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ABSTRACT. We review the motivation for, the current state-of-the-art in convergence results, and some

open questions concerning the stabilized version of the sequential quadratic programming algorithm for

constrained optimization. We also discuss the tools required for its local convergence analysis, globaliza-

tion challenges, and extentions of the method to the more general variational problems.
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1 INTRODUCTION

Consider the optimization problem

minimizex f (x)
subject to h(x) = 0, g(x) ≤ 0,

(1)

where f : Rn → R, h : Rn → Rl and g : Rn → Rm are twice continuously differentiable. Let

L : Rn × Rl × Rm → R,

L(x, λ, μ) = f (x)+ 〈λ, h(x)〉 + 〈μ, g(x)〉
be the Lagrangian of problem (1), where 〈·, ·〉 stands for the inner product (the space is always
clear from the context). Stationary points of problem (1) and the associated Lagrange multipliers

are characterized by the Karush-Kuhn-Tucker (KKT) optimality system

∂L

∂x
(x, λ, μ) = 0, h(x) = 0, μ ≥ 0, g(x) ≤ 0, 〈μ, g(x)〉 = 0. (2)

We denote by M(x̄) the set of Lagrange multipliers associated with x̄ ∈ Rn , that is, the pairs

(λ, μ) ∈ Rl × Rm satisfying (2) for x = x̄ .
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2IMPA – Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, 22460-320 Rio de
Janeiro, RJ, Brazil.
E-mails: dfernandez@famaf.unc.edu.ar; solodov@impa.br



�

�

“main” — 2014/10/24 — 14:37 — page 464 — #2
�

�

�

�

�

�

464 STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY

The fundamental Newtonian approach to solving (1) is the sequential quadratic programming
(SQP) algorithm [2, 40, 18]; see also [28, Chapter 4]. Given the current primal-dual iterate
(xk , λk, μk) ∈ Rn ×Rl ×Rm , an iteration of SQP generates the next iterate (xk+1, λk+1, μk+1)

as a stationary point and associated Lagrange multipliers of the quadratic programming (QP)
subproblem

minimizex 〈 f ′(xk ), x − xk〉 + 1

2

〈
Hk(x − xk), x − xk

〉
subject to h(xk )+ h′(xk)(x − xk) = 0,

g(xk)+ g′(xk )(x − xk) ≤ 0,

(3)

where Hk is a symmetric n × n matrix. The basic Newtonian scheme corresponds to taking

Hk = ∂2L

∂x2

(
xk, λk, μk). (4)

In fact, if there are no inequality constraints, it can be seen that computing (xk+1, λk+1) by
solving (3) with the choice (4) is equivalent to the usual Newton iteration from the point (xk, λk),
applied to the equation given by the first two equalities in the KKT system (2).

To motivate the stabilized modification of SQP, we start with some comments about convergence
properties of SQP itself. The first relevant observation is that without constraint qualification
(CQ) [41] assumptions, the QP (3) can simply be infeasible and thus the method be not well-
defined. Indeed, it can be informally stated that one of the roles of CQs is precisely to ensure
that the first-order approximation of the constraints, like in (3), be consistent (and adequately
approximate local structure of the feasible set of the original problem (1) around the given point).

For a point x̄ feasible in (1), denote by

A(x̄ ) = {i = 1, . . . , m | gi(x̄) = 0}
the set of inequality constraints active at x̄ . If x̄ is a stationary point of (1) and (λ̄, μ̄) ∈ M(x̄ ),
denote further by

A+(x̄, μ̄) = {i ∈ A(x̄ ) | μ̄i > 0}, A0(x̄ , μ̄) = A(x̄ ) \ A+(x̄ , μ̄)

the sets of strongly and weakly active constraints, respectively.

The linear independence constraint qualification (LICQ) is said to hold at x̄ if

rank

(
h′(x̄)

g′
A(x̄)(x̄)

)
= l + |A(x̄ )|, (5)

where from now on, the notation MJ refers to the submatrix of the matrix M comprised by
the rows of M indexed by the set J . In particular, the LICQ condition (5) says that the gradi-
ents of all of the equality constraints together with the gradients of all of the active inequality
constraints form a linearly independent set in Rn . The Mangasarian–Fromovitz constraint quali-
fication (MFCQ) is said to hold at x̄ if

rank h′(x̄) = l and ∃ ξ̄ ∈ ker h′(x̄) such that g′
A(x̄)(x̄)ξ̄ < 0, (6)

where for a matrix M we denote its null space by ker M = {ξ | Mξ = 0}. Both LICQ and
MFCQ imply that for a local solution x̄ of (1) the multiplier set M(x̄) is nonempty (for this
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specific property, weaker or different conditions can be used as well; see [41]). Note that MFCQ
is equivalent to the requirement thatM(x̄) be nonempty and bounded. The so-called strict MFCQ
(SMFCQ) consists of saying that, in addition to (6), the multiplier associated to x̄ is unique
(M(x̄) is a singleton). In the absence of (active) inequality constraints MFCQ, SMFCQ and
LICQ are all equivalent (to the regularity condition rank h′(x̄) = l), but otherwise MFCQ is a
weaker assumption than SMFCQ which, in turn, is weaker than LICQ.

