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ABSTRACT. This study analyzes the operational efficiency of Brazil’s 30 largest airports from 2014 to
2018, using a two-stage model. Operational efficiency is defined as an airport’s capacity to effectively
utilize resources, such as facilities, staff, and technology, to cater to air traffic and passenger needs. The first
stage involved measuring operational efficiency through data envelopment analysis. The second stage used
a three-level hierarchical linear model to identify influencing variables. Key findings reveal that location
significantly impacts airport efficiency, which generally declined during the study period. The interest rate,
the only notable economic factor, had a negative effect on efficiency. Factors like the number of aircraft
parking positions, years of airport operation, and the number of airlines positively influenced efficiency.
Conversely, governance structure, airport size, commercial establishment count, and vehicle parking lot
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2 OPERATIONAL EFFICIENCY IN BRAZILIAN AIRPORTS

numbers didn’t notably affect efficiency variation. This methodological approach provided more accurate
predictions than traditional regression models.

Keywords: data envelopment analysis, performance analysis, three-level hierarchical linear model with
repeated measures, efficiency and productivity, airport.

1 INTRODUCTION

Productivity measures, such as effectiveness and efficiency, are used to evaluate organizational
performance. An effective organization reaches its objectives, regardless of the amount of re-
sources used. An efficient organization uses the least amount of resources to reach its objectives.
In addition to being effective and efficient, some organizations (e.g., airports) operate in com-
petitive markets. These organizations can integrate comparative and targeted effectiveness and
efficiency measures into their strategic planning to gain a competitive advantage. Until recently,
airport efficiency has been neglected in the study of transport. Tovar and Martı́n-Cejas (2010)
describe an airport as not only an intermediate terminal of transport modals but also a system
that serves a wide and complex network related to the movement of people and goods around
the world. Therefore, the study of airport efficiency has become crucial to ensure operational
improvements, cost-effectiveness, and good customer service.

The deregulation and liberalization of airlines around the world has increased demand for air-
port services with fast and efficient aircraft, passenger, cargo, and baggage processes (Oum et
al. 2003). The result is worldwide growth in the commercialization and privatization of airports,
which has increased the need for control and performance improvement from the perspectives
of both investors and regulators. Yet, as Oum et al. (2003) point out, quality standards, gover-
nance and regulatory structures, services, and operational characteristics in the industry remain
inconsistent, and external factors related to location and environment are diverse across airports.

Ahn and Min (2014) show that newly implemented policies and practices for airport management
make them more efficient and effective. These practices include airport capacity expansion; pro-
motional incentives for airlines and cargo companies (landing fees, terminal rental rates, airline
advertising subsidies etc.); passenger offers and incentives; and airport modernization in terms
of facilities, technology, and equipment. According to the authors, airports play a key role in
regional economic development, as they facilitate global supply chain operations connecting dif-
ferent modes of transportation. These factors underscore the importance of research in airport
management, specifically to evaluate efficiency and productivity.

Measuring and comparing airport performance is a complex and crucial task. Performance mea-
surement research seeks to answer important questions, which guide this research. For example,
does airport location play an important role in efficiency (do airports with the same characteris-
tics but from different location have different efficiency)? Are private airports more efficient than
public ones? Does outsourcing services improve performance? How do commercial activities
affect airport performance? Did airport efficiency increase over the analyzed period?
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In this context, Data Envelopment Analysis (DEA), term introduced by Charnes et al. (1978), is
an optimization technique based on linear programming and designed to establish a measure of
relative efficiency among different decision making units.

In this paper, we conducted a comprehensive analysis of the operational efficiency of the 30
largest Brazilian airports during the period from 2014 to 2018, using a two-stage model ap-
proach. This timeframe, preceding the impactful era of the Covid-19 pandemic, offered a unique
opportunity to assess the efficiency of airport operations in a pre-pandemic context.

In the first stage, our study utilized DEA methodologies, particularly the Slacks-Based Measure
(SBM) model, through a Data Envelopment Window Analysis (DEWA) model. DEWA is a non-
parametric method that assesses the performance of entities, like airports, by comparing their
efficiency in converting inputs into outputs over time, providing a dynamic perspective on oper-
ational efficiency (Peykani et al., 2021). This approach allows for an in-depth analysis of airport
efficiency across different time periods.

In the second stage, we explored a novel approach in airport efficiency literature by employ-
ing a three-level hierarchical linear model (HLM3) with repeated measures. This is a sophisti-
cated statistical technique that can handle data organized at more than one level, such as airports
within regions. HLM3 accounts for the nested structure of data and is particularly useful in
examining the influence of both airport-specific factors and broader regional factors on airport
efficiency (Subedi et al., 2015). This methodology allowed us to identify and analyze several
socio-economic variables that explain airport efficiency, thus providing insights into the impacts
of privatization and other external factors on airport management. This approach not only offered
a deeper understanding of the variables influencing the productive efficiency of airports but also
produced a better fit for the observed efficiency than traditional ordinary least squares regression
methods.

Our study’s bifurcated model approach, combining DEA and HLM3, reflects the critical impor-
tance of operational efficiency in airport management as an indicator of an airport’s capability
to efficiently manage its resources and services, catering to the needs of air traffic and passenger
demands. In this sense, our main objectives is to study the determinants of efficiency of airports
operating in different locations in Brazil, as well as the reasons why efficiency variability occurs
among airports from the same location and among those from different locations.

2 LITERATURE REVIEW

Gillen and Lall (1997) and Hooper and Hensher (1997) pioneered the study of airport efficiency.
Since then, a lot of papers have been published on airport efficiency. As shown by Tovar and
Martı́n-Cejas (2010) and corroborated in our literature review, most studies use either data envel-
opment analysis (DEA) for non-parametric models or stochastic frontier analysis (SFA) for para-
metric models. The advantage of DEA is that it does not require specification of the functional
form for the frontier nor any form of distribution for the error terms. SFA has those requirements,

Pesquisa Operacional, Vol. 44, 2024: e281311



4 OPERATIONAL EFFICIENCY IN BRAZILIAN AIRPORTS

but it also can manage random shocks and measurement errors, allowing the use of traditional
hypothesis tests (Tovar and Martı́n-Cejas 2010).

Different types of DEA models have evolved over the years (e.g., Assaf 2010; Barros and Dieke
2007, 2008; Bazargan and Vasigh 2003; Chang et al. 2013; Fernandes and Pacheco 2002; Gillen
and Lall 1997; Lam et al. 2009; Lozano and Gutiérrez 2011a, b; Martı́n and Román 2001; Merk-
ert and Assaf 2015; Merkert and Mangia 2014; Pacheco and Fernandes 2003; Sarkis 2000; Tsek-
eris 2011; Wanke 2012a, b; Yoshida and Fujimoto 2004). The two major DEA models in the lit-
erature are the Charnes-Cooper-Rhodes (CCR) and Banker-Charnes-Cooper (BCC) models. The
primary difference between these two models is in their assumptions about the returns-to-scale
property (Zou et al. 2015). SFA is a parametric modeling tool that accounts for the stochastic ran-
dom error in the production and cost frontier (Zou et al. 2015). The first SFA studies originated
from Pels et al. (2001, 2003). Several other works have applied SFA to measure airport produc-
tivity changes (e.g., Assaf et al. 2012; Chow and Fung 2012; Ha et al. 2013; Scotti et al. 2012;
Tovar and Martı́n-Cejas 2009, 2010; Yang 2010). Barros (2008b) implemented the stochastic
cost frontier with long-run inefficiency (SCF-LR). Other studies implemented the stochastic cost
frontier with short-run inefficiency – SCF-SR (Martı́n et al. 2013; Oum et al. 2008; Voltes-Dorta
and Pagliari 2012).

Other papers have considered undesirable outputs in the study of airport efficiency, using the
directional distance function approach (e.g., Lozano and Gutiérrez 2011b; Martini et al. 2013;
Pathomsiri et al. 2008; Scotti et al. 2014; Yu et al. 2008). Total factor productivity is a non-
parametric approach that has been used to measure airport efficiency (e.g., Hooper and Hensher
1997; Oum et al. 2013; Yoshida and Fujimoto 2014). Similar to total factor productivity, variable
factor productivity has been used in Oum and Yu (2004), Oum et al. (2006), and Choo and Oum
(2013). Several indices of total factor productivity have been used to estimate productivity levels,
such as the Fisher Ideal index (e.g., Ray and Mukherjee 1996), the Malmquist index (e.g., Ahn
and Min 2014; Barros and Weber 2009; Chi-Lok and Zhang 2009; Chow and Fung 2012; Coto-
Millán et al. 2014; De Nicola et al. 2013; Gitto and Mancuso 2012; Perelman and Serebrisky
2012; Suwanwong and Sopadang 2020; Tovar and Martı́n-Cejas 2010; Tsui et al. 2014a; Yu et
al. 2008), and the Hicks-Moorsteen index (e.g., See and Li, 2015). Other studies have used the
slack-based measure model to investigate airport efficiency (e.g., Lam et al. 2009; Lozano and
Gutiérrez 2011b; Tsui et al. 2014a).

Early works measuring airport productivity and performance are based on a single-stage model
(Martı́n and Román 2001; Pels et al. 2001, 2003; Sarkis and Talluri 2004; Yoshida and Fujimoto
2004). Two-stage models deepen the analysis by identifying variables that impact airport effi-
ciency and productivity. The second stage typically includes linear regression models estimated
using the ordinary least squares (OLS) method (Chi-Lok and Zhang 2009; Nicola et al. 2013),
as well as Tobit models estimated by maximum likelihood (Chi-Lok and Zhang 2009; Gillen
and Lall 1997; Ha et al. 2013; Scotti et al. 2014; Ülkü 2015; Huynh et al. 2020). Simar and
Wilson (2007) propose a bootstrapping truncated regression model as the second stage, known
as Simar-Wilson bootstrapping truncated regression. Several subsequent studies applied this ap-
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proach (e.g., Assaf and Gillet 2012; Barros 2008a; Barros & Dieke 2008; Chang et al. 2013;
Chaouk et al. 2020; Martini et al. 2013; Merkert and Assaf 2015; Merkert and Mangia 2014;
Örkcü et al. 2016; Tsekeris 2011; Tsui et al. 2014a, b). Finally, regression models that consider
fixed effects and random effects have been proposed by Choo and Oum (2013), Adler and Liebert
(2014), Zou et al. (2015), and Zuidberg (2017).

