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ABSTRACT. In this paper, we propose a multi-objective evolutionary metaheuristic approach based on the
Pareto Ant Colony Optimization (P-ACO) metaheuristic and the non-dominated genetic sorting algorithms
(NSGA II and NSGA III) to solve a bi-objective portfolio optimization problem. P-ACO is used to select
the best assets composing the efficient portfolio. Then, NSGA II and NSGA III are separately used to find
the proportional weights of the budget allocated to the selected portfolio. The results we obtained by these
two algorithms were compared to designate the best performing algorithm. Finally, we performed another
comparison between our results and those of an exact method used for the same problem. The numerical
experiments performed on a set of instances from the literature revealed that the combination of the ant
colony optimization metaheuristic and the NSGA III genetic algorithm that we proposed most often gave
much better results than both the combination of the ant colony optimization metaheuristic and NSGA II
on the one hand and the iterative approach on the other hand.

Keywords: multiobjective optimization, portfolio selection, Pareto ant colony optimization, non-dominated
sorting genetic algorithm.

1 INTRODUCTION

The first mathematical models related to the portfolio selection problem under uncertainty are due
to Markowitz (1952). Such a problem was first considered as an optimization problem in which
a combination of assets of minimum variance is chosen for any given level of expected return
and, simultaneously, of maximum expected return for any given level of portfolio variance. Later,
with the rise of multi-objective optimization, these models gave way to the mean-variance model,
one of the most important portfolio optimization models (Markowitz, 1991), which consists of
simultaneously optimizing two objectives, maximizing the expected return and minimizing the
risk measured by the variance, by searching for feasible portfolios that offer the best compromise
between risk and return. These trade-off portfolios are usually referred to as efficient portfolios or
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2 MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH

Pareto fronts, composed of non-dominated solutions to a multi-objective optimization problem.
While the importance of the mean-variance model is widely recognized, the basic model has
certain shortcomings in taking into account certain essential assumptions inherent to the practical
world context.

To comply with the reality of the real world, we need to consider various additional constraints.
Many papers have then been published extending the basic model by adding and imposing real-
world constraints.

Budget constraints were considered by Smith et al. (2012) to impose the amount to invest. Floor
and ceiling constraints were introduced by Streichert et al. (2004) to specify lower and/or upper
bounds on the weight of each asset to be included in the portfolio. The turnover constraint was
used by Krink & Paterlini (2008) to control the amount of money that can be traded for buy
as well as sell. This constraint is used to control transaction costs. Mansini & Speranza (1999)
considered the case of markets where the assets can have different minimum tradable lots, and
their buying and selling must be done in a multiple of the minimum transaction lots and defined
the round lot (or minimum lot) constraints. Lwin & Kendal (2014) considered the cardinality
constraint that restricts the total number of assets to be included in the portfolio, the quantity
constraint that restricts the minimum and maximum proportions of assets held in the portfolio,
the pre-assignment constraint that requires some specific assets to be included in the portfolio
and round lot constraint that requires to invest the assets in units of a certain size respectively.

Cardinality constraint, introduced by Chang et al. (2000), restricts the total number of assets to be
included in a portfolio. The Basic Markowitz problem is an NP-hard problem and is complicated
by the incorporation of a cardinality constraint. It can be formulated as a mixed integer quadratic
optimization problem that can be solved using exact methods for small instances only. This is
why most of the methods and approaches proposed in the field to solve the portfolio optimization
problem are based on approximative algorithms such as Genetic Algorithms (GA), Ant Colony
(AC), Artificial Bee Colony (ABC), and Particle Swarm (PS) (Bezoui et al., 2018).

Doerner et al. (2002) proposed a metaheuristic approach based on the Ant Colony to solve
the multiobjective portfolio selection problem and compared its performance to those of other
heuristic approaches, namely Pareto simulated annealing, and Non-dominated Sorting Genetic
Algorithm.

Anagnostopoulos & Mamanis (2010) used three evolutionary multiobjective optimization tech-
niques: Non-dominated Sorting Genetic Algorithm II (NSGA II), Pareto Envelope based Selec-
tion Algorithm (PESA), and Strength Pareto Evolutionary Algorithm 2 (SPEA 2), to solve the
portfolio optimization problem with three objectives and discrete variables.