We say that for a given stationary point x̄ of problem (1) and for an associated multiplier (λ̄, μ̄) ∈
M(x̄ ) the second-order sufficient optimality condition (SOSC) holds if〈

∂2L

∂x2
(x̄ , λ̄, μ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄ ) \ {0}, (7)

where
C(x̄ ) = {

ξ ∈ Rn | h′(x̄)ξ = 0, g′
A(x̄)(x̄)ξ ≤ 0, 〈 f ′(x̄), ξ 〉 ≤ 0

}
is the critical cone of problem (1) at x̄ . We note that SOSC implies that x̄ is a strict local mini-
mizer in (1).

The sharpest local superlinear convergence result for SQP is provided by the analysis in [3];
see also [28, Chapter 4]. It assumes SMFCQ (uniqueness of the multiplier (λ̄, μ̄) associated to
x̄ ) and SOSC (7). Earlier results all required, in addition to SOSC, the stronger LICQ and the
strict complementarity condition μ̄A(x̄ ) > 0 (such statements are standard; see, e.g., [1, 36]).
In particular, we emphasize that convergence of SQP requires certain regularity of constraints
(a CQ).

The stabilized version of SQP (sSQP) had been developed with the goal to guarantee fast conver-

gence rate despite possible degeneracy of constraints (i.e., when usual CQs may not hold), and
in particular when the Lagrange multipliers associated to a solution are not unique. The method
was introduced in [42] for the case of inequality constraints, in the form of iteratively solving the

min-max subproblems

minimize
x∈Rn

max
μ∈Rm+

{
〈 f ′(xk ), x − xk〉 + 1

2

〈
∂2L

∂x2
(xk, μk)(x − xk), x − xk

〉

+ 〈μ, g(xk)+ g′(xk )(x − xk)〉 − σk

2
‖μ− μk‖2

}
,

where (xk , μk ) ∈ Rn × Rm+ is the current approximation to a primal-dual solution of (2), and
σk > 0 is the dual stabilization parameter. Adding also equality constraints, it can be seen [31]

that the corresponding min-max problem is equivalent to the following QP in the primal-dual
space:

minimize(x, λ,μ)

{
〈 f ′(xk ), x − xk〉 + 1

2

〈
∂2L

∂x2
(xk, λk, μk )(x − xk), x − xk

〉

+ σk

2
(‖λ‖2 + ‖μ‖2)

}
subject to h(xk )+ h′(xk )(x − xk)− σk (λ− λk) = 0,

g(xk)+ g′(xk )(x − xk)− σk(μ− μk) ≤ 0.

(8)

Pesquisa Operacional, Vol. 34(3), 2014
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The dual stabilization parameter is usually based on computing the violation of the KKT op-

timality conditions (2) by the point (xk , λk, μk ). For example, for fast local convergence one
chooses in (8) σk = σ(xk , λk, μk ), where σ : Rn × Rl × Rm → R+ is the natural residual of
the KKT system (2), i.e.,

σ(x, λ, μ) =

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

∂L

∂x
(x, λ, μ)

h(x)
min{μ, −g(x)}

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥
, (9)

with the minimum applied componentwise.

One immediate observation is that for σk > 0, the constraints in (8) have the so-called “elastic

mode” feature, and the subproblem is therefore automatically feasible regardless of any CQs or
convexity assumptions. For example, fixing any x ∈ Rn and taking a suitable λ (uniquely defined
for each x by the first constraint in (8)) and μ > 0 with all the components large enough, gives

points (x, λ, μ) feasible in (8). This is the first major difference from the standard SQP.

Another consideration is the following. It has been observed (e.g., in [44, Section 6], and in
[23, 24, 26]) that the difficulties with convergence of SQP in degenerate cases are often not
because of degeneracy as such, but are due to some undesirable behaviour of the dual sequence.

The dual regularization/stabilization term in the objective function of (8) can be regarded as
an attempt to modify this behaviour. As discussed in Section 2 below, in the sense of local
convergence it indeed does the job. The situation is more complicated in the global sense; see

Section 3.

2 LOCAL CONVERGENCE THEORY

In this section, we first survey the historical accounts on local convergence analyses of sSQP.
Then, we state the current state-of-the-art results, and finally briefly describe the (relatively re-
cent) variational tools required to establish those properties.

In [42], local superlinear convergence of sSQP is established under MFCQ (6), SOSC (7) as-
sumed to hold for all multipliers, the existence of a multiplier μ̄ satisfying the strict complemen-
tarity condition μ̄A(x̄ ) > 0, and the assumption that the initial dual iterate is close enough to
such a multiplier. Also, [42] gives an analysis in the presence of round-off errors. In [44], the
assumption of strict complementarity has been removed. Also, [43] suggests a certain inexact
SQP framework which includes sSQP as a particular case. The assumptions, however, still con-
tain MFCQ. In [19], CQs are not used at the expense of employing instead of the weaker SOSC
(7) the strong SOSC (SSOSC)〈