Regression models that do not account for temporal evolution and use a cross-sectional approach
(i.e., a snapshot of the moment data is collected) are classified as generalized linear models.
These models include OLS, log-linear, and Tobit and Simar-Wilson bootstrapping truncated re-
gression models. Regression models that account for temporal evolution (various cross-sections
over time) are classified as longitudinal regression models or models with repeated measures
for panel data. Because none of these studies consider the grouped, or nested, structure in the
data, they do not estimate models considering the hierarchical perspective. In the grouped data
structure, certain explanatory variables do not vary between observations (representing one level
of analysis) from a given group (representing another level of analysis). In studies on airport
efficiency, some variables fit this classification: location, international airport status, airport hub
status, and ownership structure. The use of an HLM3 model with repeated measures, as we pro-
posed in this paper, is novel in the airport efficiency literature. The main studies in the airport
efficiency literature, including the sample data, inputs, outputs, and explanatory variables for the
two-stage models, are summarized in the Appendix.

3 METHODOLOGY

We proposed a two-stage model. The first stage involves data envelopment analysis, and the
second stage involves an HLM3 model with repeated measures.

3.1 First Stage: Data Envelopment Analysis

DEA models are based on the analysis of efficiency of decision making units with multiple inputs
and outputs, and originate in the idea of creating a frontier of efficiency in which more efficient
decision making units are placed on the surface of the frontier. Some recent papers use DEA to
evaluate efficiency in the field of operations, logistics and supply chain, such as Hong and Jeong
(2019), Vishnu et al. (2020) and Hassan and Oukil (2021).

To assess airport operating efficiency and productivity changes over time, the DEWA model
is applied. Efficiency scores of each airport are obtained for each year and for the respective
benchmark airports. In the traditional DEA model, each decision-making unit is observed only
once. In the DEWA model, each decision-making unit is unique in each period. DEWA models
are considered more robust than traditional DEA models in panel data applications. They identify
trends and variations in efficiency and technical change over time (Shawtari et al. 2018), as shown
in the data behavior of this study.

Additional research emphasizes this robustness. For instance, Astanti et al. (2022) highlight the
importance of considering product deterioration and quality issues in supply chain models, which
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can be integrated into DEWA analyses for a deeper understanding of operational efficiency.
Moreover, studies like that of Jin et al. (2023) demonstrate how DEA models, including variations
like DEWA, can be adapted for efficiency assessments in uncertain environments, underlining the
versatility of these models.

Similarly, works such as that of Qu et al. (2022) employ robust DEA models to measure the
operational efficiency of complex systems, like pension insurance systems, effectively addressing
uncertainty. This approach is complemented by research like that of Singh et al. (2022), which
explores the optimization of DEA models in uncertain environments, showing the adaptability of
DEWA models to different operational contexts.

Therefore, the use of DEWA models in this study is in line with recent trends in efficiency
analysis literature, leveraging their ability to handle complexities and variations over time and
among different decision-making units.

For comparison, we also present the results of the DEA Charnes-Cooper-Rhodes output oriented
(CCR-O) model. The CCR model aims to maximize multiple outputs, given a set of multiple
inputs, so that the maximum possible score for a decision-making unit is 1 (Charnes et al. 1978).
The CCR model can be expressed mathematically as follows:

max
∑

n
r=1 (urb)(yrb)

∑
m
k=1 (νkb)(xk j)

subject to:

∑
n
r=1 (urb)(yr j)

∑
m
k=1 (νkb)(xk j)

≤ 1 for every j

urb,νkb ≥ ε for every r,k

(1)

where

yrj – output vector r produced by unit j

xkj – input vector k used by unit j

urb – weight given to output r per basic unit b

vkb – weight given to input k per basic unit b

j = 1, 2, 3,..., p; p represents the number of DMUs being evaluated.

r = 1, 2, 3,..., n; n denotes the number of different types of outputs produced by each DMU.

k = 1, 2, 3,..., m; m is the number of different types of inputs utilized by each DMU.

ε = very small positive number

3.2 Second Stage: Three-Level Hierarchical Linear Model with Repeated Measures

In the second stage, we sought to identify the critical success factors that affect airport efficiency
through a hierarchical linear model. In this work, we estimated a three-level linear hierarchi-
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cal model with repeated measures that, as far as we know, has never been used in the airport
literature.

In hierarchical models, the key advantage over traditional regression models lies in their consid-
eration of the natural nesting of data. These models stand out in identifying and analyzing indi-
vidual heterogeneities between groups, allowing the specification of random effects at each level
of analysis. This approach is reinforced by recent studies, such as that of Ferreira et al. (2021),
which explore fast and scalable calculations for hierarchical Gaussian models with autoregres-
sive conditional intrinsic spatial random effects. Similarly, Diestelkaemper et al. (2021) empha-
size the need for holistic approaches to understand and manage missing answers in nested data,
further underlining the significance of hierarchical models in handling data complexities. There-
fore, these models’ ability to manage nested data structures and individual group differences
underpins their effectiveness and growing application in various research fields.

For instance, since airports are nested in locations such as states, a hierarchical model will define
a random component at the airport level and another at the state level. In a traditional regression
model, the effect of the locations on certain units (in this case, airports) would be homogeneous.
In this sense, hierarchical models are also called random coefficient models or multilevel mod-
els. In a hierarchical model, the explanatory variables can be inserted in both fixed and random
effects components, since the estimated parameters of the fixed effects’ component indicate the
relationship between the explanatory variables and the outcome variable, and the random effects’
component can be represented by the combination of the explanatory variables and unobserved
random terms (West et al., 2015, Fávero et al. 2018).

These models propose a framework of analysis that recognizes the levels at which data are struc-
tured, being each level represented by its own equation (Fávero and Belfiore 2019; Gelman 2006;
Raudenbush and Bryk 2002; Rabe-Hesketh and Skrondal 2012; Snijders and Bosker 2011).

Therefore, following Hair Jr. and Fávero (2019), we can define a general model with three anal-
ysis levels and nested data. The first level presents explanatory variables Z1, ..., ZP, which refer
to level-1 units i (i = 1, ..., n). The second level presents explanatory variables X1, ..., XQ, which
refer to level-2 units j (j = 1, ..., J). The third level presents explanatory variables W1, ..., WS,
which refer to level-3 units k (k = 1, ..., K), as follows:

Level 1: Yijk = π0jk +
P

∑
p=1

πpjk ·Zpjk + eijk (2)

where πp jk (p = 0, 1, ..., P) refers to the level-1 coefficients, Zpjk is the p-th level-1 explanatory
variable for observation i in the level-2 unit j and in the level-3 unit k, and eijk refers to the level-1
error terms that follow a normal distribution, with mean equal to zero and variance equal to σ2.

Level 2: πpjk = bp0k +
Qp

∑
q=1

bpqk ·Xqjk + rpjk (3)

where bpqk (q = 0, 1, ..., Qp) refers to the level-2 coefficients, Xqjk is the q-th level-2 explanatory
variable for unit j in the level-3 unit k, and rpjk are the level-2 random effects, assuming for each
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unit j that the vector (r0jk, r1jk, ..., rPjk)´ follows a multivariate normal distribution, which is
a generalization of the one-dimensional normal distribution to higher dimensions. It represents
a distribution for a vector of random variables where each element of the vector is normally
distributed and there is some correlation between the elements (Karamikabir et al., 2023). Each
element has a mean of zero and variance of τrπ pp.

Level 3: bpqk = γpq0 +
Spq

∑
s=1

γpqs ·Wsk +upqk (4)

where ϒpqs (s = 0, 1, ..., Spq) refers to the level-3 coefficients, Wsk is the s-th level-3 explanatory
variable for unit k, and upqk are the level-3 random effects, assuming that for each unit k the
vector formed by terms upqk follows a multivariate normal distribution with each element having
a mean of zero and variance of τuπ pp, which results in a variance-covariance matrix Tb with a
maximum dimension equal to:

DimmaxTb =
P

∑
p=0

(Qp +1) ·
P

∑
p=0

(Qp +1) (5)

which depends on the number of level-3 coefficients specified with random effects.

In this sense, we assume a single level-1 explanatory variable that corresponds to the periods in
which the data of the dependent variable are monitored, and this temporal evolution characterizes
the term repeated measures. Thus, we have that:

Ytjk = π0jk +π1jk ·periodjk + etjk (6)

being π0 jk and π1 jk the intercept and the slope (evolution across time) of the model, respectively.
For a model with only one explanatory variable X representing a level-2 characteristic for a unit
j, and also one explanatory variable W representing a level-3 characteristic for a unit k, we can
define, from Expression (6), the following model:

Level 1: Ytjk = π0jk +π1jk ·periodjk + etjk (7)

Level 2: π0jk = b00k +b01k ·Xjk + r0jk (8)

π1 jk = b10k +b11k ·Xjk + r1jk (9)

Level 3: b00k = γ000 + γ001 ·Wk +u00k (10)

b01k = γ010 + γ011 ·Wk +u01k (11)

b10k = γ100 + γ101 ·Wk +u10k (12)

b11k = γ110 + γ111 ·Wk +u11k (13)
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The result of combining Expressions (7) to (13) is the following equation:

Ytjk =
(

γ000 + γ001 ·Wk + γ010 ·Xjk + γ011 ·Wk ·Xjk +u00k +u01k ·Xjk + r0jk
)︸ ︷︷ ︸

random effects intercept

+
(
γ100 + γ101 ·Wk + γ110 ·Xjk + γ111 ·Wk ·X jk +u10k +u11k ·X jk + r1jk

)
·periodjk︸ ︷︷ ︸

random effects slope

+ etjk

(14)

According to Tabachnick and Fidell (2019), hierarchical models allow interactions both between
error terms and variables in the random effects component, and between variables in the fixed
effects component. Additionally, if the variances of the random terms u10k, u11k, r0jk, and r1jk are
statistically significant at a specific confidence level, traditional parameter estimations, such as
OLS, will not be adequate.

3.3 Methodological Process

Considering the integration of two different methodological processes, we provide a graphical
explanation of the process steps to be followed in the evaluation of airport capacities. In this
sense, Figure 1 presents the methodological flowchart.

