆u f k
∗

)

s.t.
n

∑
j=1

γ jxi j + sx−cr
i = xik +∆xik

∗, i = 1, . . . ,m,

n

∑
j=1

γ ju
cp
f j + su−cr

f = u f k +∆u f k
∗, f = 1, . . . ,h,

n

∑
j=1

γ jyr j ≥ yrk +∆yrk
∗,r = 1, . . . ,s,

n

∑
j=1

γ j = 1,γ j ≥ 0, j = 1, . . . ,n,

sx−cr
i ≥ 0,su−cr

f ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h.

(9)

Model (9) obtains the created new unit’s efficiency score, i.e. DMUnew
k , based on the slack

variables of the input and undesirable output components in the structure of the SBM model. In
Theorem (1), we show that the score of the optimal objective function obtained from model (9) in
the evaluation DMUnew

k and the optimal score obtained from model (4) in the evaluation DMUk

are equal. In other words, the efficiency scores of the unit under evaluation, i.e. DMUk, and its
corresponding unit in the inverse non-radial DEA process, i.e. DMUnew

k , are equal.

Theorem 1. The optimal objective function scores of models (9) is less than or equal to the
optimal objective function scores of models (4).

Proof. As stated earlier, to solve model (9), we need to first solve model (8) and use the optimal
solution obtained from model (8) to solve model (9). Similarly, to solve model (8), we need to
solve model (4) and use the optimal solution obtained from model (4) to solve model (8). Let
(ψk,λ

∗,sx∗,su∗) be a desired optimal solution of model (4). Based on this solution, we solve
model (8) and let (µ∗,∆xk

∗,∆yk
∗, ∆uk

∗) be the desired optimal solution of model (8). Next,
based on this solution, we solve model (9) and let

(
ψcr

k ,γ∗,sx−cr∗,su−cr∗) be the desired optimal
solution of model (9).
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To prove the theorem, we need to show that ψcr
k = ψk. Given that (µ∗,∆xk

∗,∆yk
∗, ∆uk

∗) is a
desired optimal solution of model (8), it satisfies in constraints of model (8). Therefore, we have

n

∑
j=1

µ
∗
j xi j + sx

i
∗
(

1+
∆xik

∗

xik

)
= xik +∆xik

∗, i = 1, . . . ,m,

n

∑
j=1

µ
∗
j ucp

f j + su
f
∗
(

1+
∆u f k

∗

u f k

)
= u f k +∆u f k

∗, f = 1, . . . ,h,

n

∑
j=1

µ
∗
j yr j ≥ yrk +∆yrk

∗, r = 1, . . . ,s,

n

∑
j=1

µ
∗
j = 1,µ∗

j ≥ 0, j = 1, . . . ,n.

(10)

(λ ∗,sx∗,su∗) is a desired optimal solution of model (4) which was used to solve model (8).

Now we get a feasible solution for model (9). For this purpose, we put

sx−cr
i = sx

i
∗
(

1+
∆xik

∗

xik

)
, i = 1, . . . ,m,

su−cr
f = su

f
∗
(

1+
∆u f k

∗

u f k

)
, f = 1, . . . ,h,

γ j = µ
∗
j , j = 1, . . . ,n,

According to the relations (10) and the constraints of model (9), it is clear that(
sx−cr

i : i = 1, . . .m,su−cr
f : f = 1, , ..h, γ j : j = 1, . . . ,n

)
satisfies the constraints of model (9),

and therefore is a feasible solution for model (9). The objective function score of model (9)
for this feasible solution is as follows:

1− 1
m+h

 m

∑
i=1

sx
i
∗
(

1+ ∆xik
∗

xik

)
xik +∆xik

∗ +
h

∑
f=1

su
f
∗
(

1+ ∆u f k
∗

u f k

)
u f k +∆u f k

∗

= 1− 1
m+h

(
m

∑
i=1

sx
i
∗

xik
+

h

∑
f=1

su
f
∗

u f k

)
= ψk (11)

According to relations (11), the optimal objective function scores of models (9) is less than or
equal to the optimal objective function scores of models (4), this is attributed to the fact that
the objective function score of model (9) for a feasible solution is equal to the optimal objective
function score of model (4), and both models are of the minimization type. Then ψcr

k ≤ ψk.
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Conversely, suppose
(
ψcr

k ,γ∗,sx−cr∗,su−cr∗) is a desired optimal solution of model (9). Then it
satisfies the constraints of model (9).

n

∑
j=1

γ j
∗xi j + sx−cr

i
∗
= xik +∆xik

∗, i = 1, . . . ,m,

n

∑
j=1

γ j
∗ucp

f j + su−cr
f

∗
= u f k +∆u f k

∗, f = 1, . . . ,h,

n

∑
j=1

γ j
∗yr j ≥ yrk +∆yrk

∗,r = 1, . . . ,s,

n

∑
j=1

γ j
∗ = 1,γ j

∗ ≥ 0, j = 1, . . . ,n,

To solve model (9), we must first solve model (8) and use the optimal solution obtained from
model (8) to solve model (9). In model (8), we replace the variables xik+∆xik

∗, i= 1, . . . ,m,u f k+

∆u f k
∗, f = 1, . . . ,h, with these scores, then we will have

n

∑
j=1

µ jxi j + sx
i
∗
(

1+
∆xik

∗

xik

)
=

n

∑
j=1

γ j
∗xi j + sx−cr

i
∗
, i = 1, . . . ,m,

n

∑
j=1

µ ju
cp
f j + su

f
∗
(

1+
∆u f k

∗

u f k

)
=

n

∑
j=1

γ j
∗ucp

f j + su−cr
f

∗
, f = 1, . . . ,h,

Based on the relations above, we can derive a special case where we can establish a relation
between the scores sx−cr

i
∗ and sx

i
∗, i= 1, . . . ,m, as well as a relation between the scores su−cr

f
∗
,su

f
∗,

f = 1, . . . ,h, we put

sx
i
∗ = sx−cr

i
∗
(

xik

xik +∆xik
∗

)
, i = 1, . . . ,m,su

f
∗ = su−cr

f
∗
(

u f k

u f k +∆u f k
∗

)
, f = 1, . . . ,h,µ j = γ j

∗, j = 1, . . . ,n,

Given that
(

sx
i
∗ : i = 1, . . .m,su

f
∗ : f = 1, , ..h

)
is an optimal solution of model (4) which we

used to solve model (8). Then we have

1− 1
m+h

(
m

∑
i=1

sx
i
∗

xik
+

h

∑
f=1

su
f
∗

u f k

)
=

1− 1
m+h

 m

∑
i=1

sx−cr
i

∗
(

xik
xik+∆xik

∗

)
xik

+
h

∑
f=1

su−cr
f

∗
(

u f k
u f k+∆u f k

∗

)
u f k

=

1− 1
m+h

(
m

∑
i=1

sx−cr
i

∗

xik +∆xik
∗ +

h

∑
f=1

su−cr
f

∗

u f k +∆u f k
∗

)
= ψ

cr
k ,

Based on the relations above, we can conclude that the optimal objective function scores of
models (4) is less than or equal to the optimal objective function scores of models (9) because the
objective function score of the model (4) for a feasible solution is equal to the optimal objective
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function score of model (9), and both models are of the minimization type. Therefore, we have
ψk ≤ ψcr

k .