∂2L

∂x2
(x̄ , λ̄, μ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C+(x̄ , μ̄) \ {0}, (10)

where
C+(x̄ , μ̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′

A+(x̄, μ̄)(x̄)ξ = 0},

Pesquisa Operacional, Vol. 34(3), 2014
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and assuming that the dual starting point is close to a multiplier satisfying this SSOSC. (SSOSC
(10) is stronger than SOSC (7) because C(x̄) ⊂ C+(x̄ , μ̄).) In [12], the result of [19] was
recovered from more general principles (some details will be discussed below), and somewhat
sharpened. The iterative framework of [12] was further used in [10] to prove local superliner
convergence using SOSC (7) only, with no CQs or other assumptions. Moreover, the method
was extended to variational problems (see Section 4 below). Quasi-Newton versions of sSQP
are analyzed under SOSC in [7]. In [27] it was shown that the SOSC cannot be relaxed when
inequality constraints are present, but for equality-constrained problems the weaker condition
of noncriticality of the relevant Lagrange multiplier (see the definition immediately below) is
sufficient for convergence.

A Lagrange multiplier (λ̄, μ̄) ∈ M(x̄) is said to be critical if there exists a triple (ξ, η, ζ ) ∈
Rn × Rl × Rm , with ξ 
= 0, satisfying the system

∂2L

∂x2
(x̄ , λ̄, μ̄)ξ + (h′(x̄))T η+ (g′(x̄))T ζ = 0, h′(x̄)ξ = 0, g′

A+(x̄, μ̄)(x̄)ξ = 0,

ζA0(x̄, μ̄) ≥ 0, g′
A0(x̄, μ̄)(x̄)ξ ≤ 0, ζi 〈g′

i(x̄), ξ 〉 = 0, i ∈ A0(x̄, μ̄),

ζ{1, ...,m}\A(x̄) = 0,

(11)

and noncritical otherwise. We refer the reader to [23, 24, 26, 27, 21, 22] for the role this no-
tion plays in convergence properties of algorithms, stability, error bounds, and other issues; see
also [28, Chapter 7]. Some comments will also be given below. When there are no inequality
constraints, it can be seen from (11) that a multiplier λ̄ ∈ M(x̄) being critical means that

∃ ξ ∈ ker h′(x̄) \ {0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T . (12)

It can be easily seen, essentially observing that im(h′(x̄))T = (ker h′(x̄))⊥, that this noncritical-
ity property for equality-constrained problems is implied by the corresponding version of SOSC
(7), but not vice versa. The same conclusion holds for the general case: if (11) has a solution with
ξ 
= 0, multiplying the first equality in (11) by this ξ and using the other relations in (11), one
arrives to a contradiction with SOSC (7). It should be emphasized that SOSC is a much stronger
assumption than noncriticality. Noncritical multipliers, when they exist, form a relatively open
and dense subset of the multiplier set M(x̄), which is of course not so for multipliers satisfying
SOSC.

We are now in position to formally state local convergence properties of sSQP [10, 27]; see
also [28, Chapter 7]. Note that in Theorem 1 below, if there are equality constraints only, every-
thing that involves the multiplierμ disappears from the statement. Note also that in the equality-
constrained case, finding a stationary point of the sSQP subproblem (8) is equivalent to solving
the linear system of equations

∂2L

∂x2
(xk , λk)(x − xk)+ (h′(xk ))T (λ − λk) = −∂L

∂x
(xk , λk),

h′(xk )(x − xk)− σk (λ− λk) = −h(xk ),

(13)

in the variables (x, λ).

Pesquisa Operacional, Vol. 34(3), 2014
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Theorem 1. Let f : Rn → R, h : Rn → Rl and g : Rn → Rm be twice differentiable in a
neighborhood of x̄ , with their second derivatives being continuous at x̄ . Let σk = σ(xk , λk, μk ),
where σ is given by (9). Let (x̄ , λ̄, μ̄) be a solution of the KKT system (2), satisfying SOSC (7).
If there are equality constraints only, let instead λ̄ be a noncritical multiplier (i.e., the right-most
relation in (12) does not hold for any ξ 
= 0).

Then for any c > 0 large enough and any starting point (x0, λ0, μ0) ∈ Rn × Rl × Rm+ close
enough to (x̄ , λ̄, μ̄), there exists a sequence {(xk , λk, μk )} ⊂ Rn × Rl × Rm such that for
each k = 0, 1, . . ., xk+1 is a stationary point of sSQP subproblem (8) with associated Lagrange
multipliers (λk+1, μk+1) which satisfies

‖(xk+1 − xk, λk+1 − λk, μk+1 − μk)‖ ≤ c dist ((xk , λk, μk ), {x̄} ×M(x̄));
any such sequence converges to (x̄ , λ∗, μ∗) with some (λ∗, μ∗) ∈ M(x̄), and the rates of con-
vergence of {(xk , λk, μk )} to (x̄ , λ∗, μ∗) and of {dist ((xk , λk, μk), {x̄} ×M(x̄))} to zero are
superlinear. Moreover, the rates of convergence are quadratic provided the second derivatives of
f , h and g are locally Lipschitz-continuous with respect to x̄ .