4 VARIABLE SELECTION AND DATA COLLECTION

4.1 Variable Selection

We used a two-stage model. In section 4.1.1 we presented the input and output variables used in
the first stage to determine the airports’ operational efficiency (first stage of the model). In section
4.1.2 we presented the variables used to explain that efficiency (second stage of the model).

4.2 Selection of the First Stage Variables

Several combinations of inputs and outputs have been considered in the airport literature, as
shown in the Appendix. In terms of physical infrastructure efficiency, the main inputs are runway
area for the landing and takeoff of aircraft, cargo terminal area, passenger terminal area, number
of runways, and runway length. Some papers consider financial factors, such as labor, material,
and capital (operating) costs. The most common outputs are number of air passenger movements
(number of paying passengers: boarding and disembarking), number of air transport movements
(number of landings and takeoffs), and cargo volume. Some studies combine passengers and
cargo into one measure, denominated workload units.

We considered the following inputs: (i) passenger terminal total area (square meters), (ii) takeoff
and landing total area (square meters), and (iii) aircraft yard area (square meters). We considered
the following outputs: (i) number of air passenger movements, (ii) paid cargo and mail (kg) of
shipments and receipts, and (iii) number of air transport movements.

Pesquisa Operacional, Vol. 44, 2024: e281311



10 OPERATIONAL EFFICIENCY IN BRAZILIAN AIRPORTS

Figure 1 – Methodological process.

4.3 Selection of the Second Stage Variables

The efficiencies calculated in the first stage for each year correspond to the dependent variables
of the second-stage HLM3 with repeated measures. To identify the explanatory variables to be
considered as determinants of airport efficiency, two points must be considered. First, the input
and output variables in the first stage should not be reused as explanatory variables in the second
stage (Lin & Hong, 2006). Second, as shown in the Appendix, several studies in the airport
literature have defined airport efficiency determinants (e.g., Adler and Liebert 2014; Assaf and
Gillen 2012; Choo and Oum 2013; Martı́n et al. 2013; Martini et al. 2013; Merket and Assaf
2015; Oum et al. 2006; Pathomsiri et al. 2008; Scotti et al. 2012; See and Lin 2015; Ülkü 2015;
Voltes-Dorta and Pagliari 2012; Wanke 2012a, b, 2013; Zou et al. 2015). Table 1 details the
explanatory variables of the HLM3 model with repeated measures in the present study.

Pesquisa Operacional, Vol. 44, 2024: e281311



PATRÍCIA BELFIORE et al. 11

Table 1 – Second-Stage Explanatory Variables.

Determinant Factor Variable Unit Label

Governance Structure Property Nominal

Public = 0
Private = 1
Mixed = 2

Airport Operational
Characteristics

Size m2 Size

Number of commercial establishments Commerce
Number of aircraft parking positions Positions
Number of vehicle parking lots Parking lots
Airport years of experience Experience

Service Strategy Number of airlines Airlines
Economic Factors Average oil barrel price US$/bbla FOBb Oil

Foreign exchange R$/US$ Exchange
Interest rate % Interest
GDPc growth (t-1) % GDP
Unemployment rate (t-1) % Unemployment

Location Airport location State Location

4.4 Main Brazilian Airports

The initial sample comprised 60 Brazilian airports, of which the 30 largest accounted for
about 94% of air traffic movements (passengers, cargo, landings, and takeoffs) (ANAC, 2020a,
2020b). Ribeirão Preto and Porto Seguro airports were excluded from the sample due to lack of
information. Table 2 shows the study sample.

Table 2 – Study Sample: Top 30 Brazilian Airports for Air Traffic Movements.

Aracaju Airport (SE) Teresina Airport (PI) Belo Horizonte International
Airport – Cofins (MG)

Brasilia International Airport
(DF)

Belém International Airport –
Val-de-Cans (PA)

Campo Grande International
Airport (MS)

Cuiabá International Airport –
Mal. Rondon (MT)

Campinas International Airport –
Viracopos (SP)

Florianópolis International
Airport – Hercı́lio Luz (SC)

Fortaleza International Airport –
Pinto Martins (CE)

Curitiba International Airport –
Afonso Pena (PR)

Goiânia International Airport –
Santa Genoveva (GO)

João Pessoa International Airport
– Bayeux (PB)

Foz do Iguaçu/Cataratas
International Airport (PR)

Maceió International Airport –
Zumbi dos Palmares (AL)

Manaus International Airport
(AM)

Londrina Airport (PR) Navegantes International Airport
(SC)

Porto Alegre International
Airport – Salgado Filho (RS)

Natal International Airport (RN) Porto Velho International Airport
(RO)

Recife International Airport –
Guararapes (PE)

Salvador International Airport
(BA)

Rio de Janeiro International
Airport – Galeão (RJ)

Rio de Janeiro Airport – Santos
Dummont (RJ)

São Paulo Airport – Congonhas
(SP)

São Paulo International Airport –
Guarulhos/Cumbica (SP)

São Luı́s International Airport –
Tirirical (MA)

Uberlândia Airport (MG) Vitória Airport (ES)

Pesquisa Operacional, Vol. 44, 2024: e281311



12 OPERATIONAL EFFICIENCY IN BRAZILIAN AIRPORTS

4.5 Data Collection

The input and output variables of the DEA model for each airport, as well as the explanatory vari-
ables of the HLM3 model with repeated measures, were collected for 2014–2018. Output data of
the first stage were collected from the airport rankings of the Agência Nacional de Aviação Civil
(National Civil Aviation Agency)1. Other data regarding the input variables of the DEA model
and the explanatory variables of the second stage were obtained from the Infraero website2.
Table 3 summarizes selected information on the sample airports for 2014-2018.

Table 3 – Average Values per Airport, 2014-2018.

Airport (Decision-making Unit)
Air Transport
Movementsa

Paid Cargo and Mail
(kg): Shipments and

Receipts
Air Passenger
Movementsb

Aracaju 10,511.40 2,893,534.00 1,221,695.80
Belém 33,554.80 29,280,421.00 3,428,490.80
Belo Horizonte - Confins 101,554.80 32,483,399.00 10,205,399.60
Brası́lia 143,482.00 90,067,094.00 17,817,206.40
Campinas 114,229.40 233,051,174.60 9,217,247.40
Campo Grande 14,625.20 6,505,266.80 1,522,068.80
Cuiabá 30,828.40 11,420,587.60 2,980,598.60
Curitiba 65,415.00 26,904,066.20 6,639,258.20
Florianópolis 32,072.20 9,769,247.80 3,550,457.80
Fortaleza 46,312.20 45,596,343.20 6,087,102.80
Foz do Iguaçu 15,977.00 660,115.40 1,999,410.20
Goiânia 31,441.60 11,898,892.60 3,039,459.20
João Pessoa 10,987.40 4,284,924.20 1,374,182.60
Londrina 10,500.00 1,794,999.00 962,442.40
Maceió 15,133.80 2,965,716.00 1,977,262.40
Manaus 31,000.80 127,774,118.60 2,907,680.40
Natal 17,384.60 9,764,213.80 2,219,867.80
Navegantes 14,505.60 2,470,712.60 1,504,842.00
Porto Alegre 68,519.40 32,369,834.60 7,904,932.60
Porto Velho 9,062.40 5,735,882.80 840,006.60
Recife 61,295.00 55,433,938.80 7,254,243.20
Rio de Janeiro - Galeão 117,770.00 119,819,456.00 15,981,285.40
Rio de Janeiro - Santos Dummont 95,320.20 6,467,327.00 9,214,135.40
Salvador 69,681.40 52,960,646.20 8,201,773.40
São Luı́s 15,711.20 9,410,590.00 1,635,881.40
São Paulo - Congonhas 170,321.40 47,345,630.60 19,798,121.40
São Paulo - Guarulhos 267,549.40 577,000,267.40 37,984,034.40
Teresina 10,876.20 5,225,293.60 1,088,293.60
Uberlândia 12,474.20 1,811,140.60 1,058,368.40
Vitória 28,757.20 18,602,615.80 3,118,685.20

Obs.: a. Air transport movements (number of landings and takeoffs); b. air passenger movements (number of
paying passengers: boarding and disembarking).

1 https://www.gov.br/anac/pt-br/assuntos/dados-e-estatisticas/mercado-do-transporte-aereo/demanda-e-oferta.
Accessed on February 6th, 2024.
2 http://www4.infraero.gov.br. Accessed on January 28th, 2024.
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Table 4 presents a statistical summary for the input and output variables in the model.

Table 4 – Descriptive Statistics for Input and Output Variables in the Data Envelopment Analysis.

Input Output
Aircraft

Yard Area -
m2

(Input)

Takeoff &
Landing

Total Area -
m2

(Input)

Passenger
Terminal

Total Area -
m2

(Input)

Air
Transport

Movements
(Output)

Paid Cargo &
Mail (kg):

Shipments and
Receipts
(Output)

Air Passenger
Movements

(Output)

Average 143,519 145,243.7 63,277.07 55,561.81 52,725,581.66 6,424,481.14
Standard
Deviation

208,136.7 63,673.25 87,025.25 58,960.61 111,046,809.40 7,782,323

Minimum 14,633 76,545 4,414 7,728 614,492 767,851
Maximum 975,513 329,460 387,000 283,781 634,000,267.40 41,284,034.40

Note: Air transport movements (number of landings and takeoffs); air passenger movements
(number of paying passengers: boarding and disembarking). Total of 150 observations.

5 MODEL IMPLEMENTATION AND ANALYSIS OF RESULTS

5.1 First Stage (Airport Efficiency): CCR-O and Data Envelopment Window Analysis
Models

5.1.1 CCR-O Model

The Charnes-Cooper-Rhodes output oriented (CCR-O) model was implemented first to evalu-
ate airport efficiency in each year from 2014 to 2018, using the ISYDS (Integrated System for
Decision Support) free software.

The computational tests were carried out on VAIO desktop, Intel Core i5 10210U CPU 8GB
512GB SSD. The average computational time was 5 seconds.

Table 5 presents the results, including the average efficiency during the analyzed period and
airport rank according to the average efficiency.

As shown in Table 5, Campinas, Rio de Janeiro (Santos Dummont), São Paulo (Congonhas),
and São Paulo (Guarulhos) airports obtained maximum efficiency for all years analyzed. Among
the remaining airports, those with the best average performance in the analyzed period were
Teresina, Manaus, and Fortaleza, respectively. Natal airport had the worst performance, followed
by Maceió, Foz do Iguaçu, Curitiba, and Rio de Janeiro (Galeão), respectively.
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Table 5 – CCR-O Model Results for 2014-2018.