Kumar & Mishra (2017) solved the Portfolio optimization problem using a novel covariance-
guided Artificial Bee Colony algorithm. Macedo et al. (2017) used Multiobjective Evolutionary
Algorithms (MOEA) and Technical Analysis Rules to solve the Mean-Semi-variance Portfolio
Optimization problem.
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Lwin & Kendal (2014) proposed an efficient learning-guided hybrid multi-objective evolutionary
algorithm to solve the constrained portfolio optimization problem in the extended mean-variance
framework.

Fernandez et al. (2007) presented several potential advantages of the mean-variance paradigm
over other methods used to solve the portfolio optimization problem, like linear programming
and greedy algorithms.

Liu & Xiao (2021) established several optimization schemes to study the portfolio problem and
showed that the genetic algorithm model is superior to the quadratic programming method.

Finally, we mention the case study by Fernandez et al. (2007) that proposed a decision model
using both decision analysis and Bayesian risk analysis concepts in the design of a portfolio for
production planning in the sugarcane industry in Brazil.

In this paper, we present a bi-objective portfolio optimization problem with three constraints. The
first constraint is the budget constraint that means that all available capital is invested and that all
portfolios have non-negative weights. The second is the cardinality constraint that requires fixing
the number of assets in the portfolio. The third constraint, called the pre-allocation constraint,
consists in fixing pairs of assets that cannot both be selected in the portfolio (at most one of them
can be considered in the portfolio).

To solve this problem, we decomposed our work into two steps. The first step consists to find
and select the best candidates for assets constituting the efficient portfolio that offers the best
trade-off between risk and return. For this purpose, we use Pareto Ant Colony Optimization as a
special metaheuristic to solve the portfolio selection problem.

In the second step of this work, we apply two versions of the Non-Dominated Sorting Genetic
Algorithm, NSGA II and NSGA III, to find the proportion weights of the budget that will be
allocated to the selected portfolio. The method is implemented and applied to compare its per-
formance with that of the iterative method proposed by Bezoui et al. (2018) to solve a bi-objective
portfolio optimization problem under constraints. Numerical experimentation is performed with
real-world data.

The rest of the paper is structured as follows: After this brief introduction, Section 2 describes the
multi-objective portfolio optimization problem. Section 3 presents the Ant Colony Optimization
approach, the two Genetic Algorithms NSGA II and NSGA III, and how they were implemented
to solve this problem. Empirical results are reported and discussed in Sections 4 and 5. In Section
6, we have compared the obtained results with those of an exact method. In section 7, we present
the major conclusions of this study.

2 PROBLEM DESCRIPTION

Portfolios can be described as subsets of the set of all n asset propositions, they are modeled as
vectors y = (y1,y2, . . . ,yn) where the binary variable yi indicates whether the i asset is included in
the portfolio (yi = 1) or not (yi = 0). This work consists in determining efficient asset portfolios
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4 MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH

for which there is no other possible alternative that promises better values in at least one of the
objectives (expected return that should be maximized and risk that should be minimized) and
that offers at least the same value in all the others, under the cardinality and pre-assignment
constraints described below.

Cardinality Constraint (CC): It is expressed as follows:

n

∑
i=1

yi = K, (1)

where K is a fixed number of assets that a portfolio should include, yi is the binary variable that
equals 1 if asset i is included in the portfolio and 0 otherwise. This constraint is used to facilitate
the management of the portfolio and to reduce its management costs.

Pre-allocation constraint: In some cases, generally at the request of the investor, specific as-
sets must be included or excluded from the portfolio. In this work, we considered a set F of asset
pairs (i, j) such that only one asset of each pair can be retained in the portfolio. This constraint
can be expressed as follows:

yi.y j = 0, ∀(i, j) ∈ F, (2.1)

or, equivalently, since yi,y j ∈ {0,1}

yi + y j ≤ 1, ∀(i, j) ∈ F. (2.2)

(2)

Budget constraint: It is also called the summation constraint and is expressed as follows:

n

∑
i=1

xi = 1. (3)

This constraint requires that all portfolios have non-negative weights that amount to 1.