Some comments are in order. Under SSOSC (10), solutions of sSQP subproblems (8) can in addi-
tion be shown to be unique in some neighbourhood [10]. Furthermore, in the equality-constrained
case, locally and under the noncriticality assumption, the linear system (13) has the unique solu-
tion, i.e., the sSQP subproblem has the unique stationary point [27]. For the equality-constrained
case, sSQP is the only currently known method that solves a linear system or a QP per iteration
(i.e., an explicitly Newtonian method), and which requires for convergence something weaker
than SOSC (in particular, noncriticality of the multiplier) and does not need any CQs. In [27]
it is shown that when there are inequality constraints, SOSC cannot be replaced by noncritical-
ity. Whether convergence of the primal (rather than primal-dual) sequence generated by sSQP
is also superlinear is an open question [8]. Recall that in general, superlinear convergence of
primal-dual sequence does not imply any rate for the primal (or dual) sequence separately [4,
Exercise 14.8]. For SQP, the primal rate is superlinear [8]. For sSQP, only a kind of “two-step”
superlinear estimate for the primal sequence is available [7].

We illustrate the convergence result in Theorem 1 with the following example.

Example 1. Consider the optimization problem

min x1x2 − x2
2/2

s.t. x2
2 ≤ 0, −2x1 + x2 ≤ 0, x1 − 2x2 ≤ 0.

(14)

It can be seen that x̄ = (0, 0) is the unique solution of this problem, and that the associated set
of Lagrange multipliers is given by

M(x̄) = {(μ1 , μ2, μ3) ∈ R3 | μ1 ≥ 0, μ2 = μ3 = 0}.
In particular, MFCQ (6) does not hold andM(x̄ ) is unbounded. Furthermore, SOSC (7) holds at
(x̄ , μ̄) for any μ̄ ∈M(x̄) with μ̄1 > 0, but SSOSC (10) is not satisfied for any multiplier.

Pesquisa Operacional, Vol. 34(3), 2014
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Experiments were performed with Matlab implementation of sSQP, using the built-in subrou-
tine quadprog for solving QP subproblems (8) and choosing random starting points x0

i ∈
[−1/2, 1/2], i = 1, 2, and μ0

j ∈ [0, 1], j = 1, 2, 3. The stopping criterion is σ(xk , μk) <

10−15.

In about 10% of the cases, the sequence converged linearly to (x̄ , μ̄) with μ̄1 = 0 (SOSC is not
valid at this solution). Such cases appear to correspond to the choices of starting points that are
not close enough to a solution satisfying SOSC (so that Theorem 1 does not apply). About 3% of
the starting points produced unsolvable subproblems at the first iteration (for the same reason as
above – starting points not being close enough to a solution). All the remaining runs converged
superlinearly to a primal-dual solution satisfying SOSC. Table 1 shows the average values of
‖xk − x̄‖ + dist (μk , M(x̄)) for the last 5 iterations in the cases of convergence to a primal-dual
solution satisfying SOSC.

Table 1 – Distance to solution on

last 5 iterations in Example 1.

‖x − x̄‖ + dist(μ, M(x̄))

1.5891e-001

1.0599e-002

7.3688e-005
6.3242e-009

8.4865e-017

The analysis that leads to Theorem 1 relies on the variational Newtonian framework for general-
ized equations (GEs) with nonisolated solutions, developed in [12]; see also [28, Chapter 7] (in
our context, in the absence of CQs dual solutions of the KKT system (2) are not isolated). To
that end, consider the generalized equation (GE)

�(u)+ N(u) � 0, (15)

where � : Rν → Rν is a smooth (single-valued) mapping, and N(·) is a set-valued mapping
from Rν to the subsets of Rν . As is well known, the KKT system (2) corresponds to the GE (15)
with ν = n + l + m, the mapping � : Rn × Rl × Rm → Rn × Rl × Rm given by

�(u) =
(
∂L

∂x
(x, λ, μ), h(x), −g(x)

)
, u = (x, λ, μ), (16)

and with N beining the normal cone to the set

Q = Rn × Rl × Rm+, (17)

i.e., N(u) = NQ(u) = {v | 〈v, w − u〉 ≤ 0 ∀w ∈ Q} = {0} × {0} × Rm−.

Consider the class of methods for solving (15) that, given the current iterate uk ∈ Rν, generate
the next iterate uk+1 as a solution of the subproblem of the form

A(uk, u)+ N(u) � 0, (18)

Pesquisa Operacional, Vol. 34(3), 2014
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where for ũ ∈ Rν the mapping A(ũ, ·) is some kind of approximation of � around ũ. For
example, if

A(ũ, u) = {�(ũ)+�′(ũ)(u − ũ)}, ũ, u ∈ Rν,

the iteration subproblem (18) becomes that of the Josephy-Newton method for GEs (see [28,
Chapter 3]), and when applied to the KKT system (2) (i.e., the special case of GE described
above), it corresponds to the SQP subproblem (3). For each ũ ∈ Rν , define the set

U (ũ) = {u ∈ Rν | A(ũ, u)+ N(u) � 0}, (19)

so that U (uk ) is the solution set of the iteration subproblem (18). As is usual and natural in local
convergence considerations, one has to specify which of the solutions of (18) are allowed to be
the next iterate (solutions “far away” must clearly be discarded from local analysis; note that
sSQP subproblem (8) need not be strongly convex and thus may have such “far away” solutions).
In other words, we have to restrict the distance from the current iterate uk to the next one, i.e., to
an element of U (uk ) that can be declared to be uk+1. To that end, for an arbitrary but fixed c > 0
define the subset of the solution set of the subproblem (18) by