From these results, we can deduce that ψcr
k = ψk. The proof of the theorem is complete. □

We will now calculate the efficiency score of the newly created unit, denoted as DMUnew
k =

(xk +∆xk
∗,yk +∆yk

∗, uk +∆uk
∗) , based on model (5). Assume that (µ∗,∆xk

∗,∆yk
∗, ∆uk

∗) is an
optimal solution of model (8). We put the following values in model (5):

∆xik = ∆xik
∗, i = 1, . . . ,m,∆yrk = ∆yrk

∗, r = 1, . . . ,s,∆u f k = ∆u f k
∗, f = 1, . . . ,h.

Therefore, the new criteria model for evaluating the efficiency of DMUnew
k based on model (5)

can be presented as follows:

ψ
inv
k = min 1− 1

m+h

(
m

∑
i=1

sx−inv
i

xik +∆xik
∗ +

h

∑
f=1

su−inv
f

u f k +∆u f k
∗

)

s.t.
n

∑
j=1

λ jxi j +λ
new
k (xik +∆xik

∗)+ sx−inv
i = xik +∆xik

∗, i = 1, . . . ,m,

n

∑
j=1

λ ju
cp
f j +λ

new
k
(
u f k +∆u f k

∗)+ su−inv
f = u f k +∆u f k

∗, f = 1, . . . ,h,

n

∑
j=1

λ jyr j +λ
new
k (yrk +∆yrk

∗)≥ yrk +∆yrk
∗,r = 1, . . . ,s,

n

∑
j=1

λ j +λ
new
k = 1,λ new

k ≥ 0,λ j ≥ 0, j = 1, . . . ,n,

sx−inv
i ≥ 0,su−inv

f ≥ 0, i = 1, . . . ,m, f = 1, . . . ,h.

(12)

Theorem 2. Suppose that
(
ψ inv

k ,λ ∗, λ ∗
n+1,s

x−inv∗,su−inv∗) and
(
ψcr

k ,γ∗,sx−cr∗,su−cr∗) are the
optimal solutions of models (12) and (9), respectively. Then, we have ψcr

k = ψk.

Proof. Let
(
λ ∗,λ new

k
∗,sx−inv∗,su−inv∗) be an optimal solution of model (12), and assume that

DMUnew
k is not efficient based on model (12). In this case, we will have λ new

k
∗ = 0.

we can present the optimal solution by considering the constrains of model (12) as follows:
n

∑
j=1

λ
∗
j xi j + sx−inv

i
∗
= xik +∆xik

∗, i = 1, . . . ,m,

n

∑
j=1

λ
∗
j ucp

f j + su−inv
f

∗
= u f k +∆u f k

∗, f = 1, . . . ,h,

n

∑
j=1

λ
∗
j yr j ≥ yrk +∆yrk

∗,r = 1, . . . ,s,

n

∑
j=1

λ
∗
j = 1.

(13)
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By placing sx−cr
i = sx−inv

i
∗
, i = 1, . . . ,m,su−cr

f = su−inv
f

∗
, f = 1, . . . ,h,γ j = λ ∗

j , j = 1, . . . ,n,

By considering the constraints in model (9) and relations (13), it is possible to obtain a feasible
solution for model (9). The objective function score of model (9) for this feasible solution will
be equal to ψ inv

k . From the optimization point of view, since model (9) is a minimization type, its
optimal objective function score will be ψcr

k , we will therefore have:

ψ
cr
k ≤ ψ

inv
k . (14)

On the other hand, suppose that
(
γ∗,sx−cr∗,su−cr∗) is an optimal solution of model (9). Now

consider the constraints of model (9) for this optimal solution as follows:

n

∑
j=1

γ
∗
j xi j + sx−cr

i
∗
= xik +∆xik

∗, i = 1, . . . ,m,

n

∑
j=1

γ
∗
j ucp

f j + su−cr
f

∗
= u f k +∆u f k

∗, f = 1, . . . ,h,

n

∑
j=1

γ
∗
j yr j ≥ yrk +∆yrk

∗,r = 1, . . . ,s,

n

∑
j=1

γ
∗
j = 1,γ∗j ≥ 0, j = 1, . . . ,n.

(15)

By placing

sx−inv
i = sx−cr

i
∗
, i = 1, . . . ,m,su−inv

f = su−cr
f

∗
, f = 1, . . . ,h,λ j = γ

∗
j , j = 1, . . . ,n,λ new

k = 0.

Given the constraints in model (12) and the relationships in (15), we can obtain a feasible solution
for model (12). The objective function score of model (12) for this feasible solution will be
equal to ψcr

k . From the optimization point of view, considering that model (12) is a model of
minimization type, and its optimal objective function score is equal to ψ inv

k , we will therefore
have:

ψ
inv
k ≤ ψ

cr
k . (16)

According to the relations (14) and (16), we have:

ψ
inv
k = ψ

cr
k .

Therefore, the optimal objective function scores of models (9) and (12) are equal.

If this unit is efficient in evaluating DMUnew
k based on model (12), the objective function score of

model (12) will be equal to one. In this case, model (12) is equivalent to the input-oriented SBM
model or model (4), which we use to evaluate n+ 1 DMUs including the counterpart DMUs,
namely DMUcp

j =
(

x j,y j,u
cp
j

)
, j = 1, . . . ,n, and DMUnew

k = (xk +∆xk
∗,yk +∆yk

∗, uk +∆uk
∗).

Therefore, the objective function score of model (4) in the evaluation of this n+ 1 DMU will
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be equal to one. According to Theorem (1), the optimal objective function score obtained from
models (4) and (9) are equal. Therefore, the optimal objective function score of model (9) is
also equal to one, meaning DMUnew

k is also efficient in evaluation with model (9). Therefore, if
DMUnew

k is efficient in evaluation with model (12), it also will be an efficient unit in evaluation
with model (9). The optimal objective function scores of models (9) and (12) are then equal, and
the proof of the theorem is complete. □

If the efficiency frontier remains unchanged in the presence of newly created DMUs, or in other
words, the new units can be expressed as a combination of the original observed DMUs, then
λ new

k = 0 in model (12). Model (12) calculates the efficiency score of the created new unit, namely
DMUnew

k = (xk +∆xk
∗,yk +∆yk

∗, uk +∆uk
∗) , based on model (5). We can say that model (12) is

a criteria model for evaluating the efficiency of DMUnew
k based on model (5).