Mathematical model: After finding the efficient asset portfolio, we must determine the pro-
portion budget weights x = (x1, . . . ,xn) that will be allocated to the selected assets to maximize
the expected return and minimize the risk under the three constraints above.
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The proposed model in this paper is formulated as follows:

max
n

∑
i=1

µixi (4.1)

min
n

∑
i=1

n

∑
j=1

ρi jxix j (4.2)

n

∑
i=1

xi = 1 (4.3)

n

∑
i=1

yi = K (4.4)

yi + y j ≤ 1 ∀(i, j) ∈ F (4.5)
xi ≤ yi ∀i ∈ E (4.6)
xi ≥ 0 ∀i ∈ E (4.7)
yi ∈ {0,1} ∀i ∈ E (4.8)

(4)

where n is the number of assets, xi is the weight of asset i in the portfolio, µi is the expected
return of asset i, ρi j is the correlation between assets i and j.

Equation (4.1) is the first objective function representing the maximization of the portfolio return,
Equation (4.2) is the second objective function representing the minimization of the portfolio
risk, Equations (4.3), (4.4) and (4.5) are respectively the budget, the cardinality and the pre-
allocation constraints already described. Inequality (4.6) means that the weight of each asset is
non-null only if the asset is retained. Constraints (4.7) and (4.8) represent the variation domains
of the decision variables xi and yi respectively.

3 SOLUTION PROCEDURES

In this section, we describe the two approaches used to solve the above problem: the Pareto
Ant Colony Optimization (P-ACO) is used to determine efficient asset portfolios and the Non-
Dominant Sorting Genetic Algorithm II (NSGA II) allows to determine the proportion weights
of the budget allocated to the efficient asset portfolio.

3.1 Pareto Ant Colony Optimization

The Ant Colony approach imitates the behavior shown by real ants when searching for food
(Ibáñez, 2004). They communicate information about food sources via pheromone, which they
secrete as they move along. When an ant finds a food source, it returns to the nest (Dorigo
& Stutzle, 2004). As ants on short paths will return to the nest faster, more pheromone will be
deposited on the shortest paths. Moving ants accordingly choose their path with a probability that
depends on the amount of pheromone detected and, consequently, paths that are more frequently
traveled become more attractive and, through this self-reinforcing behavior, will be used more
often. Further, the pheromone evaporates over time, so that pheromone trails of infrequently
traveled paths become weaker while attractive paths are reinforced (Doerner et al., 2006).
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6 MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH

While such artificial ant colony systems have been successfully applied to various single-
objective problems, several extensions have been necessary in order to be able to tackle mul-
tiobjective project portfolio selection problems at hand (for a detailed discussion of these mod-
ifications (Gambardella et al., 1999; Gravel et al., 2002)). Therefore, algorithms used to solve
multi-objective problems and derived from the ACO metaheuristic are called Pareto Ant Colony
Optimization (P-ACO) algorithms.

In the initialization phase of the P-ACO algorithm, we generate Γ ants and every ant has an empty
portfolio denoted by y = (0, . . . ,0). The lifespan Ξ and the objective weights w = (w1,w2) are
determined randomly from [0,1] for each ant (Doerner et al., 2006).

In the construction phase of the algorithm, each ant tries to construct its own portfolio y by using
the decision rule based on pheromone information τi. A feasible asset i is selected to be added to
the current portfolio y according to the probability distribution pi given by:

pi =

[
∑

2
a=1(waτa

i )
]α

∑
n
h=1
[
∑

2
a=1(waτa

h )
]α . (5)

This probability is biased by the positive parameter α , which determines the relative influence of
the trails.

After the construction of the portfolio by each ant, we have to test the feasibility and efficiency
of each portfolio. If the considered portfolio is feasible and efficient, then it will be stored and
saved.

3.1.1 Pheromone information

The pheromone information in the algorithm is represented by a matrix of A rows and n columns,
where A is the number of objectives (and it is equal to 2 in our case) and n is the number of assets.
Each element of this matrix is denoted by τa

i and represents the current pheromone information.

A local pheromone update is performed once an artificial ant has added an asset to the portfolio.
When an ant selects an asset i, the amount of pheromone on the element τa

i of the pheromone
vector is decreased for each objective a. The local pheromone update rule for these elements is
given as follows:

τ
a
i = (1−ρ)τa

i +ρτ0, (6)

where τ0 is the initial value of trails and ρ is the evaporation rate.