Uc(ũ) = {u ∈ U (ũ) | ‖u − ũ‖ ≤ c dist (ũ, Ū )}, (20)

where Ū is the solution set of the GE (15), and consider the iterative scheme

uk+1 ∈ Uc(u
k ), k = 0, 1, . . . . (21)

Superlinear convergence of this scheme is established under the following three conditions:

(i) Upper Lipschitzian behavior of solutions of GE under canonical perturbations – For every
r ∈ Rν close enough to 0, any solution u(r) of the perturbed GE

�(u) + N(u) � r (22)

close enough to ū satisfies the estimate

dist (u(r), Ū ) = O(‖r‖) as r → 0.

(ii) Precision of approximation of � in subproblems – There exists a function ω : R+ → R+
such that ω(t) = o(t) as t → 0 and the estimate

sup{‖w‖ | w ∈ �(u)−A(ũ, u), ‖u − ũ‖ ≤ c dist (ũ, Ū )} ≤ ω(dist (ũ, Ū )) (23)

holds for all ũ ∈ Rν close enough to ū.

(iii) Solvability of subproblems with the localization condition – For any ũ ∈ Rν close enough
to ū the set Uc(ũ) defined by (19), (20) is nonempty.

Some comments are in order. For GE corresponding to the KKT system (2), the canonically
perturbed problem has the form

∂L

∂x
(x, λ, μ) = a, h(x) = b, μ ≥ 0, g(x) ≤ c, 〈μ, g(x)− c〉 = 0,

Pesquisa Operacional, Vol. 34(3), 2014
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for r = (a, b, c) ∈ Rn × Rl × Rm . For KKT systems, the upper Lipschitzian behavior of so-
lutions under canonical perturbations (the first assumption above) is equivalent to noncriticality
of the Lagrange multiplier (under the smoothness assumptions in this survey) [21]. In particular,
it is implied by the SOSC (7). The second assumption above naturally holds for Newton-type
methods, and in particular for sSQP if the stabilization parameter is properly chosen (for exam-
ple, based on the KKT natural residual (9)). The third assumption on solvability of subproblems
and localization condition is where the most work is required [10, 27]. And it is here where
noncriticality of the multiplier needs to be strengthened to SOSC if inequality constraints are
present.

We finally note that sSQP can also be interpreted within the perturbed Josephy-Newton frame-
work of [25]; see also [28, Chapter 3]. However, the main convergence result in this framework
requires SMFCQ. If the method is interpreted instead via [12, 10] as outlined above, no CQs are
needed to prove local convergence. It is also interesting to mention that a modification of the
Newtonian framework of [12] is used in [11] to derive local convergence and rate of convergence
results for the augmented Lagrangian algorithm (method of multipliers) under SOSC (7) only,
significantly improving on the classical results such as in [1] that assume in addition LICQ (5)
and strict complementarity. Moreover, for the equality-constrained case SOSC can be relaxed
to noncriticality [22], as is the case for sSQP (the required analysis is very different though).
It is interesting that even though the augmented Lagrangian method is not of Newton type, the
Newtonian lines of analysis turned to be very fruitful for this context as well.

3 GLOBALIZATION ISSUES

As any Newtonian method, sSQP is a local scheme, guaranteed to converge if initialized at a
point close enough to a solution with the properties discussed in Section 2. To obtain a complete
algorithm, some strategy to globalize convergence is needed (so that arbitrary starting points can
be used). This proved to be a rather difficult task. Recall that to globalize SQP at least three
different approaches are available; see [28, Chapter 6]. Globalization can be organized using
linesearch [4, Chapter 17] or trust-region [5, Chapter 15.4] for a nonsmooth penalty function,
and the filter technique [13, 14, 37]. For example, if a positive definite matrix Hk is employed in
the QP (3), then the generated direction xk+1 − xk is that of descent for the penalty function

ϕck (x) = f (x)+ ck(‖h(x)‖1 + ‖ max{0, g(x)}‖1), (24)

provided one takes ck > ‖(λk+1, μk+1)‖∞. One can then perform linesearch in the obtained
direction to guarantee progress towards solving (1) via decreasing the penalty function with
respect to its value at the previous iterate xk and then re-defining xk+1 accordingly. To find
a suitable penalty function for which the direction computed by the sSQP subproblem (8) is
of descent, proved a challenge. In particular, the penalty function like (24), or other “usual”
candidates, do not do the job.

Some numerical results on global behaviour of sSQP, without attempting to globalize the method
itself, are reported in [33], but this experience is rather limited (just a few test problems are
considered). More test problems have been employed in [26] but globalization used there is a
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heuristic not supported by a proof. As for any local algorithm, so-called “hybrid” strategies can
certainly be used (see [28, Chapter 5] for one family of hybrid globalizations of local meth-
ods for variational problems). Something like this is certainly applicable to sSQP. In [20], this
approach was implemented in conjunction with the augmented Lagrangian as the globally con-
vergent method. We next survey the few more direct approaches to globalize sSQP that have
been proposed so far.