Now, according to Theorems (1) and (2), the optimal objective function scores of models (4) and
(12) are equal. This is because, according to Theorem (1), the optimal objective function scores of
models (4) and (9) are equal, and according to Theorem (2), the optimal objective function scores
of models (9) and (12) are equal. Therefore, the optimal objective function scores of models (4)
and (12) are also equal. This means we can use either of the criteria models (9) and (12) to show
that the created new unit’s efficiency in the inverse non-radial DEA process is equal to that of the
original unit. Given that model (9) has a smaller number of variables compared to model (12),
model (9) is proposed as a suitable criteria model. We now present the following algorithm as a
three-step approach to estimate the optimal level of the newly created unit’s inputs and outputs
in the SBM-based inverse non-radial DEA process as follows (Table 1):

Table 1 – An algorithm three-step approach for SBM-based inverse non-radial DEA in presence of
undesirable output.

Step One: Evaluation of DMUs.
Solve model (4) to obtain the efficiency scores and optimal levels of slacks of the inputs and
undesirable outputs of DMUk, which is the unit under evaluation in the inverse non-radial
DEA. Go to Step 2.
Step Two: Inverse non-radial DEA.
Solve model (8) to obtain the optimal levels of input, desirable output, and undesirable output
components of DMUnew

k , which is the new unit corresponding to DMUk in the inverse
non-radial DEA.

5 NUMERICAL EXAMPLE

This example presented below is intended to help the reader better understand the proposed
approach. We consider a case of 5 DMUs, each having one input, one desirable output and one
undesirable output, as shown in Table 2. The input, desirable output, and undesirable output are
indicated by the symbols X ,Y , and U , respectively.
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Table 2 – Data for five DMUs as an example and the efficiency score of models (1), (3), and (4).

DMU Original DMUs Counterpart DMUs Efficiency score
X Y U X Y U Model (1) Model (3) Model (4)

A 1 0.5 0.5 1 0.5 0.1 1 0.6 0.6
B 2 2 0.6 2 2 0.4 0.8 0.7333 0.7708
C 3 4.5 1 3 4.5 0.9 1 0.95 0.95
D 4 4 0.8 4 4 0.8 0.6667 0.8438 0.8438
E 5 5 1.5 5 5 1 1 0.8333 0.8333

First, using model (1), we obtain efficiency score for each DMU, as reported in Table 2. It can
be seen that all units are inefficient except for units A, C and E. The SBM model divides the
DMUs into two categories: strong efficient and inefficient. Model (1) calculates the efficiency
score of each DMU without considering the undesirable output. To calculate the efficiency of
each DMU in the presence of undesirable outputs, we solve model (2) and obtain the lowest
undesirable output based on the input and desirable output values. To do this, we solve model
(2) and introduce the counterpart (hypothetic) units corresponding to each of the DMUs, and
we obtain the true efficiency scores and slacks of the inputs and undesirable outputs by the
non-radial projection of these units on the frontier of efficiency that is created on the basis of the
counterpart (hypothetic) units. These units have the same levels of inputs and desirable outputs as
the original units, but their undesirable output level is less than the original units. These units have
a minimum level of undesirable outputs based on the levels of inputs and desirable outputs. The
results further report the input, desirable output, and undesirable output values corresponding to
each of the counterpart DMUs. Model (3) is solved to obtain the corresponding efficiency score
for each of the DMUs. This model obtains the efficiency score based on the slack variable of
the inputs and undesirable outputs based on the counterpart (hypothetic) units. According to this
model, none of the DMUs are efficient. Unit C has the highest efficiency score among the DMUs.

To perform the SBM-based inverse non-radial DEA process, we solve model (4) to obtain the
efficiency scores and slacks of the inputs and undesirable outputs. This model achieves the true
efficiency scores and slacks of each DMU by representing the units in the non-radial form on the
frontier of efficiency that is created based on the counterpart (hypothetic) units. The results are
given in the second to fourth columns of Table 3.

We can see that the results of models (3) and (4) are the same, and none of the DMUs are efficient.
It is shown in Tables (2) and (3) that the efficiency scores of each DMU based on model (1) are
greater than the ones obtained from model (3); however, this is not true from an optimization
perspective. This is because we expect the efficiency of each DMU to deteriorate and decrease in
the presence of undesirable outputs. Therefore, it is recommended that instead of solving model
(1), we use models (3) and (4) to calculate the efficiency of DMUs.

As stated in the third section, in the inverse non-radial DEA process, we must solve model
(8), through which the lowest inputs and undesirable outputs can be determined. Before solv-
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Table 3 – The result of models (4), (9), (12) in the inverse non-radial DEA process
for data set in numerical example.

DMU Model (4) Model (9) Model (12)
Effi-

ciency
score

Slack
of

input

Slack of
undesir-

able
output

Effi-
ciency
score

Slack
of

input

Slack of
undesir-

able
output

Effi-
ciency
score

Slack
of

input

Slack of
undesir-

able
output

A 0.6 0 0.4 0.6 0 0.4 0.6 0 0.4
B 0.7708 0.25 0.2 0.7708 0.1429 0.05 0.7708 0.1429 0.05
C 0.95 0 0.1 0.95 0 0.0111 0.95 0 0.0111
D 0.8438 1.25 0 0.8438 0.4545 0 0.8438 0.4545 0
E 0.8333 0 0.5 0.8333 0 0.05 0.8333 0 0.05

ing model (8), we must first solve model (4) and obtain the efficiency scores and optimal slacks
of the inputs and undesirable outputs of the unit under evaluation. As previously stated, model
(8) obtains the minimum level of inputs and undesirable outputs from the created new unit in
such a way that the created new unit’s efficiency is the same as the original unit. The third to fifth
columns of Table 4 show the deviations of the input, desirable outputs, and undesirable output
components of the DMUs, respectively. Also, the sixth to eighth columns of Table 4 show the
respective new levels.

Table 4 – The result of model (8).

DMU The
objective
function

score

Variations
of input

Variations of
undesirable

output

Variations
of

desirable
output

The new
input

The new
undesirable

output

The new
desirable

output

A 0 0 0 0 1 0.5 0.5
B -1.3071 -0.8571 -0.45 -1.5 1.1429 0.15 0.5
C -2.8889 -2 -0.8889 -4 1 0.1111 0.5
D -3.2455 -2.5455 -0.7 -4 1.4545 0.1 0
E -5.35 -4 -1.35 -4.5 1 0.15 0.5

To show that the efficiency scores corresponding to the original DMUs and the ones of the created
new units are equal, we can solve two criterion models (9) and (12). We observe that the effi-
ciency scores of the created new unit are the same as those of the original units. Model (9) with
the SBM model structure obtains the efficiency scores of the created new unit, and we obtain their
input and undesirable output levels from model (8). Additionally, model (9) non-radially depicts
the created new units on the frontier of efficiency that is created on the basis of the counterpart
units. Next, we use model (12) as a criterion model to obtain the efficiency scores of the created
new unit. The level of inputs and outputs of this new unit was determined based on model (8).
The results are presented in the last column of Table 4, showing that the efficiency scores of the
created new units based on model (12) are the same as those of the corresponding original units.
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6 CASE STUDY

In this section, we apply our method to the dataset of the energy sector in the Iranian oil indus-
try. The energy sector in Iran is of particular importance, which is why it is necessary to have
accurate, comprehensive, and reliable statistics about it. Energy statistics are important tools
for making correct and appropriate decisions and policies in the energy sector. These statistics
must have the necessary coordination with the decision-making process of energy policies in the
country. In recent years, the planning office and macroeconomics of electricity and energy of the
Ministry of Energy have tried to provide comprehensive information and publish a set of basic
information chronologically from 2005 to meet the need of officials, managers, researchers, and
experts of the country for reliable statistical sources and also to create appropriate, quick, and
easy access to energy information. In this paper, we evaluate the performance of this industry
over 14 years during the period 2005-2018 using the DEA technique.