The proposed P-ACO algorithm to determine the efficient asset portfolio follows Doerner et al.
(2006).
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Algorithm 1 Procedure P-ACO

1: Step 0: Initialization of P-ACO.
2: - Create Γ ants;
3: - Initialize pheromone vectors with τ0;

4: Step 1: Iteration:
5: for each p ∈ P do
6: - Fix the lifespan of the ant Ξ = K; ▷ K is the fixed number of assets to be selected;
7: - Set y = (0, . . . ,0); ▷ Create an empty portfolio y for each ant, ∑i yi = 0 and |y|= n;
8: - Set sum := 0 ; ▷ Create the variable sum which gives the number of assets included to

y;
9: - Determine, randomly from the interval [0,1], the objective weight wa for each objective

a;
10: while sum ≤ K do
11: Select an asset i according to the probability distribution and add it to y;
12: Update local pheromone information;
13: sum := sum+1;
14: end while
15: end for

16: Step 2: Checking feasibility of portfolio y.
17: if portfolio y is feasible then
18: check efficiency of portfolio y;
19: end if
20: if portfolio y is efficient then
21: store portfolio y and remove dominated ones.
22: end if

3.2 Overview of NSGA II and NSGA III

Over the last fifteen years, we have observed a substantial development of multiobjective evo-
lutionary algorithms (Metaxiotis & Liagkouras, 2012; Deb, 2001; Coello et al., 2007) and some
of these algorithms have reached a high level of acceptance as efficient means to obtain good
solutions for complex problems within a reasonable amount of time. For the most popular, at-
tempts to enhance their performance have been successful and, consequently, new versions of
the algorithms have emerged. This is the case of the two versions of the Non-Dominated Sorting
Genetic Algorithm: NSGA II and NSGA III (Macedo et al., 2017).

NSGA II was introduced by Deb et al. (2002) as an improvement on the original NSGA. Several
studies have highlighted the good performance of this algorithm compared to other MOEAs. In
NSGA II, we start by creating a random parent population, Pt of size Z that is sorted using a
non-dominated sort. The genetic operators (selection, crossing and mutation) are applied to P0 to
create an offspring population Qt of size Z. The two populations Pt and Qt are combined together
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8 MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH

to form Rt of size 2Z. Next, a non-dominated sorting procedure is used to sort the entire popu-
lation Rt (Ghosh & Das, 2008) and identify all non-dominated fronts. First, the non-dominated
solutions are selected to be the first non-dominated front F1 and given a rank of 1. Then, these
solutions are ignored and a second non-dominated front F2 is determined and assigned a rank
2. In the same way, all solutions are sorted. The crowding distance is used to classify solu-
tions having the same rank and is applied in the following way: in each front, the solutions are
sorted according to the value of each objective function and the extreme solutions are given a
large distance so that they are always selected. The remaining solutions are assigned a distance
value equal to the normalized absolute difference of the function values of two adjacent solutions
(Anagnostopoulos & Mamanis, 2010).

NSGA III was proposed by Deb & Jain (2014), in which the crowded distance of NSGA-II is
replaced by reference points. The NSGA III obtains the (t +1) generation by combining the par-
ent and offspring populations Rt = Pt ∪Qt where the size of Rt is 2Z (as in NSGA II). According
to the non-dominated sorting rules, Rt is then divided into different levels (fronts), denoted by
F1,F2, . . .. Starting from F1, each level is selected one at a time to construct a new population St ,
and the size of St is equal to or larger than Z for the first time. If the last level included is the
vth level, solutions in St/Fv (levels before Fv and solutions composing the vth level) are chosen
for the next parent population Pt+1 while solutions in the remaining levels are rejected. However,
when the size of the new population exceeds Z and thus the last level selected Fv cannot be fully
included in this population, NSGA III uses a selection process to decide which r solutions from
Fv will be included in this population.

To select the remaining r solutions from level Fv, NSGA III applies a selection process based
on reference points. The process considers a set of reference points widely and uniformly dis-
tributed on the normalized hyperplane inherent to the optimization objectives of the problem
addressed by the algorithm. Then, the process emphasizes the selection of solutions from Fv

which are associated with each of these reference points. This process promotes the selection of
diverse and well-distributed non-dominated solutions, with the aim of preserving the diversity
and distribution of the new population.

NSGA III considers the same termination criterion used by NSGA II to finish its execution. After
achieving such a criterion, NSGA III provides the Pareto set of the population corresponding to
the last generation.

3.3 Implementation of NSGA II in the portfolio problem

Each non-dominated solution generated by the P-ACO algorithm is injected into the NSGA II
algorithm to find the proportions of the budget allocated to the efficient asset portfolio found
previously. The following steps show how the approach is implemented:

1. Consider an efficient asset portfolio generated by P-ACO algorithm under the cardinality
constraint.
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2. Create a vector of size K, containing the return of each asset i composing the portfolio (K
values of return).