In [39] the globalization technique is based on a linesearch for the so-called primal-dual aug-
mented Lagrangian [17]. This work deals with optimization problems in the format

minimizex f (x)
subject to h(x) = 0, x ≥ 0.

(25)

(The more general problem (1) can be reformulated into this setting using slack variables.) For
the optimization problem (25), taking μ = f ′(x) + (h′(x))T λ, the natural residual (9) can be
written as

σ(x, λ) =
∥∥∥∥∥
(

min{ f ′(x)+ (h′(x))T λ, x}
h(x)

)∥∥∥∥∥ .
In [39] the nonnegativity constraint is excluded from stabilization, and instead of (8), the sSQP
subproblem is given by

minimize(x, λ) 〈 f ′(xk), x − xk〉 + 1

2

〈
Hk(x − xk), x − xk

〉
+ σk

2
‖λ‖2

subject to h(xk)+ h′(xk)(x − xk )− σk(λ − λ̃k) = 0, x ≥ 0,
(26)

where λ̃k is a reference Lagrange multiplier estimate and Hk is a symmetric matrix such that
Hk + (1/σk)(h′(xk ))T h′(xk ) is positive definite. It should be noted that there does not seem to
be any theory to justify that this “partial” (excluding the constraint x ≥ 0) stabilization in (26)
actually inherits local convergence properties of sSQP under some reasonable assumptions. In
terms of local convergence, the idea of [39] is to use in addition identification of active inequality
constraints, so that the overall algorithm eventually becomes sSQP for the associated equality-
constrained problem. From the analysis in [39], if (xk+1, λk+1) is the (unique) solution of (26)
then (xk+1 −xk , λk+1 −λk) is a descent direction at (xk , λk) for the primal-dual penalty function

ϕ̄c(x, λ; λ̃k, σk) = f (x)+ 〈λ̃k, h(x)〉 + 1

2σk
‖h(x)‖2 + c

2σk
‖h(x)− σk(λ − λ̃k)‖2, (27)

where c > 0 is a fixed parameter. This penalty function is minimized using linesearch, thus
re-defining (xk+1, λk+1). The reference Lagrange multiplier λ̃k+1 is updated to λk+1 if either the
weighted natural residual for problem (25) is small or if the natural residual for the problem of
minimizing ϕ̄c(x, λ; λ̃k, σk) subject to x ≥ 0 is small. The dual stabilization parameter σk and
other algorithmic parameters are updated by certain rules. According to [39, Theorem 4.2], if
the generated sequence {xk } is bounded and the sequence {Hk} is chosen bounded with {Hk +
(1/σk)(h′(xk ))T h′(xk )} being also uniformly positive definite, then either there exists an index
set K such that limK�k→∞ σ(xk , λk) = 0 (accumulation points of this subsequence solve the
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KKT system of the problem) or there exists an index set S such that limS�k→∞ σk = 0, {λ̃k}k∈S
is bounded and

lim
S�k→∞

(∥∥∥∥min

{
∂ϕ̄c

∂x
(xk+1, λk+1; λ̃k, σk), xk+1

}∥∥∥∥ +
∥∥∥∥∂ϕ̄c

∂λ
(xk+1, λk+1; λ̃k, σk)

∥∥∥∥
)

= 0.

Another globalization strategy is proposed in [9]. It is based on the inexact restoration ideas [32],
and uses linesearch for a primal-dual nondifferentiable penalty function. This work considers
problems in the format

minimizex f (x)

subject to h(x) = 0, a ≤ x ≤ b,
(28)

where a and b are finite bounds. For this problem, the natural residual (9) is given by

σ(x, λ) =
∥∥∥∥∥
(

min{x − a, max{ f ′(x)+ (h′(x))T λ, x − b}}
h(x)

)∥∥∥∥∥ .
The corresponding sSQP subproblem again employs only partial stabilization (leaving out the
bounds), and has the form

minimize(x, λ) 〈 f ′(xk ), x − xk〉 + 1

2

〈
Hk(x − xk), x − xk

〉
+ σk

2
‖λ‖2

subject to h(xk )+ h′(xk)(x − xk)− σk(λ − λ̃k) = 0, a ≤ x ≤ b,
(29)

where λ̃k is a reference Lagrange multiplier approximation and Hk is a symmetric positive defi-
nite matrix. The penalty function used in [9] is

ϕ̌ck (x, λ; λ̃k, σk) = f (x) + σk

2
‖λ‖2 + ck‖h(x)− σk(λ− λ̃k)‖. (30)

Note that this is a penalty function for the problem of minimizing f (x)+ (σk/2)‖λ‖2 subject to
h(x) − σk (λ− λ̃k) = 0, and the latter problem is equivalent to minimizing f (x)+ 〈λ̃k, h(x)〉 +
1/(2σk)‖h(x)‖2. Thus, this penalty function is also related to the augmented Lagrangian.

