
�

�

“main” — 2016/4/29 — 11:38 — page 133 — #1
�

�

�

�

�

�

Pesquisa Operacional (2016) 36(1): 133-149
© 2016 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2016.036.01.0133

DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT
SIMULATION MODELS ON A TRAFFIC SYSTEM
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ABSTRACT. This work aims to demonstrate the use of a mechanism to be applied in the development

of the discrete-event simulation models that perform decision operations through the implementation of an

artificial neural network. Actions that involve complex operations performed by a human agent in a pro-

cess, for example, are often modeled in simplified form with the usual mechanisms of simulation software.

Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestri-

ans to demonstrate the proposed solution. From a module built in simulation software itself, it was possible

to connect the algorithm for intelligent decision to the simulation model. The results showed that the model

elaborated responded as expected when it was submitted to actions, which required different decisions to

maintain the operation of the system with changes in the flow of people and vehicles.

Keywords: simulation, computational intelligence, artificial neural networks.

1 INTRODUCTION

The need for a more accurate representation of logical operations that involve decisions in the
discrete-event simulation models (DES) has motivated several researchers as highlighted by
Robinson et al. (2001). In general, modelers elaborate decisions made by the systems inves-

tigated by means of basic rules, using logical operators as: “<”, “>”, “==”, “AND”, “OR”,
“XOR” and their combinations. In a simpler way, the decisions in the systems are in many cases
characterized in the models by a percentage of occurrence of a specific action. These percent-
ages come from the historical data or observations of the logic function of the system. Thus,

some operations that configure complex decisions as the ones carried out by a person who acts
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in a machine or a manual inspection of a process are often represented in an easier way in the

models. For this reason, Banks et al. (2010) point that very simplified model results can lead to
imprecise interpretations and induce decision-makers to errors.

On the other hand, according to Swain (2007), around 71% of the softwares used to build DES
models allow customization by means of algorithms derived from other languages or external

modules, which can be incorporated to the model codes. Thus, it is possible the combination of
simulation models with genetic algorithms or artificial neural networks (ANNs) for optimization
of variables or performance of more realistic decisions. For example, Bergmann et al. (2014)

used ANN together with DES models to approximate the behavior of more intelligent decisions
instead of trying to determine exact representations of the logic of the system. Pinho et al. (2012)
has evaluated an optimization method based on genetic algorithms as a way of verifying the effi-

ciency concerning the computational time when compared with commercial software packages.
They have also cited a variety of techniques that can be found to combine simulation models
with optimization.

In order to find ways to represent accurate decisions from the systems to be modeled, several

researchers have sought manners to integrate simulation models with computational intelligence
techniques to obtain models that make generation of more reliable results possible. For exam-
ple, Silva et al. (2014) evaluated frameworks to generate ANN algorithms to be incorporated to

DES models. The analysis was focused on finding ways that allow the performance of decisions
through algorithms to be directly integrated to the code of the simulation model. The results
showed that it was possible to use a framework that proved to be suitable for the creation of
ANN, not presenting operating errors and incompatibilities with the code of the model built with

a free and open-source software (FOSS) used for the construction of simulation models.

According to the exposed, this paper aims to show the application of the mechanism proposed by
Silva et al. (2014) on modeling a system involving decision held by a logical action of a human

agent acting within a process. For this, we modeled a system of urban traffic with an intersection
containing flow of people and vehicles and traffic control managed by a traffic officer. In this
case, the traffic officer’s actions were recorded over a period and, subsequently, incorporated
into the simulation model code by way of an ANN. The “smart” algorithm sought to act in the

model to represent the decisions of the traffic officer necessary to control the dynamics of traffic,
considering different situations for the traffic of people and vehicles.

The article presents the following subdivisions: The first section displays the context and the
purpose of the work. The second one introduces the concepts and methods. The third section

describes the simulation model, and the fourth one exposes the results and discussions. Lastly,
the fifth section shows the final considerations of the work.

2 CONCEPTS AND METHODS

This section describes the main concepts concerning the use of computational intelligence in
simulation models and the methodology applied to construct it.