To evaluate the performance of this industry, we consider each year as a Decision Making Unit
(DMU). We must determine the inputs and outputs corresponding to each DMU for performance
evaluation. The correct selection of inputs and outputs can determine the efficiency values accu-
rately. After determining the efficiency of each of the DMUs, one of the managers’ questions is
how to develop DEA models to obtain the amount of changes in the inputs and outputs from the
DMUs that do not change the efficiency of these units. Therefore, inverse DEA models are sug-
gested. It is important to use models that correctly calculate the efficiency score and consider all
inefficiency factors in all input and output components. Therefore, we can develop inverse DEA
models in terms of input and output slacks based on the SBM model. One of the important issues
in the evaluation of energy sectors is the presence of unwanted data that has a negative effect on
the performance of these sectors. According to the above explanations, the models presented in
this paper are among the most appropriate models in dealing with unfavorable outcomes. These
models use the inverse DEA technique to evaluate energy sectors during different years based on
non-radial models.

We used the opinions of senior managers of this industry to select inputs and outputs. Inputs
and outputs were selected according to the indicators that have had the greatest impact on the
performance of this industry over many years. These inputs and outputs are as follows. Each
DMU has three inputs, two desirable outputs, and two undesirable outputs. The first input is the
amount of drilled oil wells during that year, including the fields of exploration, development, re-
pair, and supplementary wells, measured in meters. The second input shows the amount of gaso-
line imports during different years, measured in one thousand cubic meters. Due to the inability
of the country’s refineries to produce the gasoline needed by the country, gasoline is exported,
and the required gasoline is imported from other producing countries. The third input includes
the amount of different petroleum products transported by various means, including pipelines,
railway tanks, road tankers, petroleum products trucks, refueling vessels, and refueling vessels,
which are measured in millions of tons per kilometer.
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Outputs include desirable and undesirable outputs. Desirable outputs include two outputs, which
are factors whose larger value increases the rate of efficiency and performance. Total crude oil
extracted from oil wells is used in three ways. The first part is the total amount of crude oil pro-
vided to the country’s refineries in the form of petroleum products, from which other petroleum
products and derivatives are produced and used for domestic consumption and in various indus-
tries, and the rest of the refinery products are also exported. The second part is the amount of
crude oil that is exported directly as furnace oil. The third part is exported as crude oil to other
countries.

The first desirable output is the total production of the country’s petroleum products, which
are produced in ten different refineries. These refineries produce petroleum products, including
gasoline, liquefied petroleum gas, heavy furnace oil, sulfur, gas condensate, solvents, jet fuel,
industrial oil, gas oil, crude oil, engine oils, kerosene, and other products. Most of the petro-
chemical products in the country are used in various industries and households, and a limited
part is exported to other countries. The total amount of crude oil supplied to different refiner-
ies is measured in cubic meters per day. The second desirable output is the amount of crude
oil exported to other countries during the 14 years studied. The amount of crude oil exported is
measured in million barrels per year.

In this study, the undesirable outputs include the emission of polluting and greenhouse gases
resulting from the country’s energy production and consumption. Emission coefficients of pol-
lutants and greenhouse gases used in the power plant sector from 2005 onwards, based on the
studies conducted under the title of “Compilation of Pollution Atlas of Power Plants in 2005,”
have been revised. In this study, nitrogen oxides and sulfur, which are the most significant pol-
lutants and greenhouse gases emitted from the country’s energy production and consumption,
are considered as undesirable outputs. The emissions of these gases (NOx, SO2) resulting from
the country’s energy production and consumption in each of the studied years are considered
as undesirable outputs. Therefore, the first and second undesirable outputs are the emissions of
NOx and SO2 gases caused by the country’s energy production and consumption in each of the
studied years, respectively. The dataset is provided in Table 5.

We first solve model (1) to obtain the efficiency score of each DMU. Model (1) calculates the
efficiency score of each DMU without considering the undesirable output. We can see that Units
1, 3, 7, 8, 9, 11, 12, and 14 are efficient, while the others are inefficient. The optimal scores of the
inefficient slacks related to the two input components and the two desirable output components
are provided in the other columns of Table 6.

Now, to calculate the efficiency of each DMU in the presence of undesirable outputs, we solve
model (2) and obtain the minimum level of undesirable output based on the levels of input and
desirable output. As stated in the third section, we first solve model (2) and introduce a counter-
part (hypothetical) unit for each of the DMUs. Table 7 displays the slack of undesirable outputs
and the corresponding values of undesirable outputs for each of the counterpart DMUs.
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Table 5 – The energy data related to the energy sector in Iran during the years 2005-2018.

DMUs
Input Desirable output Undesirable output

Input1 Input2 Input3 Desirable
output1

Desirable
output2

Undesirable
output1

Undesirable
output2

DMU1 345004 9055.2 35405 250987 866.9 1256222 768793
DMU2 326139 10037.5 39183 257580 881.6 1345241 837761
DMU3 346213 6952.6 38001 256893 908.7 1677948 1435620
DMU4 391630 7542.5 41802 260947 862.7 1807615 1597779
DMU5 334375 7664.7 40926 266526 800 1770498 1500437
DMU6 356752 5449.1 36290 265371 820 1791802 1352650
DMU7 454372 1803 34212 273221 810.5 1860248 1427839
DMU8 417493 554.9 38618 283427 413.5 1867075 1540481
DMU9 339639 1339.6 38354 290811 372.8 1945104 1609006
DMU10 382784 1668.1 37192 280248 391 1943018 1302639
DMU11 356290 3646 36429 272754 411.7 1842891 997169
DMU12 293606 4428.6 38024 272146 764.9 1896902 881844
DMU13 254269 4608.1 42749 283403 772.3 1952789 800831
DMU14 193738 4934.7 44013 300939 831.6 2056315 819572

Model (3) is used to obtain the corresponding efficiency for each DMU. We can observe that
Units 1, 3, 9, 11, and 14 are efficient, while the others are inefficient. Table 8 illustrates the effi-
ciency scores, input, desirable output, and undesirable output slacks corresponding to all DMUs
based on model (3).