3. Create a matrix of dimension K ×K, containing the covariance of each couple (i, j) (i and
j are two assets composing the portfolio).

4. Create Npop vectors of size K containing the initial proportions xi randomly chosen from
[0,1] and normalize them by using the formula:

x′i =
xi

∑
K
k=1 xk

. (7)

To make easy the implementation of the algorithm, it will be preferable to regroup these
vectors in a matrix of dimension Npop ×K, so that each line of this matrix represents an
initial solution. In this work, we have Npop = 50.

5. Calculate the expected return on each solution using the formula:

K

∑
i=1

µixi, (8)

the value of the expected return on each asset µi is downloaded from Beasley (1990).

6. Calculate the risk of each solution using the formula:

K

∑
i=1

K

∑
j=1

xix jρi j, (9)

the correlation ρi j is downloaded from Beasley (1990).

7. Sort the solutions by using the non-domination notion and select Npop solutions from the
first ones. We obtain a matrix of Npop rows, each row of this matrix represents a selected
solution. We denote this matrix by M.

8. Create Npop new solutions using crossover operator. The crossover operator used in this
work is called arithmetic crossover, it consists in choosing some pairs of the selected so-
lutions according to the crossover probability pc and then combining the two solutions
composing each pair using :

(x,x′) 7−→ αx+(1−α)x′, α ∼U [0,1]. (10)

In this work, we have α = 0.46, we denote the matrix containing these new solutions by
MC.

9. After applying the arithmetic crossover, the mutation operator occurs with a mutation
probability denoted pm. In this work, we use the following mutation method:

- Create a matrix of dimension Npop ×K composed of random values from [0,1], then
check each value mi j of this matrix.
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10 MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH

- If mi j is less than the mutation probability pm, then the element of the ith row and the
jth column of the matrix MC is replaced by another value from [0,1].

We thus generate a matrix containing an offspring population.

10. Normalize the matrix of the offspring and combine it with the initial matrix. We thus obtain
a combined matrix of 2Npop solutions.

11. Calculate the expected return and risk of the 2Npop solutions and classify all solutions
according to the notion of non-domination. The non-dominated solutions are selected to
constitute the first non-dominated front and are assigned a rank of 1. Next, these solutions
are ignored and the second front is determined and assigned a rank of 2. In the same way,
all solutions are classified to constitute all fronts.

12. Compute the crowding distance between solutions belonging to the same front in the
following way:

On each front, the solutions are sorted according to the value of each objective function and
the extreme solutions are given a large distance so that they are always selected. The re-
mained solutions are assigned a distance value equal to the absolute normalized difference
of the function values of two adjacent solutions.

13. Select the first Npop solutions and perform the crossover and mutation operators to generate
the new offspring.

14. Repeat 10, 11,12,13 until the maximum number of iterations is reached.

3.4 Implementation of NSGA III in the portfolio problem

After determining all non-dominated fronts F1, . . . ,Fv, NSGA III applies a selection process
based on reference points to select the remaining solutions from the last selected front Fv and
obtain the parent population Pt+1. The key implementation steps of the NSGA III process are as
follows.

Step 1 (Normalization of the Objective Values). The objective values of the population members
are normalized using the ideal and extreme points. In a population St , use the minimum values
of all objectives to construct the ideal point zmin = (zmin

1 , . . . ,zmin
A ). The objective value of each

solution is translated by subtracting the ideal point zmin.

f ′a(x) = fa(x)− zmin
a , (11)

where a = 1, . . . ,A. In our case A = 2, and fa(x) is the ath objective value of the solution x.

The extreme point is identified by finding the solution that minimizes the following achievement
scalarization function (ASF) with the weight vector w:

minASF(x,w) =
A

max
a=1

f ′a(x)
wa

, (12)
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where w = (w1, . . . ,wA) is the weight vector. For finding the ath extreme point, we set wa = 1,
while the other weights are set to a small value 10−6. We use A extreme points to obtain an A
dimensional linear hyperplane. The f ′a(x) can be normalized as follows:

f n
a (x) =

f ′a(x)
ca − zmin

a
, (13)

where ca is the intercept of the ath objective axis.