Decision-making Unit 2014 2015 2016 2017 2018 Average Rank
Aracaju 0.4448 0.4234 0.4059 0.3832 0.3739 0.4062 25
Belém 0.7895 0.7451 0.6074 0.6022 0.5574 0.6603 16
Belo Horizonte - Confins 0.6693 0.6483 0.5583 0.5584 0.5683 0.6005 20
Brası́lia 0.7473 0.7903 0.7358 0.6562 0.6650 0.7189 12
Campinas 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
Campo Grande 0.6989 0.8667 0.8718 0.7948 0.7915 0.8047 10
Cuiabá 0.7521 0.8710 0.7383 0.5826 0.5923 0.7073 13
Curitiba 0.3595 0.3201 0.2740 0.2725 0.2616 0.2975 27
Florianópolis 0.7799 0.8694 0.8911 0.9308 0.9201 0.8783 8
Fortaleza 1.0000 1.0000 0.9605 0.9126 0.9577 0.9662 7
Foz do Iguaçu 0.2296 0.2454 0.2141 0.2415 0.2584 0.2378 28
Goiânia 0.5058 0.4558 0.3905 0.3689 0.3888 0.4220 24
João Pessoa 0.4146 0.4836 0.5236 0.5335 0.5424 0.4995 22
Londrina 0.4296 0.4375 0.4685 0.4599 0.4726 0.4536 23
Maceió 0.2118 0.2249 0.2319 0.2290 0.2415 0.2278 29
Manaus 1.0000 1.0000 1.0000 0.9880 0.8981 0.9772 6
Natal 0.1463 0.2612 0.2489 0.2267 0.2455 0.2257 30
Navegantes 0.6216 0.6977 0.7034 0.7461 0.9635 0.7465 11
Porto Alegre 0.6842 0.6687 0.5849 0.5728 0.5925 0.6206 18
Porto Velho 0.8125 0.7940 0.6336 0.4256 0.4408 0.6213 17
Recife 0.9004 0.9430 0.8287 0.8013 0.8235 0.8594 9
Rio de Janeiro - Galeão 0.3988 0.3757 0.3503 0.3381 0.3179 0.3562 26
Rio de Janeiro - Santos
Dummont

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

Salvador 0.7158 0.6763 0.5965 0.5239 0.5220 0.6069 19
São Luı́s 0.8040 0.8144 0.6441 0.6537 0.5724 0.6977 15
São Paulo - Congonhas 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
São Paulo - Guarulhos 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
Teresina 1.0000 1.0000 1.0000 0.9877 0.9003 0.9776 5
Uberlândia 0.7507 0.7422 0.6397 0.6505 0.7097 0.6986 14
Vitória 0.4892 0.5202 0.5446 0.5842 0.6005 0.5477 21

5.1.2 Data Envelopment Window Analysis Model

The DEWA model was used to evaluate airport efficiency in each year, in the same conditions
of the CCR-O model. Table 6 presents the results, including the average efficiency during the
analyzed period and the airport rank according to the average efficiency.

As shown in Table 6, although the DEWA model follows a logic similar to the CCR-O model
in determining scores, the DEWA model produced more accurate results. The best ranked air-
ports remain the same as the CCR-O model, but they are no longer tied. According to the DEWA
model, the most efficient airports were São Paulo (Congonhas), Rio de Janeiro (Santos Dum-
mont), São Paulo (Guarulhos), and Campinas, respectively, and the least efficient were the same
as those in the CCR-O Model. The efficiencies obtained from the DEWA model will correspond
to the dependent variables of the second-stage hierarchical model with repeated measures.
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Table 6 – Data Envelopment Window Analysis Results, 2014-2018.

Decision-making Unit 2014 2015 2016 2017 2018 Average Rank
Aracaju 0.4045 0.3590 0.3511 0.3533 0.3541 0.3644 25
Belém 0.7741 0.6476 0.4917 0.5076 0.5139 0.5870 15
Belo Horizonte - Confins 0.5932 0.6284 0.5496 0.5514 0.5683 0.5782 16
Brası́lia 0.6830 0.6823 0.6286 0.6005 0.6474 0.6484 13
Campinas 1.0000 0.9364 0.8483 0.9074 1.0000 0.9384 4
Campo Grande 0.6989 0.7211 0.6371 0.6146 0.6508 0.6645 11
Cuiabá 0.7305 0.7705 0.6185 0.5087 0.5391 0.6335 14
Curitiba 0.3212 0.3048 0.2647 0.2674 0.2604 0.2837 27
Florianópolis 0.7521 0.7483 0.7109 0.7834 0.8030 0.7595 9
Fortaleza 1.0000 0.9034 0.7917 0.8068 0.9118 0.8827 5
Foz do Iguaçu 0.1990 0.2197 0.1977 0.2324 0.2527 0.2203 28
Goiânia 0.4302 0.4006 0.3513 0.3517 0.3875 0.3843 24
João Pessoa 0.3998 0.4171 0.4135 0.4376 0.4677 0.4271 22
Londrina 0.4296 0.4076 0.3828 0.3658 0.3919 0.3955 23
Maceió 0.1998 0.2021 0.2030 0.2114 0.2304 0.2094 29
Manaus 1.0000 0.8122 0.7536 0.8053 0.8377 0.8418 6
Natal 0.1450 0.2388 0.2105 0.2064 0.2350 0.2071 30
Navegantes 0.6028 0.6602 0.6155 0.6783 0.8790 0.6872 10
Porto Alegre 0.6123 0.5967 0.5360 0.5471 0.5856 0.5756 18
Porto Velho 0.7878 0.6512 0.5060 0.3622 0.3894 0.5393 20
Recife 0.8333 0.8064 0.7127 0.7333 0.8051 0.7782 8
Rio de Janeiro - Galeão 0.3472 0.3295 0.3154 0.3198 0.3174 0.3259 26
Rio de Janeiro - Santos
Dummont

1.0000 1.0000 0.9096 0.9335 0.9616 0.9609 2

Salvador 0.7093 0.6085 0.4986 0.4710 0.5020 0.5579 19
São Luı́s 0.7982 0.6571 0.4703 0.4952 0.4701 0.5782 16
São Paulo - Congonhas 0.8911 0.9776 0.9909 0.9920 1.0000 0.9703 1
São Paulo - Guarulhos 0.9949 0.9526 0.8887 0.9131 1.0000 0.9499 3
Teresina 1.0000 0.8917 0.7538 0.7459 0.7406 0.8264 7
Uberlândia 0.7185 0.7176 0.5834 0.5951 0.6485 0.6526 12
Vitória 0.4460 0.4471 0.4544 0.5109 0.5632 0.4843 21

Obs.: Considering window length of 5 (W=5).

5.2 Second Stage (Efficiency Determinants): Three-level Hierarchical Linear Model with
Repeated Measures

In the first stage, we calculated airport efficiency and rank. In the second stage, we identified the
explanatory variables that impact airport efficiency. Our objective, however, is wider. In addition
to identifying the explanatory variables of the efficiency of Brazilian airports during 2014–2018,
we investigated whether variability occurred in efficiency over time among airports from the
same location and among airports from different locations. In cases of such variability, we iden-
tified the explanatory airport (level 2) and location (level 3) characteristics. Given the hierarchical
structure of the data, we used the hierarchical model proposed in section 3.2 to achieve our ob-
jectives. In this model, level 1 (repeated measure) represents time, level 2 airport characteristics,
and level 3 airport location, as shown in Table 7.
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Table 7 – Airport Efficiency Over Time (Level 1, Repeated Measure),
Characteristics (Level 2), and Location (Level 3).

Year t
(Level 1)

Airport j
(Level 2)

Location k
(Level 3)

Efficiency
(Ytjk)

1 1 1 0.4045
2 1 1 0.3590
3 1 1 0.3511
4 1 1 0.3533
5 1 1 0.3541

1 11 10 0.1990
2 11 10 0.2197
3 11 10 0.1977
4 11 10 0.2324
5 11 10 0.2527

1 30 23 0.4460
2 30 23 0.4471
3 30 23 0.4544
4 30 23 0.5109
5 30 23 0.5632

Obs.: Efficiency was determined using the Data Envelopment Window Analysis model (Table 6).

Table 7 samples a stratum of the database used, and aims to show the nested structure and tem-
poral evolution of the data, which characterizes repeated measurements. While time (year) is
defined as level 1 (periods nested within airports), there are sometimes more than one airport per
location and, therefore, airports are also nested within locations. In this sense, airports character-
ize level 2, while the location characterizes level 3 of the analysis. This is the reason why, in this
study, there are 30 airports nested in 23 locations.

To estimate the null model (“Null Model”) and the full HLM3 model with repeated measures
(“Full Model”), we followed the steps in Fávero and Belfiore (2019, 2024). For the Full Model,
we first estimated a preliminary Full Model with all variables and then we estimated a final
Full Model with only significant variables. Table 8 presents the results from the Null Model,
comparing it with the correspondent OLS estimation.

Our panel was balanced, as each airport had a minimum and maximum number of monitoring
periods equal to five, with an average also equal to five. In relation to the fixed effects component,
as shown in Table 8, we verified that the estimation of the parameter ϒ000 equaled 0.5886, which
corresponds to the average of the expected annual efficiencies of the airports (horizontal line
estimated in the Null Model or general intercept).
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Table 8 also presents the estimates of the variances of error terms. They are τu000 = 0,0247316
for the location level; τr000 = 0,0248524 for the airport level; and σ2 = 0,0055 for the repeated
measure level. Therefore, we defined two intraclass correlations, given the existence of two pro-
portions of variance. The first one refers to the correlation between the data of the efficiency
variable in t and in t’ (t ̸= t ′) of a certain airport j belonging to a certain location k (level 2 in-
traclass correlation). The other one refers to the correlation between the data of the efficiency
variable in t and in t’ (t ̸= t ′) of different airports j and j’ ( j ̸= j′) belonging to a certain location
k (level 3 intraclass correlation).

Table 8 – Results of the Null OLS and HLM3 Models.