The inexact restoration strategy presented in [9] can be interpreted as two-step linesearch for the
function (30), where in the first step the penalty parameter ck is increased in order to achieve
ϕ̌ck (x

k , λ̂k; λ̃k, σk) < ϕ̌ck (x
k , λk; λ̃k, σk) with λ̂k = λ̃k + (1/σk)h(xk ), and in the second step

linesearch is performed along the direction
(

xk+1 − xk , λk+1 − λ̂k
)

to re-define (xk+1, λk+1) so

that ϕ̌ck (x
k+1 , λk+1; λ̃k, σk) ≤ ϕ̌ck (x

k , λk; λ̃k, σk). If the linesearch direction is small enough
(with respect to the inexact restoration criteria), then (xk+1 , λk+1) is accepted as the new primal-
dual iterate and the reference Lagrange multiplier λ̃k+1 is updated to λk+1. The dual stabilization
parameter σk is updated by a suitable rule. According to [9, Theorem 2], if the sequence of
matrices {Hk} is chosen uniformly bounded and uniformly positive definite, and if x̄ is an ac-
cumulation point of the sequence {xk}, then x̄ is a stationary point of the problem (28) if {σk}
is bounded away from zero, or it is a stationary point of the problem of minimizing the infea-
sibility measure ‖h(x)‖2 subject to a ≤ x ≤ b if {σk } converges to zero. The algorithm of [9]
solves sSQP subproblems, but in a sense they can be considered as “inner iterations” within the
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inexact restoration scheme (which drives global convergence of the method). In particular, it is
not known whether locally the algorithm indeed behaves as sSQP under some assumptions (i.e.,
solves only one sSQP subproblem per inexact restoration iteration).

For equality-constrained problems

minimizex f (x)
subject to h(x) = 0,

another very recent and promissing proposal [29] is based on linesearch in sSQP directions for
the following two-parameter primal-dual exact penalty function:

ϕ̂c1, c2(x, λ) = L(x, λ)+ c1

2
‖h(x)‖2 + c2

2

∥∥∥∥∂L

∂x
(x, λ)

∥∥∥∥2

,

where c1 > 0, c2 > 0. This function was originally introduced and studied in [6]; see also [1].
Provided the penalty parameters are updated by certain appropriate rules, very reasonable global
convergence properties are established in [29]. Moreover, near qualified solutions (stationary
point – noncritical multiplier pairs), the sSQP directions are always accepted by the algorithm,
and then the unit stepsize in those directions is accepted by the Armijo linesearch rule. Thus, the
globalized scheme inherits fast local convergence of sSQP, under weak assumptions.

We next comment on some other ideas for sSQP globalization, which led to partial developments
of some promis but did not materialize into complete algorithms so far.

A globalization strategy can be attempted using the principle of the augmented Lagrangian
method, i.e., decrease the augmented Lagrangian function in the primal space and increase it
in the dual. Consider the classical augmented Lagrangian for problem (1):

L̄(x, λ, μ; σ) = f (x) + σ

2

(
‖λ+ 1

σ
h(x)‖2 − ‖λ‖2

)
+ σ

2

(
‖ max{0, μ+ 1

σ
g(x)}‖2 − ‖μ‖2

)
,

σ > 0. It can be seen that if (xk+1 , λk+1, μk+1) is a solution of the sSQP subproblem (8), then
(xk+1 − xk , λk+1 − λk, μk+1 − μk ) is a descent direction at (xk , λk, μk) for the “difference of
two augmented Lagrangians” function

ψσ̂k,σ̃k (x, λ, μ; xk , λk, μk ) = L̄(x, λk, μk; σ̃k)− L̄(xk , λ, μ; σ̂k),

for any σ̂k ∈ [σ̃k/2, σ̃k]. Moreover, the directional derivative is less than −
k , where


k = 〈Hk(x
k+1 − xk), xk+1 − xk〉 + σ̃k

2
‖λk+1 − λk‖2 + σ̃k

2
‖μk+1 − μk‖2

+ σ̃k

2
‖λk + 1

σ̃k
h(xk )− λk+1‖2 + σ̃k

2
‖ max{0, μk + 1

σ̃k
g(xk)} − μk+1‖2.

It can be shown that if {
k } tends to zero, the sequence of matrices {Hk} is chosen uniformly
bounded and uniformly positive definite and (x̄, λ̄, μ̄) is a limit point of the sequence {(xk , λk,

μk )}, then x̄ is a stationary point of the problem (1) if {σk} is bounded away from zero, or it is
a stationary point of the problem of minimizing the infeasibility measure ‖h(x)‖2 + ‖ max{0,
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g(x)}‖2 if {σk} converges to zero. However, so far there are no reasonable hypotheses to guar-
antee 
k → 0 from a standard linesearch. From another point of view, this strategy is related to
finding a solution of an equilibrium problem. If for some σ̂ , σ̃ > 0 it holds that (x̄ , λ̄, μ̄) is a
solution of the optimization problem min(x,λ,μ) ψσ̂ , σ̃ (x, λ, μ; x̄ , λ̄, μ̄), then (x̄ , λ̄, μ̄) solves the
KKT system (2). Conversely, if (x̄ , λ̄, μ̄) is a solution of the KKT system (2) satisfying SOSC
(7), then (x̄ , λ̄, μ̄) is a local minimizer of the latter problem.