Pesquisa Operacional, Vol. 36(1), 2016
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2.1 Artificial Neural Networks (ANNs)

The Artificial Neural Networks have been motivated since the beginning by the analysis that the
human brain processes information differently from the conventional digital computer. The brain

presents itself as a highly complex, nonlinear and parallel computer (Haykin, 2001). McCulloch
& Pitts proposed the artificial model of a biological neuron, in 1943, based on what was known
about the biological neuron. Its mathematical description resulted in a model composed of n

input terminals (dendrites), which receive the values x1, x2, . . . xn, and only 1 output terminal
y. To represent the behaviour of synapses, the neuron input terminals have connected weights
w1, w2 . . . wn, which values can be either positive or negative, depending on the corresponding

synapses (Braga et al., 2011).

Heaton (2010) also claim that the ANNs are designed to perform small tasks and not great ones.
In case of a complete application implemented with ANNs, there is a specific one for each task.

According to Zuben (2003), an ANN can emulate human behavior from input and output sam-
ples. The input vector contains the set of information received by a human being and the output

vector, the relative actions taken by him based on the information received.

2.2 Encog Framework

Encog is a framework of Artificial Intelligence (AI) Java.Net and C/C++ that was initially de-
signed to support only ANN, but, over the years, it has been expanded to also work with machine

learning in general. It has a graphical application known as Encog Workbench, which allows
performing various tasks without having to write code lines. Because it is based on Java, the
generated files can be used with any Encog framework. The Encog is under the Apache License

2.0, which is similar to LGPL (Lesser General Public License) (Heaton, 2010).

Researches conducted by Silva et al. (2014) presented data obtained from Baptista & Days
(2013), Matviykiv & Faitas (2013), Codeproject (a-b 2010), in which was possible to conclude
that Encog displayed better results when compared with other frameworks. It was also observed

that the Encog has a large range of information available in tutorials, forums, discussion lists
and published books, which, in terms of FOSS, ensures a greater prospect of continuity, growth,
development of new resources and improvement of the tool.

The results of the tests showed that the Encog framework allowed the coupling of an ANN with

a DES model run on FOSS. Thus, the framework proved to be suitable to create a smart module,
without any operating errors and incompatibilities among the codes, having been able to perform
an ANN in a reliable manner.

2.3 Methodology

The methodology used to construct the DES model was proposed by Banks et al. (2010), with the
following specific steps for this work: Formulation and analysis of the problem; project planning;

formulation of the conceptual model; data collection; translation of the model for the simulation

Pesquisa Operacional, Vol. 36(1), 2016
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software; verification and validation; experimental design; experimentation; and interpretation

and analysis of the results.

The conceptual model was developed using the IDEF-SIM language proposed by Montevechi et
al. (2010). The simulations were initiated only after the verification and validation of the model,
which followed the methodology proposed by Sargent (2013) and Leal et al. (2011).

The creation of the ANN for the representation in the model code regarding decisions from the

traffic officer was generated by applying the Encog framework.

The simulation model was built employing the Ururau FOSS. Information about this software
as source code structure, site for download and cooperation, command description, among other
features can be found in Peixoto et al. (2013).

3 SIMULATION MODEL

In this topic, we expose the analysis of an urban traffic system and the simulation model imple-
mented from the respective system.

3.1 System description

Dotoli & Fanti (2006) described that the urban traffic systems can be seen as event-oriented
systems and asynchronous systems. Its dynamics depends on the complex interactions among
the time of several discrete events, as arrivals or departures of vehicles at intersections, and start

or conclusion of all time stages of the traffic light plans that control the intersections.

There are specialized softwares that perform simulation of traffic intersections based on real-
world data; however, some of those systems, although effective for operation and traffic mod-
eling, have some limitations. Those systems are for specific use, which allows modeling the

performance and behavior of vehicular traffic, not being possible to be used in different domains.
Authors such as Helbing (2003), Baptista & Rangel (2013), and Ringhofer (2010) have studied
traffic systems in analogy with the production lines of the industries. Considering the propitious

environment for data collection, the road traffic constitutes itself as a good environment for study
and research of discrete and dynamic system operations.