OLS HLM3
Fixed Effects Coefficient Coefficient
ϒ000 0.5970773 ***

(0.0196281)
0.5886218 ***
(0.0449662)

Random Effects
Location (τu000) 0.0247316 *

(0.0139129)
Airport (τr000) 0.0248524 **

(0.011066)
Residual (σ2) 0.0055248 ***

(0.0007133)
Log restricted-likelihood 119.041
LR test vs. OLS linear regression chi2 (2) = 241.14

sig. chi2 = 0.000
Obs.: Std. errors in parenthesis. *, **, *** indicate, respectively, significance levels of 10%, 5%, and 1%.

As demonstrated by Fávero and Belfiore (2024), in relation to the model estimation, while the
fixed effects parameters are estimated by maximum likelihood - ML), the variance components
of the error terms were estimated in this study by restricted estimation of maximum likelihood –
REML).

Regarding the statistical significance of these variances, the fact that the estimated values of
τu000, τr000, and σ2 are considerably higher than the respective standard errors indicates signif-
icant variation in annual efficiency among airports and among locations. This variation is more
significant among airports, with ratios greater than 1.96, which is the critical value of the stan-
dardized normal distribution that results in a significance level of 5%. At the very bottom of
Table 8, we verified this fact by analyzing the result of the likelihood ratio test (long-run test).
As Sig.χ2 = 0,000, we reject the null hypothesis that the random intercepts equal zero (H0: u00k

= r0jk = 0) and thus discard the estimation of a traditional OLS linear regression model with
repeated measures in favor of a hierarchical model for our data.

Although researchers often disregard the estimation of null models, their results may help de-
cide whether to reject some research hypotheses and even provide adjustments in relation to the
proposed constructs. In this sense, our findings can independently reject or confirm research hy-
potheses and help structure research, depending on the researcher’s objectives, without needing
to estimate additional models. Moreover, they allow researchers to draw important conclusions.
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For our data, the results of the Null Model affirm that there is significant variability in airport
efficiency (i) over the five-year analysis period, (ii) among airports in the same location over
time, and (iii) among airports from different locations over time. Thus far, our results indicate
that location plays an important role in airport efficiency.

As an additional objective, we sought to identify airport characteristics that explain the variability
in efficiency among airports from the same location and different locations. The variable property
is qualitative with three categories (public, private, and mixed). Thus, it was transformed into n-1
dummies or a binary (property pu and property pr), as the explanatory variables of the HLM3
model with repeated measurements must be quantitative or binary. The order of insertion of the
random effects components is decreasing when there are more than two levels; thus, we started
with the higher level of data nesting and proceeded to the lower level (level 2). Table 9 shows
the outputs of the preliminary Full OLS and HLM3 Models, considering all variables (even
non-significant ones).

The preliminary Full Model (Table 9) presents significant estimates, at a significance level of
5%, of both the fixed effects parameters and the random effect variance terms. At this point in
the modeling, we identified that airport efficiency followed a negative linear trend over time, with
significant variance of intercepts and slopes among airports from the same location and different
locations. In other words, there is variance of Y (efficiency) over time, of Y over time among
airports, and of Y over time among airports from different locations.

These statements can be confirmed through the efficiency tables generated by the CCR-O and
DEWA models (Tables 5 and 6). First, we verified variation of efficiency over the five-year
period, among airports over the five-year period, and among airports from different locations
over the five-year period. Based on the results from the DEWA model in Table 6, the anal-
ysis can be enhanced to present a more detailed perspective of the performance of Brazil-
ian airports. For example, we found that all airports in the state of São Paulo (Congonhas-SP,
Guarulhos-SP, and Viracopos-Campinas) and one airport in the state of Rio de Janeiro (Santos
Dummont-RJ) demonstrated superior performance. Each of these airports exhibited consistently
high performance throughout the study period.

On the other end, airports like Natal, Maceió, Foz do Iguaçu, Curitiba, and Rio de Janeiro -
Galeão were among the least efficient. This comprehensive analysis, highlighting the top and
bottom performers, provides a clearer understanding of the relative efficiency of these airports
over the years. The results reflect significant variability in efficiency among the airports, with
certain locations like São Paulo and Rio de Janeiro showing consistently high performance. This
suggests that factors like location, infrastructure, and operational strategies could be influencing
airport efficiency significantly.
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Table 9 – Results of the Preliminary Full OLS and HLM3 Models.

OLS HLM3
Fixed Effects Coefficient Coefficient
year omitted because of collinearity -0.0304682 **

(0.0137552)
property pu 0.0005183

(0.0845324)
0.0636678
(0.1958613)

property pr 0.0253428
(0.0779822)

0.0403057
(0.1598442)

size -7.56e-09 *
(4.21e-09)

-5.01e-09
(9.25e-09)

commerce -0.002915 ***
(0.0004977)

-0.0011862
(0.0008209)

positions -0.003262 ***
(0.0007276)

-0.0043217 ***
(0.0006438)

parkinglots 0.0000941 ***
(0.0000178)

0.0000429
(0.0000464)

experience 0.0053331 ***
(0.0008272)

0.0052709 ***
(0.0015987)

airlines 0.0178514 ***
(0.0036366)

0.014936 ***
(0.0035717)

oil 0.0003901
(0.0017475)

-0.0022386
(0.0018278)

exchange omitted because of collinearity 0.1175076 *
(0.0650074)

interest -0.0060879
(0.0215517)

-0.0114815 ***
(0.0018883)

gdp 2.47e-06
(0.0262107)

omitted because of collinearity

unemployment -0.019004 *
(0.0107965)

omitted because of collinearity

constant (ϒ000) 0.550622 **
(0.2689884)

0.1969086
(0.3244751)

Random Effects
Location
(τu000 - year) 0.0009724 **

(0.0004136)
(τu000) 0.0564411 ***

(0.0194064)
Airport
(τr100 - year) 0.0002049 ***

(0.0001765)
(τr000) 0.0020173

(.0037822)
Residual (σ2) 0.0011933 ***

(0.0001814)
Log restricted-likelihood 115.081
LR test vs. OLS linear regression chi2 (4) = 288.65

sig. chi2 = 0.000
Obs.: Std. errors in parenthesis. *, **, *** indicate, respectively, significance levels of 10%, 5%, and 1%.

We also identified airport characteristics (factors) that explain the variability in efficiency. Table
9 shows that the most significant factors (p-value <0.05) were positions (number of aircraft
parking positions), airlines (number of airlines operating at the same airport), interest (interest
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rate), and experience (airport years of experience). We also concluded that among the economic
variables analyzed, only interest rate was significant. The variables gdp and unemployment were
omitted from the model due to multicollinearity problems, which can affect the quality of the
results and make data interpretation difficult. The variables property (public, private, or mixed),
size (airport size), commerce (number of commercial establishments), and parkinglots (number
of vehicle parking lots) were not significant in explaining the variability in airport efficiency.
To estimate the final parameters of the HLM3 model with repeated measures, we excluded non-
significant variables and those with multicollinearity problems. Table 10 shows the results for
the Final Full OLS and HLM3 Models, for comparison purposes.

Table 10 – Results of the Final Full OLS and HLM3 Models.

OLS HLM3
Fixed Effects Coefficient Coefficient
year -0.030452 **

(0.0162027)
-0.0352056 ***
(0.0075832)

positions -0.0023563 ***
(0.0007067)

0.0039658 ***
(0.0005659)

experience 0.0039631 ***
(0.0008674)

0.0036492 ***
(0.0011499)

airlines 0.0185042 ***
(0.0038505)

0.012948 ***
(0.0029331)

interest -0.0112002
(0.0084779)

-0.0112002 ***
(0.001534)

constant 0.5182444 ***
(0.1439958)

0.623239 ***
(0.0956811)

Random Effects
Location
(τu100 - year) 0.0009993 **

(.000398)
(τu000) .0529503 ***

(.0174719)
Airport
(τr100 - year) .0001285

(.0001394)
(τr000) .0026943

(.0025413)
Residual (σ2) .0015415 ***

(.0002327)
Log restricted-likelihood 147.297
LR test vs. OLS linear regression chi2 (4) = 311.96

sig. chi2 = 0.000
Obs.: Std. errors in parenthesis. *, **, *** indicate, respectively, significance levels of 10%, 5%, and 1%.

As Sig.τ2 = 0,000 in Table 10, we can reject the null hypothesis that the random intercepts equal
zero (H0: u00k = r0jk = u10k = r1jk = 0) and thus discard the estimation of the traditional OLS
linear regression model with repeated measures in favor of a hierarchical model for our data.
One can also observe that the OLS estimation can produce biased parameters, with different
statistical significances (as observed for variable interest) and even inverted signals (as observed
for variable positions).
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The final Full Model has the following specification:

efficiencytjk = 0,623−0,0352.yearjk +0,00397.positionsjk +0,00365.experiencejk

−0,0112.interestjk +0,01295.airlinesjk

+u00k +u10k.yearjk + r0 jk + r1jk.yearjk + etjk

(15)

Compared to the preliminary Full Model, the final Full Model has one important difference, in
terms of significant variables: the inversion of the signal of positions, corroborating the need
for this last step. In Expression (15), the signal of variable year is negative in the final Full
Model, indicating that efficiency of Brazilian airports decreased from 2014 to 2018. The other
negative signal relates to the interest rate, indicating that it negatively affected airport efficiency;
that is, the higher the interest rate, the lower the efficiency. All other significant characteristics
(e.g., positions, experience, and airlines) had positive signals, indicating that airports with higher
scores for these characteristics had higher efficiency scores.

Finally, we estimated an OLS regression model, neglecting the nested structure of the data. The
OLS model points at the same significant variables and impact (positive or negative) on airport
efficiency. Notwithstanding the fact that the results are similar, the HLM3 model with repeated
measurements produced a much better fit to the observed data than the OLS model. Figure 2
compares the predicted efficiency values generated by the HLM3 model with repeated measure-
ments to those generated by OLS estimation, for all airports in each analyzed period, using the
explanatory variables of the final Full Model.

.2
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Smoothline HLM3 Fitted HLM3
Observed Values

Figure 2 – Three-level Hierarchical Linear Model and Ordinary Least Squares Regression Model Fit.