Step 2 (Generation of Reference Points): Reference points are commonly generated on a nor-
malized hyperplane using Das and Dennis’s systematic approach (Das & Dennis, 1998). For A
objectives and k divisions of each objective, the total number H of reference points is:

H =

(
k+A−1

k

)
. (14)

Step 3 (Perpendicular Distance Computation): After normalizing the objective values and gen-
erating reference points, the perpendicular distance between the objective value of each solution
and a reference line (joining the origin with a reference point) is computed. For a population St ,
a solution is associated with the reference point of the minimum perpendicular distance.

Step 4 (Niche-Preservation Operation): The niche count ρh is equal to the number of solutions
in St/Fv associated with the hth reference point. The minimum niche count is Jmin = minρh . The
reference point with Jmin is chosen. If Jmin > 1, one reference point is chosen randomly. We set
the chosen reference point as the lth reference point.

If ρl ≥ 1 and the lth reference point is associated with one or more solutions in Fv, a solution in
Fv is randomly selected into population Pt+1, and the value of ρl is incremented by one. If ρl ≥ 1
and no solution in Fv with the lth reference point, this reference point is not considered in the tth

generation.

If ρl = 0 and the lth reference point is associated with one or more solutions in Fv, the solution
with the minimum perpendicular distance is selected into population Pt+1 and the count ρl will
add one. If ρl = 0 and no solution in Fv is associated with the lth reference point, this reference
point is not considered in the tth generation (Liu et al., 2019).

Step 5 (Genetic Operations): After the parent population Pt+1 is obtained, the offspring popula-
tion Qt+1 is generated by applying the arithmetic crossover and the mutation operator mentioned
in Steps 8 and 9 of NSGA II. In other way, we have also used a mutation operator based on local
search algorithm.
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12 MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH

Algorithm 2 Local search algorithm

1: for each solution x from MC do ▷ MC is the matrix containing all solutions obtained by
applying the crossover operator;

2: Calculate the objective value of the solution x;
3: repeat
4: - Set ε; ▷ a vector randomly chosen on the interval [0,1];
5: - Calculate the new solution x′ = x+ ε;
6: - Calculate the objective value of the new solution x′;
7: if x′ is dominated by x then
8: x := x;
9: repeat 4, 5, 6;

10: end if
11: if x is dominated by x′; then
12: repeat 4, 5, 6;
13: end if
14: if x′ and x are equivalent then
15: save x′ and x;
16: x := x′;
17: repeat 4, 5, 6;
18: end if
19: until termination criterion is true.
20: end for

4 EXPERIMENTAL RESULTS OF P-ACO AND DISCUSSION

In this section, we report the experimental results we obtained using a public data set of three
stock markets downloaded from the Beasley’s OR Library Beasley (1990): Hong Kong Hang
Seng with 31 assets, American S&P 100 with 98 assets, Japanese Nikkei 225 with 225 assets.
We also used two other stock markets that were described by Cesarone et al. (2014), available
from Cesarone & Tardella (2017). These authors reported 263 weekly prices from March 2003
to March 2008 of American S&P 500 with 276 assets and European-American NASDAQ with
2196 assets. We performed the numerical study on a personal computer equipped with Intel(R)
Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, 8th gen, 08 Go RAM and the operational
Windows 8. All procedures are implemented in R.

Recall that, in this work, we want to solve a portfolio optimization problem under the cardinality
constraint and the pre-allocation constraint. For example, with the Hang Seng index, we set a
single value to the cardinal (K = 10). Regarding the pre-allocation constraint, we have fixed,
for the Hang Seng market, three pairs of assets (16,17), (17,18) and (16,18), the two assets
composing each pair cannot both be selected and only one asset of each pair can be considered in
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Figure 1 – Non-dominated solutions of SP500 index for K = 100 and K = 300 and Nasdaq for K = 300.

the portfolio. For the Nasdaq market, we set three K values (10, 100, 300) and six pairs of assets
for the pre-allocation constraint.

We note that the P-ACO parameters for the computation experiments are α = 1,ρ = 0.7,Γ =

10,20,30,q0 = 0, and τ0 = 0.9. Table 1 shows the results.