In order to perform the SBM-based inverse non-radial DEA process, we solve model (4) and
obtain the efficiency scores and slacks. Table 6 shows the results of model (4). We can see that
units 1, 3, 9, 11, and 14 are efficient and others are inefficient. The model (4) introduces the
oil industry as efficient in 2005, 2007, 2013, 2015, and 2018. Over these years, due to the low
amount of costs incurred in this sector, including the cost of operating wells and oil rigs, the cost
of transporting crude oil to the country’s refineries, and the cost of imported gasoline, we observe
favorable performance for the oil industry in the energy sector. However, during the years 2006,
2008, 2009, 2010, 2011, 2012, 2014, and 2016, the oil industry did not perform well in the energy
sector due to rising costs. The model (4) introduces the oil industry as inefficient in these years.

The difference between models (3) and (4) is that the former measures the efficiency scores based
on the counterpart (hypothetic) units. Model (3) is based on the SBM model in terms of the slack
variables of the input, desirable output, and undesirable output components. Model (4) is similar
to model (3), but model (4) does not consider the slacks of the desirable output components. We
can say that model (3) is the input-oriented SBM model in the presence of undesirable outputs.
In models (3) and (4), we consider the undesirable outputs, but in model (1), we do not consider
the undesirable outputs. As can be seen in Tables (6), (7), and (8), the efficiency scores of each
DMU based on model (1) are greater than their corresponding ones from models (3) and (4),
which is not correct because we expect the efficiency score of each DMU to deteriorate in the
presence of undesirable outputs. Therefore, it is recommended that instead of solving model (1),
we use models (3) and (4) to calculate the efficiency of the DMUs.
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Table 6 – The result of models (1), (4) for the data set in the case study.

DMUs
Model (1)

Efficiency
score

Slack of
input1

Slack of
input2

Slack of
input3

Slack of
desirable
output1

Slack of
desirable
output2

DMU1 1 0 0 0 0 0
DMU2 0.8391 8922.265 4004.016 0 11559.3 0
DMU3 1 0 0 0 0 0
DMU4 0.7701 136387.8 1793.835 214.0739 22225.07 0
DMU5 0.7332 58545.67 3716.385 0 25682.72 24.9542
DMU6 0.9833 0 219.7463 0 1737.571 0
DMU7 1 0 0 0 0 0
DMU8 1 0 0 0 0 0
DMU9 1 0 0 0 0 0
DMU10 0.8028 0 0 381.1447 3497.141 183.8244
DMU11 1 0 0 0 0 0
DMU12 1 0 0 0 0 0
DMU13 0.9038 26917.96 77.2842 0 13961.31 56.5788
DMU14 1 0 0 0 0 0

DMUs
Model (4)

Efficiency
score

Slack of
input1

Slack of
input2

Slack of
input3

Slack of
undesirable

output1

Slack of
undesirable

output2
DMU1 1 0 0 0 0 0
DMU2 0.9817 0 0 0 48749.65 46312.15
DMU3 1 0 0 0 0 0
DMU4 0.7657 58889.57 0 4896.477 357445.3 720117.7
DMU5 0.7755 0 4180.553 2971.85 127091.6 635784.1
DMU6 0.8783 0 219.7463 0 334277.5 516074.7
DMU7 0.8828 0 0 0 372771.1 550333.1
DMU8 0.9874 0 0 0 0 97181.84
DMU9 1 0 0 0 0 0
DMU10 0.9697 0 114.4303 0 161058.2 0
DMU11 1 0 0 0 0 0
DMU12 0.9614 0 0 0 365814.8 0
DMU13 0.9936 0 0 0 62874.98 0
DMU14 1 0 0 0 0 0

As stated in the fourth section, in the inverse non-radial DEA process, we must solve model
(8), through which the lowest inputs and undesirable outputs can be determined. Before solving
model (8), we must first solve model (4) and obtain the efficiency scores and optimal slacks of the
inputs and undesirable outputs of the unit under evaluation. As previously stated, in the inverse
non-radial DEA process, model (8) obtains the minimum level of inputs and undesirable outputs
from the created new unit in a manner that the created new unit’s efficiency is the same as that
of the original unit. Table 9 shows the optimal objective function score and the deviation of the
input, desirable outputs, and undesirable output components of the 14 DMUs based on model (8).
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Table 7 – The result of model (2) for the data set in the case study.

DMU Model (2)
The objective
function score

Slack of
undesirable

output1

Slack of
undesirable

output2

The undesirable
output1 of
counterpart

DMU

The undesirable
output2 of
counterpart

DMU
DMU1 0 0 0 1256222 768793
DMU2 95061.8 48749.65 46312.15 1296491 791448.9
DMU3 0 0 0 1677948 1435620
DMU4 1253482 466773.1 786709 1340842 811070
DMU5 975188.6 327901.3 647287.3 1442597 853149.7
DMU6 886945.7 376593.7 510352 1415208 842298
DMU7 923104.3 372771.1 550333.1 1487477 877505.9
DMU8 97181.84 0 97181.84 1867075 1443299
DMU9 0 0 0 1945104 1609006
DMU10 73027.86 59069.55 13958.32 1883948 1288681
DMU11 0 0 0 1842891 997169
DMU12 365814.8 365814.8 0 1531087 881844
DMU13 62874.98 62874.98 0 1889914 800831
DMU14 0 0 0 2056315 819572

Table 8 – The result of model (3) for the data set in the case study.

DMU
Model (3)

Effi-
ciency
score

Slack of
input1

Slack of
input2

Slack of
input3

Slack of
desirable
output1

Slack of
desirable
output2

Slack of
undesir-

able
output1

Slack of
undesir-

able
output2

DMU1 1 0 0 0 0 0 0 0
DMU2 0.9817 0 0 0 0 0 48749.65 46312.15
DMU3 1 0 0 0 0 0 0 0
DMU4 0.7969 130127.8 1085.245 387.9763 19462.03 0 0 609574.4
DMU5 0.7475 9679.484 4303.546 1837.586 20485.88 20.9981 0 651755.7
DMU6 0.8755 0 219.7463 0 1737.571 0 334277.5 516074.7
DMU7 0.8828 0 0 0 0 0 372771.1 550333.1
DMU8 0.9874 0 0 0 0 0 0 97181.84
DMU9 1 0 0 0 0 0 0 0
DMU10 0.7842 0 0 0 3657.476 185.0738 174298.4 46619.1
DMU11 1 0 0 0 0 0 0 0
DMU12 0.9614 0 0 0 0 0 365814.8 0
DMU13 0.9936 0 0 0 0 0 62874.98 0
DMU14 1 0 0 0 0 0 0 0

Table 10 shows the new levels of the input, desirable outputs, and undesirable output components
corresponding to each of the DMUs derived from model (8). As described in the fourth section,
the vector of the inputs, desirable outputs, and undesirable output of the created new unit in the
inverse non-radial DEA process is as follows:

DMUnew
k = (xk +∆xk

∗,yk +∆yk
∗, uk +∆uk

∗) .
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Table 9 – The input and output variations based on model (8).