Obs.: Considered only significant variables.
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As Figure 2 shows, both models capture the overall trend of the observed data, but there are
differences in how closely they fit the observed values. It seems the HLM3 model, which ac-
counts for the nested data structure, fits the data points more closely than the OLS model. This
is particularly noticeable in the middle of the graph, where the HLM3 smoothline follows the
cluster of observed values more tightly than the OLS smoothline. The scatterplot supports the
claim that the HLM3 model, with repeated measurements, provides a better fit to the observed
data compared to the OLS model, which does not account for the nested structure of the data.

In sum, our hierarchical linear model has a better fit, in comparison to the OLS model, since it
takes into account the nested structure of the data.

6 FINAL CONSIDERATIONS

The present paper analyzed the efficiency of the 30 largest Brazilian airports (corresponding to
94% of Brazilian traffic) during 2014 to 2018. The analysis consisted of two stages. The first
stage assessed the airports’ operational efficiency and changes in productivity over time using
two techniques, CCR-O and DEWA. The DEWA model offered better results among the best
ranked airports. In the second stage, we identified the explanatory variables that impacted airport
efficiency, considering the annual efficiencies calculated in the first stage. Given the temporal
and nested structure of the data, we applied, in the second stage, an HLM3 model with repeated
measures. This is the first time, to our knowledge, that such a model has been used in the airport
efficiency literature. In comparing the HLM3 model with an OLS regression model, our tests
indicated (i) not only that the hierarchical model performed better in terms of model fit but also
(ii) that it was the correct model to be used.

The explanatory variables (critical success factors) analyzed included airport operational charac-
teristics, governance structure, service strategy, economic factors, location, and period. First, we
identified variance of Y (efficiency) over time, of Y over time and among airports, and of Y over
time among airports from different locations. We concluded that location played an important
role in airport efficiency – airports with the same characteristics but from different locations have
different operational efficiency. It is thus important to properly model the nested structure, which
we did by adopting a hierarchical model. With regard to the efficiency variability among airports
from different locations, we concluded that all airports in São Paulo (Congonhas-SP, Guarulhos-
SP and Viracopos-Campinas) and one in Rio de Janeiro (Santos Dummont-RJ) performed better
than the other airports analyzed. With regard to the efficiency variability over time, we noted a
decrease in the average efficiency of airports from 2014 to 2018.

Significant factors with positive influence that explained efficiency included number of aircraft
parking positions, airport years of experience, and number of airlines. The only economic factor
with significant negative influence was the interest rate. Opposing the expected assumptions and
conclusions of several papers (Adler and Liebert 2014; Adler et al. 2013; Hooper and Hensher
1997; Martı́n and Román 2001; Merkert and Mangia 2014; Perelman and Serebrisck 2012; Tovar
and Martı́n-Cejas 2009), we found that governance structure (public, private, or mixed) did not
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affect the efficiency of Brazilian airports in the analyzed period. Also in contradiction to sev-
eral assumptions in the literature (Coto-Millán et al. 2014; Merkert and Mangia 2014; Tovar and
Martı́n-Cejas 2009), the following operational characteristics were not significant to explain vari-
ation in the efficiency of Brazilian airports: airport size, number of commercial establishments,
and number of vehicle parking lots.

The results of this study can help inform policy and regulatory decision makers by highlighting
areas that affect airport efficiency, thereby facilitating targeted developments that will improve
service and lower costs.

Researches in Operations and Logistics Management still use hierarchical models with parsi-
mony. Although there has been an increase in the use of such models, there is still considerable
room for improvement, given the many opportunities related to interesting themes, such as sup-
ply chain management, demand forecasting and service level management, for instance. In fact,
even when studying the influence of economic factors over operational efficiency, researchers
might benefit from using hierarchical models. While we believe the results presented here pro-
vide additional evidence supporting the use of hierarchical models, we emphasize the importance
of considering different levels, or contexts, when analyzing certain phenomena that consider het-
erogeneities over time and among locations. In a broader sense, these results are important for
emphasizing potential uses of this class of models in distinct areas of Operations and Logistics
Management.

As we considered data from 2014 to 2018, future researches can be carried out considering
broader periods and even taking into account the pandemic period of Covid-19, since the use of
airports was deeply affected during this crisis.
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APPENDIX

Table A1 – Airport Efficiency Studies.

Reference Sample data Model Input Output Explanatory variables
Hooper and Hensher
(1997)

6 Australian airports,
1988-1993

TFP index and OLS
regression

• Labor costs
• Capital costs
• Other operating costs

• Non-aeronautical revenues
• Aeronautical revenues

• Size of operation (output index)
• Airport-specific dummy variables

Gillen and Lall (1997) 21 US airports,
1989-1993

Two-stage DEA
model:
1) DEA
2) Tobit regression

(i) Terminal services
• Number of runways
• Number of gates
• Terminal area
• Number of employees
• Number of baggage claim belts
• Number of vehicle parking lots
(ii) Movements
• Airport area
• Number of runways
• Runway area
• Number of employees

(i) Terminal services
• Number of passengers
• Cargo
(ii) Movements
• Aircraft movements
• Number of passengers

i) Structural variables
• Number of runways
• Terminal area
• Number of gates
• Number of baggage claim belts per gate
ii) Environmental variables
• Annual service volume
iii) Dummy variables for the time period
• Year 1989
• Year 1990
• Year 1991
• year 1992
iv) Dummy variables for hub airports
• Atlanta
• San Francisco
• Minnesota and St Paul
• Seattle – Tacoma
• Phoenix
v) Noise strategy variables
• Preferential flight path
• Preferential runway use
• Limit on operations
• Limit on stage II aircraft
• Limit on operating hours
• Noise budget
vi) Management operational and
investment variables
• Number of airlines hubs
• % of gates common use
.• % of gates exclusive use
• % of international airports
• Financing regime
• % of general aviation traffic
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Sarkis (2000) 44 major US airports,

1990-1994
DEA, Multi-factor
efficiency models
and CA

• Operating costs
• Number of employees
• Number of gates
• Number of runways

• Operating revenues
• Aircraft movements
• General aviation
movements
• Number of passengers
• Cargo

Martı́n and Román
(2001)

37 Spanish airports, 1997 DEA models • Labor costs
• Capital costs
• Material costs

• Number of passengers
• Cargo
• Aircraft movements

Pels et al. (2001) 34 European airports,
1995-1997

DEA and SFA i – DEA (PAX model)
• Terminal size
• Number of aircraft parking
positions (terminal)
• Number of remote aircraft parking
positions
• Number of check-in counters
• Number of baggage claim belts
ii – DEA (ATM model)
• Airport area
• Number of runways
• Runway length
• Number of aircraft parking
positions (terminal)
• Number of remote aircraft parking
positions
iii – SFA (PAX model)
• Number of baggage claim belts
• Number of aircraft parking
positions (terminal)
• Number of remote aircraft parking
positions
iv – SFA (ATM model)
• Number of runways
• Number of aircraft parking
positions (terminal)
• Number of remote aircraft parking
positions

i – DEA (PAX model)
• Number of passengers
ii – DEA (ATM model)
• Aircraft movements
iii – SFA (PAX model)
• Number of passengers
iv – SFA (ATM model)
• Aircraft movements

Fernandes and Pacheco
(2002)

35 Brazilian airports,
1998

DEA • Apron area
• Departure lounge
• Number of check-in counters
• Curb frontage
• Number of vehicle parking lots
• Baggage claim area

• Number of passengers
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables

Bazargan and Vasigh
(2003)

45 US airports,
1996-2000 DEA

• Number of runways
• Number of gates
• Operating costs
• Non-operating costs

• Number of passengers
• Aircrafts movements
• Other movements
• Aeronautical revenues
• Non-aeronautical revenues
• % of on-time operations

Oum et al. (2003) 50 worldwide airports,
1999

TFP and log-linear
regression

• Number of employees
• Number of runways
• Terminal area
• Number of gates
• Soft cost input

• Aircraft movements
• Number of passengers
• Cargo
• Non-aeronautical revenue

Factors beyond managerial control
• Ownership structure
• Airport size
• Average aircraft size
• % of international passengers
Factors under managerial control
• Business diversification strategy
• Outsourcing
• Service quality

Pacheco and Fernandes
(2003)

35 Brazilian domestic
airports, 1998

DEA • Number of employees
• Payroll
• Operating costs

• Domestic passengers
• Cargo plus mail
• Operating revenue
• Non-aeronautical revenues
• Other revenues

Pels et al. (2003) 33 European airports,
1995-1997

DEA and SFA i - ATM model
• Airport area
• Number of runways
• Number of terminal aircraft
parking positions
• Number of remote aircraft parking
positions
ii – APM model
• Number of check-in counters
• Number of baggage claim belts
• Aircraft movements

i – ATM model
Aircraft movements
ii – APM model
• Number of passengers

Oum and Yu (2004) 76 worldwide airports,
2000-2001

VFP and log-linear
regression

• Number of employees
• Soft cost input

• Number of passengers
• Cargo
• Aircraft movements
• Non-aeronautical revenues

Factors beyond airport control
• Airport size
• Average aircraft size
• % of international passengers
• % of cargo in total traffic
• Capacity constraints
Factors within airport control
• Passenger satisfaction
• % of non-aeronautical revenue
• Terminal operator
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Sarkis and Talluri
(2004)

44 US airports,
1990-1994

DEA, Multi-factor
efficiency models
and CA

• Operating costs
• Number of employees
• Number of gates
• Number of runways

• Operating revenues
• Aircraft movements
• General aviation
movements
• Number of passengers
• Cargo

Yoshida and Fujimoto
(2004)

67 Japanese airports,
2000

Two-stage DEA
model:
1) DEA and TFP
index;
2) OLS regression

• Runway length
• Terminal area
• Access cost
• Number of employees

• Number of passengers
• Cargo
• Aircraft movements

• Third-category regional airports
• Airports that started their operations in the
1990s

Lin and Hong (2006) 20 major worldwide
airports, 2003

DEA models • Number of employees
• Number of check-in counters
• Number of runways
• Number of parking positions
• Number of baggage claim belts
• Number of aprons
• Number of boarding gates
• Terminal area

• Number of passengers
• Cargo
• Aircraft movements

Oum et al. (2006) 116 worldwide airports,
2001-2003

VFP and log-linear
regression

• Number of employees
• Soft cost input

• Number of passengers
• Aircraft movements
• Non-aeronautical revenues

Airport characteristics
• Airport size
• Runway utilization
• Average aircraft size
• % of international passengers
• % of cargo in total traffic
Other factors
• Ownership structure
• Regional business environments
• Business diversification (% of
non-aeronautical revenue)