Table 1 shows the risk and expected return of each non-dominated solution generated by the
P-ACO algorithm according to each value of K for the different markets. For Hang Seng index,
the algorithm uses 10 artificial ants and each ant constitutes its own solution (portfolio), after
which the algorithm checks the feasibility and efficiency of the ten constructed portfolios to save
the efficient ones (non-dominated solutions) and eliminate the others (dominated solutions). We
see in the table that the P-ACO algorithm generated only three non-dominated solutions (three
efficient portfolios) under the cardinality constraint K = 10. We tried to increase the number of
ants (30 ants, 50 ants, 100 ants, . . . ) to have more than three non-dominated solutions but this did
not change the result as we expected. We also notice in Table 1 that there is not much difference
between these three efficient portfolios, they have practically the same expected return and risk.
In this case, the investor can easily choose the best efficient portfolio among the three. For SP100,
SP500 and Nasdaq, we note that the higher the cardinality value, the higher the return and risk.
In other words, if the investor favors return, he must choose a portfolio with a high cardinality
value, but if the investor favors low risk, he must be satisfied with studying small portfolios. Table
2 shows the three efficient asset portfolios obtained for the Hang Seng index using the P-ACO
algorithm under the cardinality constraint K = 10. We notice that the best portfolio, according to
the expected return, is port 1. After checking the data set corresponding to the Hang Seng Index,
we find that this portfolio is composed of assets with the highest return.

5 EXPERIMENTAL RESULTS OF NSGA II AND NSGA III

In this section, we present the results obtained by the implementation of the two genetic algo-
rithms NSGA II and NSGA III. Figures 1, 2 and 3 show the frontiers of non-dominated solutions
generated to SP500, Nasdaq, Hang-Seng and SP100 according to several values of cardinality.
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Table 1 – Risk and return of the efficient asset portfolios obtained by P-ACO.

SP 100 with 98 assets SP 500 with 476 assets
K Return Risk K Return Risk
50 0.213265 512.678372 10 0.1354794 0.1376716

0.112512 422.242630 0.09525867 0.10177683
0.190705 503.768738 0.08501251 0.08373711
0.116.808 423.820148 0.06799201 0.03822819
0.176744 497.690060 0.05084089 0.03679313
0.171635 495.680658 0.04417696 0.03518582
0.131665 429.933680 0.04118156 0.03308424
0.135661 433.616562 0.02510106 0.02298574
0.149273 433.901566 0.02734874 0.02596494
0.157965 441.118896 0.02871795 0.0266791
0.161059 443.883738 100 0.7540985 5.2578543
0.164927 450.406884 0.4622423 3.2788443
0.168713 456.368526 0.3448385 2.8524634

80 0.278026 1207.943510 0.2410349 2.3486477
0.256027 1159.959632 0.6114916 4.1390230
0.234959 1115.002572 0.4323154 3.2468762
0.262656 1165.628104 0.3193307 2.6280283
0.249885 1131.073054 0.547265 3.500980
0.271474 1184.533588 0.050428 49.152482
0.255227 1159.089108 0.2950339 2.4596917
0.234178 1110.485858 0.5023697 3.3834249
0.248012 1121.461844 0.3770722 2.8849828
0.224832 1108.411672 300 1.561179 32.089310
0.266096 1178.966284 1.174359 28.197236
0.255227 1138.903924 0.9588885 23.8943005
0.214503 1097.030830 1.415065 31.665333

1.150750 25.919244
1.389743 28.851918
1.211427 28.791523

Nasdaq with 2196 assets Hang Seng with 31 assets
K Return Risk K Return Risk
10 0.2080628 0.214315 10 0.058008 54.094946

0.1503612 0.17065663 0.053634 50.604180
0.1428687 0.1422794 0.4052092 3.1003410
0.11326854 0.09698731
0.09275083 0.08668862
0.08419325 0.0847406

300 3.263283 55.474549
2.021897 44.972060
1.4616685 42.463714
1.065910 32.841021
0.7308886 29.8021161
0.4063562 27.2410551
2.270448 46.702699
1.618908 43.829508
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Table 2 – Efficient asset portfolios obtained by P-ACO for Hang Seng index.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

port 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0
port 4 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1
port 7 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0

p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31

port 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0
port 4 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0
port 7 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0

Table 3 – Return and Risk corresponding to the Efficient asset portfolios
obtained by P-ACO for Hang Seng index.