To develop this work, we chose an intersection controlled by a traffic officer, who decides
whether the traffic flow moves in a specific street. He determines his resolutions based on several

variables of traffic as the number of vehicles on every street, the number of pedestrians waiting
to cross the street, the time required for the flow of traffic, among others. Figure 1 shows the
schematic drawing of this intersection.

The intersection is located in a crowded urban area, near a municipal market and a shopping mall

in the city of Campos dos Goytacazes, Rio de Janeiro State, Brazil. This place was chosen so as
to provide a great amount of data, both from vehicles and people.

Pesquisa Operacional, Vol. 36(1), 2016
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Figure 1 – Urban intersection controlled by a traffic officer. (1) traffic officer; (2) pri-
mary street with larger traffic flow; (3) crosswalk; and (4) secondary street.

The data were obtained by means of direct measurement, with time interval in terms of seconds,

executed at the local of the intersection, in a period of uninterrupted 3 hours. It is important to
emphasize that the measurements were executed without the traffic officer be aware. We took
that decision so that his behaviour was as natural as possible. Besides, his identity was ignored,

and all information that could lead to his identification was eliminated. Considering that there
are several traffic officers who take turns in that place, we can ensure the information anonymity.

After collecting , the data were treated with the Input Analyzer software to determine the sta-
tistical functions for the probability distributions that were more adapted to each data set of the

system. An algorithm of ANN that in the Ururau software can be modeled directly by means of
the ANN Decisor module, performed the traffic light control.

3.2 Model implementation

Figure 2 presents the simulation model of the system under study. The upper part of the model

provides the primary and secondary streets, and the crosswalk. The other part represents the
control logic of the intersection being carried out by the traffic officer. In this part, the ANN
Decisor module represents the decisions of the traffic officer to let the traffic flow or not.

The Create module (En) is responsible for the generation of the entities that flow by the model.

In this module, the entities are generated according to the arrival rate previously defined by a
statistical function adherent to the set of data collected in the local.

Pesquisa Operacional, Vol. 36(1), 2016
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ANN 

Decisor module 

(1)

(2)

(3)

Figure 2 – Traffic model in the Ururau.

The Hold module (Ln) corresponds to the element that retains the entities in a queue while a

certain condition is not true. In this case, while the variable “variablesemaforo” is equal to 1, the
primary street is interrupted to vehicle traffic flow, similar to the traffic officer’s decision when
interrupting the traffic flow in the street.

On the other hand, when the value of the “variablesemaforo” is equal to 0, it means that the

primary street will be opened to traffic of vehicles, similar to what happens in a real intersection,
when the traffic officer lets the vehicles pass.

Assign module (Cn ) is responsible for the assignment of the variable “VariableCarStreet1”,
which will be incremented every time an entity vehicle goes through the system during the sim-

ulation. This information is useful to generate reports of simulation and testing.

The Write module (Wn) is the means by which the data concerning the variable of vehicle count-
ing are recorded in a text file, while the simulation model runs.

Table 1 presents the model parameters relating to the part of the system that represents the flow

of vehicles on the primary street, that is, the upper part of the simulation model (Fig. 2):

Table 2 presents the parameters of the model that represents the flow of vehicles of the secondary
street. In this case, what distinguishes both streets are the configuration parameters of the model.

Table 3 presents the model parameters for the pedestrian flow in the system.

Pesquisa Operacional, Vol. 36(1), 2016
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Table 1 – Ururau software modules with description and configuration data of the primary street.

Module Name Description Configuration Data

Create E1 Responsible for the creation of entities

T. Arrival:

LOGN (2.78, 3.84) seconds
T. First Arrival: 2 seconds

Max. Arrival: Infinite

Hold L1
Holds the entities in a queue Expression:

until the condition is satisfied VariableSemaforo = 1

Assign C1 Adds a variable to the model
Type: Variable

Name: VariableCarStreet 1

Value: VariableCarStreet 1 + 1

Write W1 Writes values of a variable on file

Name of the variable:

VariableCarStreet 1
File: exit.txt

End – Ends the list of commands –

Table 2 – Ururau software modules with description and configuration data of the secondary street.