DMUs
Model (8)

The objective
function score

Variations of
input1

Variations of
input2

Variations of
input3

DMU1 0 0 0 0
DMU2 -51660.4 18865 -982.3 -3778
DMU3 -1090255 -1209 2102.6 -2596
DMU4 -425700 14434.02 1512.7 -1699.61
DMU5 -563337 10629 12255.64 -2748.75
DMU6 -365713 -11748 3986.615 -885
DMU7 -567024 -109368 7252.2 1193
DMU8 -1397977 -72489 8500.3 -3213
DMU9 -1518963 5365 7715.6 -2949
DMU10 -1138614 -37780 8054.03 -1787
DMU11 -821946 -11286 5409.2 -1024
DMU12 -400183 51398 4626.6 -2619
DMU13 -598974 90735 4447.1 -7344
DMU14 -704094 151266 4120.5 -8608
DMU Model (8)

Variations of
desirable output1

Variations of
desirable output2

Variations of
undesirable

output1

Variations of
undesirable

output2
DMU1 0 0 0 0
DMU2 -6593 -14.7 -41783.5 -23981.6
DMU3 -6593 -41.8 -421726 -666827
DMU4 -9960 -41.8 -241753 -198194
DMU5 -15539 -41.8 -417127 -166346
DMU6 -15539 -41.8 -247470 -109597
DMU7 -22234 -41.8 -289209 -176893
DMU8 -32440 -41.8 -610853 -719923
DMU9 -39824 -41.8 -688882 -840213
DMU10 -39824 -41.8 -573255 -533846
DMU11 -39824 -41.8 -586669 -228376
DMU12 -39824 -41.8 -340537 -113051
DMU13 -39824 -41.8 -654774 -32038
DMU14 -49952 -41.8 -800093 -50779

It should be noted that Table 5 lists the vector of the inputs, desirable outputs, and undesirable
output corresponding to each of the original DMUs as DMUk = (xk,yk, uk).
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Table 10 – The new levels of inputs and outputs of DMUs based on model (8).

DMUs
Model (8)

The objective
function score

The new input1 The new input2 The new input3

DMU1 0 345004 9055.2 35405
DMU2 -51660.4 345004 9055.2 35405
DMU3 -1090255 345004 9055.2 35405
DMU4 -425700 406064 9055.2 40102.39
DMU5 -563337 345004 19920.34 38177.25
DMU6 -365713 345004 9435.715 35405
DMU7 -567024 345004 9055.2 35405
DMU8 -1397977 345004 9055.2 35405
DMU9 -1518963 345004 9055.2 35405
DMU10 -1138614 345004 9722.13 35405
DMU11 -821946 345004 9055.2 35405
DMU12 -400183 345004 9055.2 35405
DMU13 -598974 345004 9055.2 35405
DMU14 -704094 345004 9055.2 35405
DMU Model (8)

The new
desirable output1

The new
desirable output2

The new
undesirable

output1

The new
undesirable

output2
DMU1 250987 866.9 1256222 768793
DMU2 250987 866.9 1303457 813779.4
DMU3 250300 866.9 1256222 768793
DMU4 250987 820.9 1565862 1399585
DMU5 250987 758.2 1353371 1334091
DMU6 249832 778.2 1544332 1243053
DMU7 250987 768.7 1571039 1250946
DMU8 250987 371.7 1256222 820558.2
DMU9 250987 331 1256222 768793
DMU10 240424 349.2 1369763 768793
DMU11 232930 369.9 1256222 768793
DMU12 232322 723.1 1556365 768793
DMU13 243579 730.5 1298015 768793
DMU14 250987 789.8 1256222 768793

Now, in order to analyze the results of the models, we will examine the results of DMU4, which is
an inefficient unit. Based on the proposed algorithm, model (4) is solved to obtain the efficiency
and the optimal levels of slacks of the inputs and undesirable outputs for DMU4. The efficiency
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score is equal to 0.8168, the optimal levels of slacks of the inputs, desirable outputs, and unde-
sirable outputs are equal to 0.8168, 58889.57, 0, 4896.477, 357445.3, and 720117.7 respectively.
These values indicate the rate of improvement in the inputs and undesirable output components.
They are obtained by a non-radial projection of these units on the frontier of efficiency, which is
built on by the counterpart units on the basis of the model (4).

In the following, we solve model (8), based on which we obtain the input and output varia-
tions. The input variations for the first, second, and third inputs (the amount of drilled oil wells
during 2008 year, the amount of gasoline imports during 2008 year, the amount of different
petroleum products transported by various means during 2008 year) are 14434.02, 1512.7 and
-1699.61 respectively. This shows that the first and second inputs can be increased and decreased
by 14434.02, 1512.7, respectively, and third input can be decreased by 1699.61. In this case, the
newly created unit, DMUnew

4 , has an efficiency score of 0.8168, which is equal to the efficiency
score of the original unit, i.e., DMU4. Similarly, the desirable outputs (the total production of the
country’s petroleum products during 2008 year, the amount of crude oil exported to other coun-
tries during 2008 year) variations for the first and second desirable outputs are -9960 and -41.8,
respectively. This shows that the first and second desirable outputs can be decreased by 9960
and 3723, respectively. In this case, the newly created unit, DMUnew

4 , has an efficiency score of
0.8168, which is the same as the one of the original unit, i.e. DMU4. The undesirable outputs
(the emissions of NOx gases caused by the country’s energy production and consumption during
2008 year, the emissions of SO2 gases caused by the country’s energy production and consump-
tion during 2008 year) variation is -241753 and -198194. This shows that the first and second
undesirable outputs can be decreased by 241753 and 198194, respectively. With this amount of
changes, the efficiency score of the newly created unit, DMUnew

4 , is the same as the one of the
original unit, i.e. DMU4. Of course, all the changes related to the inputs, desirable output and
undesirable output components are done together. Then, the optimal levels of the newly created
unit’s inputs and outputs corresponding to DMU18 based on model (8) are considered as follows:

DMUnew
4 = (406064,9055.2,40102.39,250987, 820.9,1565862,1399585).

The efficiency scores of the counterpart (hypothetic) units corresponding to DMU4, and DMUnew
4

based on models (9) and (12) are equal, which is 0.7657.

To show that the efficiency scores of the original DMU and the newly created unit are equal, we
can solve the criterion models (9) and (12). We can observe that the efficiency scores of the new
unit based on model (9) are equivalent to those of their original units based on model (4). Model
(9) with the SBM model structure obtains the efficiency scores of the new unit, and we acquire
their input and undesirable output levels from model (8). Additionally, model (9) displays the
new unit non-radially on the frontier of efficiency that is created based on the counterpart units.
Subsequently, we use the criterion model (12) to determine the efficiency score of the new unit.
The level of inputs and outputs of this new unit was determined based on model (8). We can
see that the efficiency scores of the new unit based on model (12) are the same as those of the
corresponding unit based on model (4). We find that the efficiency scores obtained from models
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(4), (9), and (12) are the same. Therefore, we have demonstrated the validity of the theorems (1)
and (2). Table 11 displays the results based on models (9) and (12).

Table 11 – The result of models (9) and (12).