Another issue concerned with global convergence of sSQP has to do with possible attraction of
the iterates to critical Lagrange multipliers, and eventual slow convergence rate as a consequence;
see [28, Chapter 7]. In [23, 24, 26, 30] this phenomenon was exhibited for various Newtonian
and Newton-related methods, such as SQP and its quasi-Newton implementations, and the lin-
early constrained (augmented) Lagrangian methods [38, 34, 15]. Both theoretical considerations
and numerical results for SNOPT [16] and MINOS [35] solvers were presented, which put in
evidence that when critical multipliers exist, they serve as attractors of the dual sequence gen-
erated by the type of methods in question. Moreover, the reason for slow convergence in the
degenerate cases is precisely attraction to critical multipliers, as convergence to noncritical ones
would have given the primal superlinear rate. Numerical results in [26] show that the effect of
attraction (globally, i.e., from “far away” points) to critical multipliers still exists for sSQP too
(when evaluating the numbers reported therein, it is important to keep in mind that critical mul-
tipliers are typically few; the usual situation is that they form a set of measure zero within the
set of all multipliers), but the attraction is much less persistent for sSQP than for the other algo-
rithms. The runs clearly split into two groups. Sometimes the (globalized, heuristically in that
reference) process manages to enter the “good” primal-dual region, where the stabilization term
starts working properly (has the needed “size”), and then it converges superlinearly with the dual
limit being noncritical. However, in a considerable number of cases this does not happen, and
then the process still converges slowly to a critical multiplier. Thus, although sSQP does help
when compared to the alternatives, by itself it does not seem to be a fully reliable tool for avoid-
ing the effect of attraction to critical multipliers and its negative consequences. It would seem
that some special modifications would be needed in the “global” phase of the method to reliably
avoid convergence to critical multipliers, without slowing down the overall process. Those are
also some of the conclusions from the numerical results in [29].

Overall, building really satisfactory globalization techniques for sSQP is a challenging matter,
which (for general problems) should still be considered an open question at this time.

4 EXTENSIONS TO VARIATIONAL PROBLEMS

Denote
D = {x ∈ Rn | h(x) = 0, g(x) ≤ 0},

and let ND(x) be the dual cone of the tangent (contingent) cone TD(x) to the set D at x ∈ Rn ,
i.e., ND(x) = ∅ for x 
∈ D and otherwise ND(x) = (TD (x))◦ where

TD(x) = {ξ ∈ Rn | ∃ {ξ k} → ξ, tk → 0 s.t. x + tkξ
k ∈ D ∀ k, tk > 0}.
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Consider the variational problem (VP)

F(x) + ND(x) � 0, (31)

where F : Rn → Rn; see [28, Chapters 1 and 3]. In particular, for the optimization problem (1)
this VP represents the first-order necessary optimality condition

x ∈ D, 〈 f ′(x), ξ 〉 ≥ 0 ∀ ξ ∈ TD(x),

if we take F(x) = f ′(x). If the set D is convex, then (31) gives the usual variational inequality
(VI)

x ∈ D, 〈F(x), y − x〉 ≥ 0 ∀ y ∈ D.

Associated to solving VP (31) is the KKT system

F(x)+(h′(x))T λ+(g′(x))Tμ = 0, h(x) = 0, μ ≥ 0, g(x) ≤ 0, 〈μ, g(x)〉 = 0. (32)

Define the mapping G : Rn × Rl × Rm → Rn by

G(x, λ, μ) = F(x)+ (h′(x))T λ+ (g′(x))Tμ.

Let (xk , λk, μk ) ∈ Rn ×Rl ×Rm+ be the current primal-dual approximation to a solution of (32),
and let σk > 0 be the dual stabilization parameter. Define the affine mapping �k : Rn × Rl ×
Rm → Rn × Rl × Rm by

�k(u) =
(

F(xk )+ ∂G

∂x
(xk , λk, μk)(x − xk ), σkλ, σkμ

)
, u = (x, λ, μ),

and consider the affine VI of the form

u ∈ Qk, 〈�k (u), v − u〉 ≥ 0 ∀ v ∈ Qk, (33)

where

Qk =
{

u = (x, λ, μ) ∈ Rn × Rl × Rm

∣∣∣∣∣ h(xk )+ h′(xk )(x − xk)− σk(λ− λk) = 0,
g(xk)+ g′(xk )(x − xk)− σk(μ− μk) ≤ 0

}
.

As can be easily seen, in the optimization case (1) the VI (33) is precisely the first-order (primal)
necessary optimality condition for the sSQP subproblem (8), if one takes F(x) = f ′(x). Thus
this scheme contains sSQP for optimization as a special case. Note that the method makes good
sense also in the variational setting, as solving the fully nonlinear VP (31) is replaced by solving
a sequence of affine VIs (33) (the mapping �k is affine and the set Qk is polyhedral). If the set
D is defined by equality constraints only, then it can be seen that (33) is just a system of linear
equations.

Convergence analysis of this stabilized Newton method for variational problems can be found in
[10]; see also [28, Chapter 7].
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5 CONCLUDING REMARKS

We presented a survey of literature and some discussion of the stabilized version of the funda-
mental sequential quadratic programming method for constrained optimization. Further material,
in particular comprehensive local convergence analysis, can be found in the book [28].
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