Module Name Description Configuration Data

Create E2 Responsible for the creation of entities

T. Arrival:
LOGN (3.5, 2.5) seconds

T. First Arrival: 2 seconds
Max. Arrival: Infinite

Hold L2
Holds the entities in a queue Expression:

until the condition is satisfied VariableSemaforo = 0

Assign C2 Adds a variable to the model

Type: Variable

Name: VariableCarStreet 2
Value: VariableCarStreet 2 + 1

Write W2 Writes values of a variable on file

Name of the variable:

VariableCarStreet 2
File: exit2.txt

End – Ends the list of commands –

Observing Figure 2, every time an entity reaches the ANN Decisor (1) module, it is activated,
receiving as input data: i) size of the vehicle queue of the primary street; ii) size of the vehicle

queue of the secondary street; iii) size of the pedestrian queue; iv) value of the variable “time”;
v) value of the variable “VariableSemaforo”.

The Decisor (2) and (3) modules are used to detect the situation of the streets prior to the decision

of the ANN. This information is important to allow the variables “time” and “variablesemaforo”
to be updated. The variable “VariableSemaforo” is fundamental to integrate the part of the
model responsible for the control of traffic with the part responsible for the flow of vehicles and
pedestrians.

Pesquisa Operacional, Vol. 36(1), 2016
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Table 3 – Ururau software modules with description and configuration data for pedestrian flow.

Module Name Description Configuration Data

Create E3 Responsible for the creation of entities

T. Arrival:

LOGN (1.4, 1.322) seconds
T. First Arrival: 2 seconds

Max. Arrival: Infinite

Hold L3
Holds the entities in a queue Expression:

until the condition is satisfied VariableSemaforo = 0

Assign C3 Adds a variable to the model
Type: Variable

Name: VariablePerson

Value: VariablePerson +1

Write W3 Writes values of a variable on file

Name of the variable:

VariablePerson
File: exit3.txt

End – Ends the list of commands –

Appendix A presents the description of the modules used in modeling with the respective infor-

mation about their contents. This part of the model presents the ANN Decisor module, which
represents the actions of the traffic officer, and decides the moment when the traffic flow is per-
mitted in each street. The Create Module (E4) is responsible for creating the entities regarding

each increment step of a second simulated. In other words, the control operations carried out by
the simulation model for the actions of the traffic officer are checked in this time interval. Analyz-
ing the real system, it was noticed that the traffic officer only starts checking the need to permit

the traffic flow moves in a street after a minimum time; so, the module (C4) assigns a variable
“time” to the model that is responsible for acting as a counter, key to ensure the synchronicity
throughout the simulation model.

Figure 3 shows the screen for the configuration of the ANN Decisor module. On this screen,

the data concerning the logic of operation of the traffic officer may be typed to be used in the
generation of the ANN algorithm. This way, the algorithm regarding the ANN will be part of the
simulation model code and will be run on an integrated manner in simulation time.

The training algorithm used was the Resilient Propagation Training. Training algorithms with

propagation use supervised training, in which it is necessary to inform values of inputs and
outputs expected. An advantage in relation to the use of Resilient Propagation Training is that
it does not require the use of parameters, as learning rate, which is often difficult to determine

(Heaton, 2010).

Figure 4 presents a detail that allows visualizing the sequence of steps to monitor the process of
implementation of the algorithm refering to the decision making by the ANN Decisor module in
the Ururau software. Thus, the expressions of input of the neurons 1, 2 and 3 (Fig. 3) correspond

to the data of the queues that will be formed in L1 , L2 and L3 , respectively.Yet, the input

Pesquisa Operacional, Vol. 36(1), 2016
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Figure 3 – Configuration screen of ANN Decisor for traffic model.

expressions of neurons 4 and 5 (Fig. 3) are related to the values of the variables “time ” and
“variablesemaforo”.

Note that the ANN created for that model uses 4 neurons in the hidden layer and 1 neuron in the
output layer.

During the runtime of the simulation model, the ANN is activated whenever an entity needs to
pass by the ANN Decisor module and needs to take a decision on its route.

Referring to Figure 4, there is the operation routine of the simulation model with the smart
module. That is, the data collected from the real system (1) are used for the training of the ANN

(2). This should be performed before the start of the simulation. Subsequently, the entities start
their course along the simulation model (3). Every time an entity reaches the Decisor module
(4), the ANN (5), previously trained, is activated.