Barros and Dieke
(2007)

31 Italian airports,
2001-2003

DEA models • Labor
• Capital costs
• Other operating costs

• Aircraft movements
• Number of passengers
• Cargo
• Handling receipts
• Aeronautical sales
• Non-aeronautical sales

Barros (2008a) 32 Argentine airports,
2003-2007

Two-stage DEA
model:
1) DEA
2) SWBT regression

• Number of employees
• Runway area
• Apron area
• Passenger terminal area

• Aircraft movements
• Number of passengers
• Cargo

• Time trend
• Airport hub status
• Work load units (WLU)
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Barros (2008b) 27 UK airports,

2000-2005
SCF (LR) estimated
using ML

• Operating costs
• Labor costs
• Capital premises
• Capital investments

• Number of passengers
• Aircraft movements

• Time trend
• Labor costs
• Capital premises
• Capital investments
• Number of passengers
• Aircraft movements
• Owned by BAA
• Owned by Manchester airports
• Owned by TBI

Barros and Dieke
(2008)

31 Italian airports,
2001-2003

Two-stage DEA
model:
1) DEA models
2) SWBT regression

• Labor costs
• Capital invested
• Operating costs excluding labor
costs

• Aircraft movements
• Number of passengers
• Cargo
• Handling receipts
• Aeronautical revenues
• Non-aeronautical revenues

• Time trend
• Airport hub status
• Work load units (WLU)
• Ownership structure
• Location

Oum et al. (2008) 109 Worldwide airports,
2001-2004

SCF (SR) estimated
via Bayesian
approach

Variable inputs
• Number of employees
• Non-labor variable cost
Fixed inputs
• Number of runways
• Passenger terminal area
Variable inputs’ prices
• Wage rate
• Non-labor input price
Variable inputs’ share
• Labor cost share

• Number of passengers
• Aircraft movements
• Non-aeronautical revenue

(i) Geographic distribution of airports (%)
(ii) Ownership structure (%)
(iii) Airport characteristics
• % of international passengers
• % of cargo

Pathomsiri et al. (2008) 56 US airports,
2000-2003

DDF and
Luenberger
productivity index

• Land area
• Number of runways
• Runway area

Desirable outputs
• Non-delayed flights
• Number of passengers
• Cargo
Undesirable outputs
• Delayed flights
• Time delays

Yu et al. (2008) 4 Taiwan’s airports,
1995-1999

• Traditional MPI
• Extended MPI
• Extended MLPI
with DDF

Inputs
• Operating costs
• Labor costs
• Capital costs
Environmental factors
• Aircraft movements
• Number of passengers

Desirable output
• Aeronautical revenue
• Non-aeronautical revenue
Undesirable output
• Aircraft noise

Barros and Weber
(2009)

27 UK airports,
2000-2005

DEA and MPI • Labor costs
• Capital costs
• Other costs

• Number of passengers
• Cargo
• Aircraft movements
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Chi-Lok and Zhang
(2009)

25 Chinese airport,
1995-2006

Two-stage DEA
model:
1) DEA and MPI
2) OLS and Tobit
regression

• Runway length
• Terminal size

• Number of passengers
• Cargo
• Aircraft movements

(i) Airport localization program
(ii) Competition intensity
(iii) Public listing
(iv) Airport characteristics
• Airport hub status
• Local economy
• Coastal city
• Tourist city
• Population
• Demand and supply shocks
(v) Event variables
• Airline mergers
• Open-skies agreements
• Guangzhou new airport

Lam et al. (2009) 11 major Asian Pacific
airports, 2001-2005

DEA models:
a) CCR
b) BCC
c) SBM
d) Cost efficiency
model
e) Allocative
efficiency model

• Labor costs
• Capital costs
• Soft cost input
• Trade value

• Aircraft movements
• Number of passengers
• Cargo

Tovar and Martı́n-Cejas
(2009)

26 Spanish airports,
1993-1999

SFA • Number of employees
• Land area
• Number of gates

• Aircraft movements
• Average aircraft size
• % of non-aeronautical
revenue

• Outsourcing
• Non-aeronautical revenue
• Cargo

Assaf (2010) 27 UK airports, 2007 DEA and
Bootstrapped DEA

• Number of employees
• Airport area
• Number of runways

• Number of passengers
• Cargo
• Aircraft movements

Yang (2010) 12 international airports
in Asia-Pacific region,
1998-2006

DEA and SFA
(Cobb-Douglas
production function)
estimated using ML

• Number of employees
• Number of runways
• Operating costs

• Operating revenues • Number of employees
• Number of runways
• Operating costs
• Time trend

Tovar and Martı́n-Cejas
(2010)

26 Spanish airports,
1994-1999

SFA and MPI • Number of employees
• Number of gates
• Airport area

• Aircraft movements
• Average aircraft size
• % of non-aeronautical
revenue
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Lozano and Gutiérrez
(2011a)

41 Spanish airports, 2006 Non-radial DEA
models:
a) RMOTE
b) CRS
c) SE
d) NIRS
Target-setting DEA
model

• Runway area
• Apron capacity
• Passenger throughput capacity
• Number of baggage claim belts
• Number of check-in counters
• Number of boarding gates

• Number of passengers
• Aircraft movements
• Cargo

Lozano and Gutiérrez
(2011b)

39 Spanish airports,
2006-2007

SBM model and
DDF

• Runway area
• Apron capacity
• Number of baggage claim belts
• Number of check-in counters
• Number of boarding gates

Desirable outputs
• Aircraft movements
• Number of passengers
• Cargo
Undesirable outputs
• % of delayed flights
• Average delay time

Tsekeris (2011) 39 Greek airports, 2007 Two-stage DEA
model:
1) DEA models;
2) SWBT regression
and Bootstrapped
censored quantile
regression

• Number of runways
• Terminal and airplane parking area
• Operating hours

• Number of passengers
• Cargo
• Aircraft movements

• Location (island or mainland)
• Size of operations
• Operating characteristics

Assaf and Gillet (2012) 73 International airports
across Europe, North
America and Australia,
2003-2008

Two-stage DEA
model:
1) DEA and SFA;
2) SWBT regression

• Number of employees
• Other operating costs
• Number of runways
• Passenger terminal area

• Number of passengers
• Aircraft movements
• Non-aeronautical revenue

• Ownership structure
• Economic regulation

Assaf et al. (2012) 27 UK airports,
1998-2008

SFA • Labor costs
• Capital costs
• Materials costs

• Number of passengers
• Aircraft movements
• Cargo
• Non-aeronautical revenues

Chow and Fung (2012) 30 Chinese airports,
2000-2006

MPI and SFA • Terminal area
• Runway length
• Time trend

• Number of passengers
• Cargo
• Aircraft movements

Gitto and Mancuso
(2012)

28 Italian airports,
2000-2006

Bootstrapped MPI • Labor costs
• Capital costs
• Soft cost input

• Aircraft movements
• Number of passengers
• Cargo
• Aeronautical revenues
• Non-aeronautical revenues

Perelman and
Serebrisky (2012)

21 Latin America
airports, 2000-2007

DEA models and
MPI

• Number of employees
• Number of runways
• Terminal area

• Number of passengers
• Cargo
• Aircraft movements
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Scotti et al. (2012) 38 Italian airports,

2005-2008
SFA • Runway capacity

• Number of aircraft parking
positions
• Terminal area
• Number of check-in counters
• Number of baggage claim belts
• Number of employees

• Aircraft movements
• Number of passengers
• Cargo

• Airport competition
• Ownership structure
• Degree of dominance of the main airline in
an airport

Voltes-Dorta and
Pagliari (2012)

194 Worldwide airports,
2007-2009

SCF (SR) (i) Variable costs
• Labor costs
• Materials costs
(ii) Fixed factors
• Terminal area
• Runway length
• Number of boarding gates
• Number of check-in counters
• Number of baggage claim belts
(iii) Other
• Time trend
• Number of employees
• % of dominant carrier
• % of airline traffic
• % of charter traffic
• % of low-cost traffic
• Ownership structure

• Domestic-Schengen
passengers
• International passengers
• Aircraft movements
• Maximum
take-off weight
• Cargo
• Non-aeronautical revenue

Wanke (2012a) 65 Brazilian airports,
2009

Bootstrapped DEA
and FDH model

• Aircraft movements • Number of passengers
• Cargo
• Mail

Wanke (2012b) 63 Brazilian airports,
2009

DEA, Bootstrapped
DEA, PCA, and CA

• Airport area
• Apron area
• Number of runways
• Runway length
• Number of aircrafts parking
positions
• Terminal area
• Number of vehicles parking lots

• Aircraft movements
• Number of passengers
• Cargo

(Cluster analysis)
• Regular flights
• Location
• International airport
• Airport hub status

Adler et al. (2013) 43 European airports
(1998-2007)

Two-stage network
DEA model:
1) CA;
2) DEA models and
PCA

• Staff costs
• Other operating costs
• Runway capacity
• Terminal capacity

• International passengers
• Domestic passengers
• Cargo
• Aircraft movements

• International passengers
• Domestic passengers
• Cargo
• Aircraft movements

• Non-aeronautical revenues
• Aeronautical revenues
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Choo and Oum (2013) 63 US airports,

2007-2010
Two-stage model:
1) VFP and SFA; 2)
a) VFP regressions:
OLS, RE and FE; b)
SFA: Tobit
regression

• Number of employees
• Soft cost input

• Number of passengers
• Aircraft movements
• Non-aeronautical revenues

• % of LCC passenger
• Airport output scale
• % of non-aeronautical revenue
• % of international passengers
• % of connecting passengers
• % of cargo traffic
• Runway utilization
• Average aircraft size

De Nicola et al. (2013) 20 Italian-airports,
2006-2008

Two-stage model:
1) MPI;
2) FA and
Pooled-OLS
regression

• Labor costs
• Capital costs
• Soft cost input

• Work load units (WLU)
• Aircraft movements

Quality indicators
• % of delayed flights
• Waiting time in queues at check-in
• Baggage reclaim time
• Mishandled bags

Martini et al. (2013)
33 Italian-airports,
2005-2008

Two-stage DEA
model:
1) DDF and DEA;
2) Adapted SWBT
regression

• Terminal area
• Runway length
• Number of baggage claim belts
• Number of aircraft parking
positions