DMUs
Model (9)

Efficiency
score

Slack of
input1

Slack of
input2

Slack of
input3

Slack of
undesirable

output1

Slack of
undesirable

output2
DMU1 1 0 0 0 0 0
DMU2 0.9817 0 0 0 47235.48 44986.43
DMU3 1 0 0 0 0 0
DMU4 0.7657 0 5861.308 4472.288 37092.18 544336.1
DMU5 0.7755 18166.23 12500.37 1846.583 0 525340.8
DMU6 0.8783 0 380.5148 0 288109.6 474260.4
DMU7 0.8828 0 0 0 314817.2 482153.2
DMU8 0.9874 0 0 0 0 51765.24
DMU9 1 0 0 0 0 0
DMU10 0.9697 0 666.9302 0 113540.7 0
DMU11 1 0 0 0 0 0
DMU12 0.9614 0 0 0 300142.6 0
DMU13 0.9936 0 0 0 41792.87 0
DMU14 1 0 0 0 0 0

DMUs
Model (12)

Efficiency
score

Slack of
input1

Slack of
input2

Slack of
input3

Slack of
undesirable

output1

Slack of
undesirable

output2
DMU1 1 0 0 0 0 0
DMU2 0.9817 0 0 0 47235.48 44986.43
DMU3 1 0 0 0 0 0
DMU4 0.7674 12435.75 5837.618 3942.825 0 545313.2
DMU5 0.7755 18166.23 12500.37 1846.583 0 525340.8
DMU6 0.8783 0 380.5148 0 288109.6 474260.4
DMU7 0.8828 0 0 0 314817.2 482153.2
DMU8 0.9874 0 0 0 0 51765.24
DMU9 1 0 0 0 0 0
DMU10 0.9697 0 666.9302 0 113540.7 0
DMU11 1 0 0 0 0 0
DMU12 0.9614 0 0 0 300142.6 0
DMU13 0.9936 0 0 0 41792.87 0
DMU14 1 0 0 0 0 0

Now, we compare the results obtained from our approach with the results of Hadi-Vencheh and
Foroughi (2006). In this way, we ignore undesirable output in the inverse DEA process. We also
assume that in the radial model it is possible to decrease or increase inputs. At first, we apply
input orientation model in the radial form. The results are given in Table 12.

In the following, we compare the results obtained from our approach in this paper with approach
provided by Hadi-Vencheh and Foroughi (2006). We consider models in the output orientation
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Table 12 – The results of Hadi-Vencheh and Foroughi (2006) in the input oriented.

DMUs Efficiency Variations of input1 Variations of input2 Variations of input3
DMU1 1 -176361.4489 -7110.7892 -9571.3551
DMU2 0.9495 -133078.8624 -7905.4754 -10107.3781
DMU3 0.9871 -39213.0972 -5741.7347 -3332.7956
DMU4 0.9114 -21573.894 -6082.9292 -13.1245
DMU5 0.956 -3076.2763 -6357.9956 -3513.8322
DMU6 1 -68178.4144 -3697.9654 -449.4293
DMU7 1 -150363.9522 -78.8542 2905.1804
DMU8 1 -92225.0737 746.8437 -1786.9474
DMU9 1 0 0 0
DMU10 1 -100647.4605 886.1386 2318.8351
DMU11 1 -133395.7527 -271.9629 1983.0306
DMU12 1 -91290.8238 -378.6601 2082.2263
DMU13 0.9636 -58951.2984 161.8896 535.1303
DMU14 1 0 0 0
DMUs - The new input1 The new input2 The new input3
DMU1 - 168642.5511 1944.4108 25833.6449
DMU2 - 193060.1376 2132.0246 29075.6219
DMU3 - 306999.9028 1210.8653 34668.2044
DMU4 - 370056.106 1459.5708 41788.8755
DMU5 - 331298.7237 1306.7044 37412.1678
DMU6 - 288573.5856 1751.1346 35840.5707
DMU7 - 304008.0478 1724.1458 37117.1804
DMU8 - 325267.9263 1301.7437 36831.0526
DMU9 - 339639 1339.6 38354
DMU10 - 282136.5395 2554.2386 39510.8351
DMU11 - 222894.2473 3374.0371 38412.0306
DMU12 - 202315.1762 4049.9399 40106.2263
DMU13 - 195317.7016 4769.9896 43284.1303
DMU14 - 193738 4934.7 44013

and radial form. Also, we ignore undesirable output in the inverse DEA process. The results are
given in Table 13.

In the comparison made between the approach presented in this paper and the approach presented
by Hadi-Vencheh and Foroughi (2006) based on the inverse DEA process, we did not consider the
undesirable outputs, then the results are not comparable in any way, and the results are provided
only so that the reader can see the difference between approaches based on radial and non-radial
models. As can be seen, the input vector based on the approach presented in this paper and the
approach of Hadi-Vencheh and Foroughi (2006) are larger in some components and smaller in
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Table 13 – The results obtained from Hadi-Vencheh and Foroughi (2006) in the output oriented.

DMUs Efficiency Variations of
output1

Variations of
output2

The new
output1

The new
output2

DMU1 1 565355.5212 714958.8116 1821578 1483752
DMU2 0.6818 1541905.223 1413053.718 2887146 2250815
DMU3 0.9085 452181.5826 318615.3411 2130130 1754235
DMU4 0.993 345165.5448 167181.0419 2152781 1764960
DMU5 0.9493 389404.8535 153428.575 2159903 1653866
DMU6 1 77891.8802 168037.5982 1869694 1520688
DMU7 1 0 0 1860248 1427839
DMU8 1 0 0 1867075 1540481
DMU9 1 0 0 1945104 1609006
DMU10 1 -12658.5715 255006.4296 1930359 1557645
DMU11 1 32452.3292 529432.6331 1875343 1526602
DMU12 1 -7194.9146 487478.0279 1889707 1369322
DMU13 0.9595 190549.3804 389663.9982 2143338 1190495
DMU14 1 0 0 2056315 819572

others according to the results in tables (10) and (12). We can provide a similar interpretation for
the output vector according to the results in tables (10) and (13).

In general, the approaches provided in the field of inverse DEA are divided into two categories.
The first category includes approaches that consider two or more DMUs. By merging the levels
of inputs and outputs of these DMUs, a new unit is proposed; this unit has a predetermined target
efficiency. However, in this paper, the inverse DEA process is done only based on the DMU under
evaluation, and the target efficiency is predetermined. This efficiency score is the efficiency of
the DMU under evaluation based on the DEA model. Also, by solving only one model, we can
determine the optimal level of inputs and outputs from the unit under evaluation in such a way
that the newly created unit has the same efficiency score as the corresponding original unit.

The second category includes approaches that have an orientation. In this approach, the decision-
maker predetermines the target efficiency score. In this situation, we are faced with two types of
models in the inverse DEA process. These models are input- and output-oriented. In the input-
oriented approach, we obtain the optimal level of inputs according to the target efficiency score.
Also, the output level is constant during the inverse DEA process. Similarly, in the output orien-
tation, we obtain the optimal level of outputs according to the target efficiency score. The input
level is constant during the inverse DEA process. However, our approach in this paper is different
from these approaches, and the target efficiency score is the same as the efficiency score of the
unit under evaluation. The model determines the optimal level of inputs and outputs simultane-
ously. In other words, the model determines the best level of inputs and outputs (undesirable and
desirable) for the unit under evaluation based on the conditions of this unit.
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Therefore, this paper introduces a new approach in the field of inverse DEA that is different from
previous approaches.