The data that feed the network input neurons (6) are from the model itself, dynamically obtained

at the time that the ANN is activated. These data may be the most diverse, obtained from the

Pesquisa Operacional, Vol. 36(1), 2016
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1

2

3 4

5
6 7 

8

1 Real Data 5 ANN

2 ANN Training 6 ANN Input Data

3 Simulation Model 7 ANN Output Data

4 ANN Decisor Module 8 ANN Decision

Figure 4 – Scheme of the Simulation Model Implementation in the Ururau with ANN.

expression evaluator of the Ururau, such as the size of a given queue, the time an entity waits in
line or even the result of an expression. The output result after carrying out the decision by the

ANN is shown in (7). The output value of that ‘intelligent’ decision acts in the model by means
of the deviation of the entity that flows in (8) deciding the path it has to take through the logic of
the model.

That is, when any entity that flows through the model is being executed in the Decisor module

(4), that entity will start the execution of the intelligent decision with the ANN in (5). At that
moment, the ANN (6 and 7) is performed. The result of that decision implements the deviation
of the entity in (8), that may flow through the upper part in (W4 or W5) or the lower part in

(W6 or W7).

4 RESULTS AND DISCUSSIONS

The simulations were performed using a computer Intel core i5 2.6 GHz, 4 GB of RAM and
Windows 7 operating system. Two rounds were carried out with the simulation model. The

rounds were called Simulation A and Simulation B, respectively. Those two simulations were
elaborated in order to have redundancy for better validation of the simulated results in relation to
the real system.

Pesquisa Operacional, Vol. 36(1), 2016
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Table 4 – Results of the Simulation Model Execution with ANN.

Parameter
Real Simulation A Simulation B

Average CI (95%) Average CI (95%) Average CI (95%)

A.T.O.M.T (s) 55.33 [47.29; 63.37] 49.11 [46.88; 51.33] 52.33 [50.06; 54.60]

A.T.O.S.T. (s) 40.12 [34.16; 46.08] 40.98 [31.57; 50.38] 40.93 [39.71; 42.16]

A.Q.P.C.C. (un) 28.77 [18.47; 39.07] 28.81 [22.10; 35.50] 30.57 [28.18; 32.95]

A.Q.V.P.M.C. (un) 21.57 [13.85; 29.28] 18.65 [16.64; 20.66] 20.73 [19.91; 21.55]

Error (%) 2.0558 1.2998

A.T.O.M.T.: Average Time the Primary Street is opened to Traffic (in seconds)
A.T.O.S.T.: Average Time the Secondary Street is opened to Traffic (in seconds)
A.Q.P.C.C.: Average of the amount of Pedestrians Crossing the Street by Cycle (unit)
A.Q.V.P.M.C.: Average of the amount of Vehicles Passing by the Primary Street by Cycle (unit)
CI: Confidence Interval

With the analysis of the implementation results of the model, it was possible to observe the value
of the error of ANN in relation to the real data of the system. Note that Simulation B had less er-

rors regarding Simulation A. It is important to mention that the average values obtained are close
in both situations, however, in some cases, it was verified a greater difference between the Confi-
dence Interval (CI) of measurement of the real system with the Simulation A and Simulation B.
It is possible that this difference is related to the fact that the measurements of the simulations

have a quantity of observations greater than the real system due to the ease of generating data
automatically in the simulated system.

In addition, some factors may have influenced those data as, sometimes, the traffic officer’s
decision did not reflected any predetermined pattern. That happened because he got distracted

talking to someone that approached him, consequently, taking no decision for a period of time
superior to what had been executed so far. Similarly, in some moments, there was a traffic jam
due to, for example, passengers that got off the bus in the middle of the street rather than at the

bus stop, or pedestrians who crossed the street outside the crosswalk.

All variables of the real system, when analyzed, showed a strong connection among them given
that, as it was an intersection, when a street was open to the traffic flow, the other one had to be
closed. When trying to reproduce these atypical behaviors in the simulation model using ANN,

the training data of the network receives values that are not in any standard, which can influence
both in the error of the ANN and in the decision taken by it.