Desirable outputs
• Aircraft movements
• Work load units (WLU)
Undesirable outputs
• Total costs of local air
pollution
• Noise levels

Aeronautical factors
• Fleet mix
• Airport size
• Presence of low-cost-carriers • Airline’s
market power (degree of dominance of the
main airline at each airport)
Non-aeronautical factors
• Ownership structure

Chang et al. (2013) 41 Chinese-airports in
2008

Two-stage DEA
model:
1) DEA-imposed
quasi-fixed input
constraints models;
2) SWBT regression

• Business hour
• Runway area
• Terminal area

• Aircraft movements
• Number of passengers
• Mail/Cargo

Airport service strategies
• Number of destinations
• Number of airlines served
• Number of international routes
Airport geographical characteristics
• City levels
• Distance to Central Business District (CBD)
• Flight area
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Ha et al. (2013) 11 Northeast Asia

airports, 1994-2011
Two-stage DEA
model:
1) DEA models and
SFA;
2) Tobit regression

• Runway length
• Terminal size
• Number of employees

• Work load units (WLU) Governance structure
• Ownership transition
• Corporatization
• Localization
• State shares
Competition
User impacts
• Customer power
• Dominant airline market share
• Airline concentration
Airport characteristics
• Input variable
• Output variable
• Open sky
• New airport
• Runway structure
Hinterland characteristics
• Per capita GPD
• Population
Traffic composition
• International traffic
• Cargo traffic

Martı́n et al. (2013) 194 Worldwide airports,
2007-2009

Two-stage model:
1) SCF-SR;
2) Linear regression

(i) Variable costs
• Labor costs
• Materials costs
(ii) Fixed factors
• Check-in desks
• Number of boarding gates
• Warehouse area
• Terminal area
• Runway length
(iii) Other
• Time trend
• Number of employees
• Airline traffic shares
• Share of charter traffic
• Share of low-cost traffic
• Ownership structure

• Domestic-Schengen
passengers
• International passengers
• Aircraft movements
• Average landed maximum
take-off weight
• Cargo
• Non-aeronautical revenues

Ownership structure
Outsourcing
• % of materials costs
Diversification
• % of non-aeronautical revenue
Airline dominance and traffic mix
• Airline traffic shares
• Share of charter traffic
• Share of low-cost traffic
Other factors
• Airport size
• Variation in passenger traffic between 2007
and 2009
• Pre-crisis efficiency
level
• Localization

Wanke (2013) 63 Brazilian airports,
2009

Two-stage
network-DEA
model and CA

• Terminal area
• Number of aircraft parking
positions
• Number of runways

• Aircraft movements (Cluster analysis)
• Location
• International airport
• Airport hub status
• Regular flights• Aircraft movements • Number of passengers

• Cargo
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ÍC

IA
B

E
LFIO

R
E

etal.
43

Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Adler and Liebert
(2014)

51 European and
Australian airports,
1998-2007

Two-stage DEA
model:
1) DEA (WA-I);
2) Robust cluster
and RE regression

• Staff costs
• Other operating costs
• Runway capacity

• Number of passengers
• Cargo
• Aircraft movements
• Non-aeronautical revenues

Airport characteristics and management
strategies
• % of non-aeronautical revenue
• High levels of delay
• Runway capacity utilization
• Aircraft movements
• Average aircraft size
Ownership, regulation and competition
• Ownership structure
• Economic regulation
• Regional competition
Time trend
• Year 1999
...
• Year 2009

Ahn and Min (2014) 23 major international
airports, 2006-2011

DEA (CCR, BCC,
SE, both input and
output oriented) and
MPI

• Land area
• Runway length
• Passenger terminal area
• Cargo terminal area

• Aircraft movements
• Number of passengers
• Cargo

Coto-Millán et al.
(2014)

35 Spanish airports,
2009-2011

Two-stage DEA
approach:
1) DEA and MPI;
2) Tobit regression

• Labor costs
• Capital costs
• Other operating costs

• Number of passengers
• Cargo
• Aircraft movements

• Airport size
• Share of LCC (low-cost carriers) passengers

Li (2014) Magong airport,
1991-2000

Two-stage DEA
model:
1) DEA;
2) Regression
analysis

• Number of employees
• Labor costs
• Apron area
• Cargo terminal area
• Passenger terminal area
• Scheduled flight numbers
• Number of passengers
• Arrival passenger numbers
• Departure passenger numbers
• Passenger capacity of peak hour
• Cargo

• Airport Service Costs • Number of employees
• Labor costs
• Apron area
• Cargo terminal area
• Passenger terminal area
• Scheduled flights numbers
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Merkert and Mangia
(2014)

35 Italian and 46
Norwegian airports,
2007-2009

Two-stage DEA
model:
1) Bootstrapped
DEA;
2) Tobit regression

Technical inputs
• Terminal area
• Apron area
• Number of runways
• Runway length
• Runway area
• Airport area
• Number of employees
Financial inputs
• Operating costs
• Staff costs
• Material costs

• Aircraft movements
• Number of passengers
• Cargo

• Classification of the airports
• Military aviation
• Italy or Norway
• Population
• Profitability
• Competition

Scotti et al. (2014) 44 US airports,
2005-2009

Two-stage model:
1) DDF approach;
2) Tobit Regression

• Land area
• Terminal area
• Runway length
• Number of boarding gates
• Operating costs

Desirable outputs
• Number of passengers
• Aircraft movements
• Cargo
Undesirable outputs
• Flight delays
• Noise
• Local air pollution

• Fleet mix
• Airport size
• Percentage of night flights
• Multiple airport system
• % of international passengers

Tsui et al. (2014a) 11 New-Zealand airports,
2010-2012

Two-stage model:
1) SBM model and
MPI;
2) SWBT regression

• Operating costs
• Number of runways

• Operating revenues
• Number of passengers
• Aircraft movements

• Population around the airport
• Airport hub status
• Airport operating hours
• Airport ownership structure
• Christchurch earthquakes
• Rugby World Cup 2011

Tsui et al. (2014b) 21 Asia-Pacific airports,
2002-2011

Two-stage DEA
approach:
1) DEA;
2) SWBT and RE
Tobit regression

• Number of employees
• Number of runways
• Runway length
• Passenger terminal area

• Number of passengers
• Cargo
• Aircraft movements

• Time trend
• GPD per capita
• % of international passengers
• Airport hub status
• Airport ownership structure
• Airport operating hours
• Airport hinterland population
• Alliance membership of dominant airline

Lai et al. (2015) 24 major international
airports, 2010

DEA and
AHP/DEA-AR

• Number of employees
• Number of gates
• Number of runways
• Terminal area
• Runway length
• Operating costs

• Number of passengers
• Cargo and mail
• Aircraft movements
• Aeronautical and
non-aeronautical revenues
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Merkert and Assaf
(2015)

30 international airports,
2013

Two-stage DEA
model:
1) DEA and
bootstrapped DEA;
2)SWBT Regression

• Runway length
• Terminal size
• Number of employees

Profitability
• Profit margin
Perceived service quality
• Skytrax (ranking
determined by industry
body)
• Pax reviews (ranking
determined by costumers)
Other common outputs
• Number of passengers
• Cargo
• Aircraft movements

• % of non-aeronautical revenue
• Ownership structure
• % of LCC airlines
• Asia-Pacific localization
• % of international passengers
• Number of gates

Zou et al. (2015) 42 US airports,
2009-2012

Two-stage DEA
model:
1) DEA;
2) RE regression

• Labor costs
• Capital costs
• Material costs

Desirable outputs
• Number of passengers
• Aircraft movements
• Cargo
• Non-aeronautical revenue
Undesirable output
• Total flight arrival delay

Funding sources used by US airports
• Passenger facility charges
• Airport improvement program grants
Runway utilization factors
• Passengers per runway
• Cargoes per runway
• Delay per runway
Year
• 2010
• 2011
• 2012
Hub size
• Medium
• Small
• Non-hub

See and Li (2015) 45 UK airports,
2001-2009

Two-stage model: 1)
Hicks-Moorsteen
TFP index;
2) FGLS and
continuous updated
GMM regression

• Labor costs
• Capital costs
• Other operating costs

• Aeronautical revenue
• Non-aeronautical revenue

• Ownership structure
• Airport size (number of passengers)
• First lag of TFP level
• Economic regulation

Ülkü (2015)

41 Spanish and 32
Turkish airports,
2009-2011

Two-stage DEA
model:
1) DEA;
2) OLS and Tobit
regression

• Staff costs
• Other operating costs
• Runway area

• Number of passengers
• Aircraft movements
• Cargo
• Non-aeronautical revenues

• Weekly opening hours
• Ownership structure
• % of international traffic
• Airport size (WLU)
• Population density around the airport
• Level of seasonality
• Joint military-civil airport
• Spain or Turkey
• Year (2009, 2010 or 2011)
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Table A1 – Continuation.

Reference Sample data Model Input Output Explanatory variables
Örkcü et al. (2016) 21 Turkey airports,

2009-2014
Two-stage DEA
model:
1) DEA and
Malmquist
productivity index;
2) SWBT
Regression

• Number of runways
• Runway units
• Passenger terminal area

• Aircraft movements
• Number of passengers
• Cargo

• Population around the airport
• Airport hub status
• Airport operating hours
• Joint military-civil airport
• Percentage of international traffic

Chaouk et al. (2020) 59 European and
Asia-Pacific airports

Two-stage DEA
model:
1) DEA;
2) SWBT
Regression

• Number of runways
• Number of gates
• Terminal area
• Number of employees

• Number of passengers
• Aircraft movements
• Cargo
• Non-aeronautical revenues

• Air transport output
• Institutions
• Infrastructure
• Macro-economic environment
• Health and primary education
• Higher education and training
• Goods market efficiency
• Labour market efficiency
• Financial market development
• Technological readiness
• Market size
• Business sophistication
• Innovation
• Safety and security
• Corruption perception
• Human development
• Travel and tourism

Huynh et al. (2020) 9 major Southeast Asia
airports

Two-stage DEA
model:
1) DEA;
2) Tobit Regression

• Runway length
• Terminal area
• Apron capacity

• Passenger movement
• Cargo
• Aircraft movements

• Airport characteristics
• Governance structure
• Competition
• User impact
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