7 CONCLUSION

In this paper, we present the SBM-based inverse non-radial DEA process in the presence of unde-
sirable outputs. Firstly, we presented the counterpart (hypothetical) units corresponding to each
of the DMUs. These units have the same input and desirable output levels as the correspond-
ing original units, but they have the lowest level of undesirable outputs. The observed units are
used on the basis of weak disposability in DEA. We obtain the true efficiency scores and slacks
regarding the input and undesirable output components of each DMU by depicting the units
non-radially on the frontier of efficiency created on the basis of the counterpart (hypothetical)
units. Next, based on the efficiency score and slacks regarding the input and undesirable out-
put components of each DMU, the SBM-based inverse non-radial DEA process is presented. We
demonstrated that this model obtains the optimal level of input, desirable outputs, and undesirable
output components for the created new unit in the inverse non-radial DEA process. We presented
two new criteria models to compare the efficiency scores between the original unit and the cre-
ated new unit and showed that these efficiency scores are equal based on the two criteria models
presented in this paper. By using the SBM-based inverse non-radial DEA process, we can use all
the inefficiency slacks related to all the input and undesirable output components in the inverse
non-radial DEA process to estimate the inputs and outputs simultaneously. This paper proposes a
new idea of creating a set of hypothetical counterpart DMUs of the original DMUs. These DMUs
used the same amount of inputs to produce the same amount of desirable outputs, however gen-
erated the smallest amount of undesirable outputs calculated from the observed DMUs based on
weak disposability. We used hypothetical DMUs to construct the production frontier in order to
do inverse DEA process. We do inverse DEA process using hypothetical DMUs. The new level
of inputs, desirable output and undesirable output of the original DMUs obtained by considering
the new frontier created by these DMUs.

We can say that the advantages of our approach in this paper over the previous approach are as
follows:

1. In our proposed approach in this paper for the inverse DEA process, we presented two
criteria models in order to check whether the efficiency score of the new unit created and
the initial unit corresponding to it are equal or not. The new unit created in the inverse DEA
process has an efficiency score equal to that of the corresponding initial unit; however, this
unit has input and undesirable output levels less than or equal to the input and undesirable
output levels of the initial unit corresponding to this unit. Also, the undesirable output level
of the new unit created is greater than or equal to the undesirable output level of the initial
unit corresponding to itself.

2. This paper presents a new approach to the inverse DEA. By solving a model, we can
determine the optimal level of inputs and outputs from the unit under evaluation in such
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a way that this unit has the same efficiency score as the corresponding initial unit. It can
be said that the inverse DEA process presented in this paper is done only based on the
unit under evaluation. The new unit created can be considered the target (benchmark) unit
corresponding to the initial unit corresponding to this unit.

3. Most of the approaches provided in the inverse DEA are based on radial models. However,
the our proposed approach in this paper is based on non-radial models. In non-radial mod-
els such as SBM, the target corresponding to the unit under evaluation is determined in the
best way. These models obtain the efficiency score of the unit under evaluation based on all
the inefficiency slack values corresponding to the input and output components. The image
of the inefficient unit on the efficiency frontier is determined non-radially. These models
obtain the optimal level of input and output components for the target unit. Also, consid-
ering that the inverse DEA process presented in this paper is based on non-radial models,
the target unit corresponding to the initial unit is determined in the best way possible.

4. The approach presented in this paper provides the ability to deal with undesirable out-
puts in the inverse DEA process. In this regard, we first determine the lowest level of
undesirable output. In the following, new units are introduced with the title of counterpart
units corresponding to each of the original units. The counterpart unit has the same level
of inputs and desirable outputs as the corresponding original unit; however, it has a Less
amount of undesirable outputs than the original unit. We perform the inverse DEA process
for original units based on counterpart units. In other words, the unit under evaluation is
projected on the new frontier created by the counterpart units. Next, in the inverse DEA
process, we determine the optimal level of input and output (desirable and undesirable)
components from the target unit corresponding to the original unit. It can be said that the
target unit has the best level of inputs and outputs (desirable and undesirable) compared to
the corresponding initial unit, but it has the same efficiency score as this unit.

5. The models presented in this paper are without orientation. These models get the op-
timal level of inputs and outputs simultaneously. However, the models in the previous
approaches were often presented as input- and output-oriented. In input-output-oriented
models, we first place the target efficiency score in the inverse DEA model, and the new
level of inputs (outputs) is determined by keeping the level of outputs (inputs) constant.

6. The inverse DEA model presented in this paper can be converted into a linear model with
a simple transformation, and it can be easily solved with available software for solving
linear programming models.

7. The approach presented in this paper determines the target unit corresponding to the unit
under evaluation in the presence of undesirable outputs. The target unit can be considered
a benchmark for the original unit under evaluation. Although this unit may be an inefficient
one, it has optimal input and output levels compared to the original unit. In other words,
we showed that, considering the existing conditions, the unit under evaluation can have a
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better performance than its initial performance and should improve the level of its inputs
and outputs.

8. In the models presented in this paper, the level of inputs and outputs may decrease or
increase, but the amount of input and output from the newly created unit is non-negative.
And it is possible for the units to adjust the level of their inputs and outputs in order to
reach the optimal level of their inputs and outputs.

9. From a managerial point of view, the target unit achieved for the unit under evaluation may
not be able to be created in practice. As we know, the target unit corresponding to each
of the DMUs based on DEA models may not be able to be created, and the optimal level
of inputs and outputs cannot be reached in some cases. However, the DEA offers targets.
Only if the target unit is an observed unit does it have input and output levels that can be
created and are real. However, if the target unit is a virtual unit, it may not be able to be
created. The models presented in this paper are also based on the SBM model in DEA and
are not exempt from this rule. In DEA, we can achieve attainable targets only if we use
FDH models. However, by changing the conditions of production, it is possible to achieve
targets that can be produced in practice.

In future work, we can apply the proposed approach in the industrial sector, as one of the primary
issues in the industrial sector is how to deal with the outcome of undesirable outputs among the
data and how to determine and control the level of these outputs to protect the environment. One
of the limitations of the research is that we may obtain targets based on inverse DEA models
for DMUs that cannot be created in the real world. In terms of future studies, we can solve the
proposed approach in this paper by considering the target efficiency of DMUs and obtaining the
amount of deviation of the input and output components needed to reach the target efficiency
level. We can also solve the models presented in this paper for other technologies such as CRS,
IRS, DRS, and semi-additivity technologies. Additionally, we can apply the proposed approach
to other data structures in DEA, such as the two-stage network structures (Mills et al., 2021), or
use them in the presence of inaccurate data, such as fuzzy and probabilistic data (Valami, 2009).
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