On the other hand, to try to remove those different points of the simulation data means to modify
the function curve that represents the rate of arrival of the entities in the model, i.e. the simulation

model shall not represent the real system. For these reasons, we chose to keep the data collected
according to the real system and analyze their impact, noting the error of the ANN.

Figure 5 allows observing the results obtained concerning the average time of opening the pri-
mary and secondary streets to traffic in the real traffic system and in the simulated system (Sim-

ulation A and Simulation B).

Pesquisa Operacional, Vol. 36(1), 2016
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Figure 5 – Comparison of the average time of opening the streets to traffic in the real and

in the simulated systems.

The times obtained in the Simulation B approach a little more to the real traffic system, cor-
roborating with the fact the ANN had presented a lower error value during the simulation. A
similar behaviour can be observed in Figure 6, which presents a comparison of the average time
of opening the streets to traffic in the real and simulated systems.

Figure 6 – Comparison of the average amount of vehicles and pedestrians in the real and

simulated systems.

After the validation of the model, two new scenarios were created with the aim to observe if
ANN would respond well to the stimuli for each of these scenarios.

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 11:38 — page 145 — #13
�

�

�

�

�

�
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Scenario 1: Increase in the rate of arrival of vehicles on the primary street. It was observed that
there is significant increase in the flow of vehicles passing by the primary street at peak times,
which correspond to the times of arriving and leaving of students from schools. This street has
schools along it, and is still one of the accesses to other educational institutions, which are located
close to it. This way, in order to represent an increase in the flow of vehicles on the primary street,
the arrival rate of vehicles was doubled.

Scenario 2: Increase in the rate of arrival of pedestrians. A large number of pedestrians crosses
the place where the intersection under study is located since it is an area where the municipal
market and popular shops are located. On holidays, such as Christmas and Mother’s Day, we see
a considerable increase in the number of people around there as it is a good area to buy gifts
and things at a more affordable price. To characterize this scenario, the function that represents
the rate of arrival of pedestrians to cross the primary street was doubled. In this case, the same
function that represents the real system was also maintained.

Table 5 shows the information about the real system and of the two simulated scenarios.

Table 5 – Results of the Execution of the Simulation Model in Scenarios 1 and 2.

Parameter
Real Scenario 1 Scenario 2

Average CI (95%) Average CI (95%) Average CI (95%)

A.T.O.M.T (s) 55,33 [47,29; 63,37] 63,15 [57,64; 68,66] 45,40 [43,59; 47,21]

A.T.O.S.T (s) 40,12 [34,16; 46,08] 39,72 [38,65; 40,49] 43,96 [37,26; 50,66]

A.Q.P.C.C (un) 28,77 [18,47; 39,07] 28,58 [27,29; 29,87] 62,48 [52,79; 72,16]

A.Q.V.P.M.C (un) 21,57 [16,42; 34,72] 43,27 [38,90; 47,65] 16,65 [15,52; 17,79]

Error (%) 1.5810 1.6282

A.T.O.M.T.: Average Time of Opening the Primary Street to Traffic (seconds)
A.T.O.S.T.: Average Time of Opening the Secondary Street to Traffic (seconds)
A.Q.P.C.C.: Average Amount of Pedestrians Crossing the Street by Cycle (unit)
A.Q.V.P.M.C.: Average Amount of Vehicles Passing by the Primary Street by Cycle (unit)
CI: Confidence Interval

Note that, by increasing the rate of arrival of vehicles on the street 1 (scenario 1), the ANN
responds by increasing the average time of opening this street to traffic, which enables a greater
amount of vehicles passing by the street per cycle. The effect of this decision has some impact on
the street 2, that has its average time slightly reduced compared to the real system. The average
amount of pedestrians crossing the street suffered no major impact.

Figure 7 presents data concerning the amount of vehicles passing by the streets for the scenarios 1
and 2.

It can be noticed that, in Scenario 2, the ANN takes different decisions as there is an increase
in the number of pedestrians to cross the street 1. In this case, it can be seen that the ANN
had generated an output to decrease the time of opening of the street 1 to traffic, decreasing the
average number of vehicles passing by the primary street, as can be seen in Figure 8. The amount
of pedestrians crossing the street increased considerably in this scenario.
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Figure 7 – Comparison of average amount of vehicles and pedestrians in different scenarios.

Figure 8 – Comparison of the average time of opening the street per cycle in different scenarios.

5 CONCLUDING REMARKS

After the results obtained in this research, it was possible to demonstrate and evaluate the im-
plementation of the proposed mechanism to be used in modeling systems that involve decisions
made by human agents in a discrete event system. It has been shown that the Encog framework
can be used, in a simple way, in the generation of algorithms of ANN and be integrated into the
code of DES models developed with Ururau FOSS. The model responded as expected when sub-
mitted to logical actions to control the flow of vehicles in the system. The actions concerning the
traffic officer in the simulation model were represented by the ANN. The intelligent algorithm
planned to act in the model so as to represent the decisions of the traffic officer necessary to
control the traffic, considering different situations for the flow of people and vehicles.
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The results also showed that the Ururau software enabled, by being free and open-source, be used
as a scientific research environment for better understanding and improvement of the mechanism
used. Until the final version of this work, it had not been found yet, in literature, a simulation
software able to directly run an ANN in simulation time. Similarly, it could be considered pioneer
the possibility of designing an ANN from the graphical interface of the simulation environment,
and obtain the data that feed the input neurons of the ANN at runtime. The model created with
data obtained from the real traffic system was able to represent an intersection controlled by a
traffic officer. In this case, ANN managed to generate decisions similar to this one, assuming a
confidence interval of 95%.

Thus, it was possible to note that the ANN algorithm generated results with good approximation
in relation to the real behaviour of the traffic officer. Once trained, at each simulation, the algo-
rithm can generate closer results, but different due to the random nature of the network training.
Considering the results obtained in the two tested scenarios, it could be noted that ANN corre-
sponded to what was expected, once it took different decisions when presented situations other
than those that had been carried out.

The analogy sought between the industrial production lines and the open traffic systems en-
abled the acquisition of free-form data to conduct studies. However, it is important to highlight
that, in some cases, the behavior of the traffic officer was different from a typical situation of
production line. This was noticed once the operator in an industrial environment tends to obey
pre-established patterns to operate the system. Although this is also true for a traffic officer, the
free and open environment of the streets makes that this behavior be often influenced and not
reflect more restricted and predefined patterns.
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APPENDIX A – Ururau modules with description and configuration data.

Module Name Description Configuration Data

Create E4 Responsible for the creation of entities
T. Arrival: Const. (1s)

T. First. Arrival: 1 second
Max. Arrival: Infinite

Assign C4 Adds a variable to the model
Type: Variable

Name: time
Value: time+1

X (Decisor) X1 Deviates the execution of a function

Type: ANN with 2 ways
Training file: C:\DataTreiningANN5Neurons

Modified.CSV
Algorithm: ResilientPropagation

Exp. Neuron 1: L1.Segurar1.queue
Exp. Neuron 2: L2. Segurar2.queue
Exp. Neuron 3: L3. Segurar3.queue

Exp. Neuron 4: time
Exp. Neuron 5: variablesemaforo
Number Neurons Input Layer: 5

Number Neurons Hidden Layer: 4
Number Neurons Output Layer: 1

X (Decisor) X2 Deviates the execution of a function
Type: 2 ways by condition

Condition: variablesemaforo ==0

X (Decisor) X3 Deviates the execution of a function
Type: 2 ways by condition

Condition: variablesemaforo ==1

Write W4 Writes values of a variable on file
Variable name: time
File: semaforo1.txt

Write W5 Writes values of a variable on file
Variable name: time
File:semaforo1.txt

Assign C5 Adds a variable to the model
Type: Variable

Name: variablecarstreet1
Value: 0

Assign C6 Adds a variable to the model
Type: Variable1

Name: variablecarstreet2
Value: 0

Assign C7 Adds a variable to the model
Type: Variable

Name: variableperson
Value: 0

Assign C8 Adds a variable to the model
Type: Variable

Name: time
Value: 0

Assign C9 Adds a variable to the model
Type: Variable

Name: variablesemaforo
Value: 0
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