Return Risk
port 1 0.058008 54.094946
port 4 0.053634 50.604180
port 7 0.050428 49.152482

Two most important factors greatly impact the determination of these graphs. The first factor
is the choice of the efficient asset portfolio that we need to incorporate into the NSGA II and
NSGA III algorithms to find the proportional weights of the budget allocated to the portfolio. The
second factor is the probability of crossover and mutation fixed in the two genetic algorithms.
The portfolios with the lowest risk obtained by P-ACO for the Nasdaq index for each K value,
the crossover probability pc = 0.90 and the mutation probability pm = 0.7 allowed us to draw the
efficient frontier between the intervals ]0,0.001] for risk and ]0.002,0.022] for return. However,
portfolios with the highest returns allowed us to draw the efficient frontier between the intervals
[0.002,0.016] for risk and [0.015,0.025] for return. For SP500 index, the portfolios with the
lowest risk allowed us to draw the frontier between the intervals [0.00010,0.0008] for risk and
[0.002,0.0126] for return. The portfolios with the highest returns allowed us to draw the rest of
the curve, with the probability of crossover and mutation equal to 0.90 and 0.70 respectively.
For SP100, we chose only the portfolios with the highest return, but with a crossover probability
pc equal to 0.7, we got poor results and therefore reduced this probability to 0.2, which gave
us much better results. For the mutation probability, we kept the same value pm = 0.7. For the
Hang-Seng index, we obtained three efficient asset portfolios using the P-ACO algorithm: port
1, port 2, and port 3 (see Table 2), but only port 1, which has the highest return, gave us a good
frontier. The crossover and mutation probabilities are 0.2 and 0.70 respectively. We can say that
portfolio and asset selection, crossover probability, and mutation probability played an essential
role in exploring the research space, the diversity of solutions, and achieving good results. On
the other hand, we can see from the frontiers of non-dominated solutions generated to SP500
and Nasdaq (Figures 1 to 3) that the NSGA III algorithm performs at least as well as NSGA II.
Indeed, NSGA III algorithm performs better than NSGA II algorithm in the cases represented by
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Figure 2 – Non-dominated solutions of Nasdaq index for K = 10 and Hang Seng index for K = 10.

Figure 3 – Non-dominated solutions of SP 100 index for K = 50 and K = 80 and SP 500 index for K = 10.

Figure 1, and the performances for the two algorithms are equivalent in the cases of Figures 2
and 3.

Mutation probability and local search : To improve the performance of NSGA III algorithm,
we have tested different values of the mutation probability, we have also replaced the mutation
method used before by another technique based on a local search algorithm. The results have
been reported in Figures 4-9.
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Figure 4 – Frontiers of non-dominated solutions obtained by NSGA III, using pm = 0.2 and pm = 0.7,
with a local search, applied to SP500.

Figure 5 – Frontiers of non-dominated solutions obtained by NSGA III, using pm = 0.2 and pm = 0.7,
with a local search, applied to Nasdaq.

Figures 4 to 7 show that when the mutation probability is high (pm = 0.7), the new mutation
operator based on the local search algorithm produces the same solution quality compared to the
first mutation technique. However, if the mutation probability is small (pm = 0.2), the local search
technique is much better in terms of diversity. So we can say that the local search represents a
good alternative because it does not require additional parameters (like the mutation probability)
compared to the other mutation mechanisms.
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Figure 6 – Frontiers of non-dominated solutions obtained by NSGA III, using pm = 0.2 and pm = 0.7,
with a local search, applied to SP 100.

Figure 7 – Frontiers of non-dominated solutions obtained by NSGA III, using pm = 0.2 and pm = 0.7,
with a local search, applied to Hang Seng.

6 COMPARISON WITH AN EXACT METHOD

In this section, we compare the results obtained by NSGA III with those of an exact method used
for the same problem.

Bezoui et al. (2018) proposed a variant of the Epsilon constraint method for solving a constrained
portfolio optimization problem and presented the computational results obtained by perform-
ing experiments on a publicly available dataset. The study was conducted on seven benchmark
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Figure 8 – Frontiers of non-dominated solutions obtained by the two approaches applied to SP500 for
K = 100 and K = 300 and to Nasdaq for K = 300.

datasets. Five of them are available in the Beasley OR library Beasley (1990). These data provide
the necessary input data for various assets in different stock market indices: Hong Kong Hang
Seng with 31 assets, American S&P 100 with 98 assets, and two additional datasets described
by Cesarone et al. (2014), available at Cesarone & Tardella (2017) (accessed January 12, 2017).
These authors reported 263 weekly prices from March 2003 to March 2008 from the U.S. S&P
500 containing 476 assets and the European U.S. NASDAQ containing 2196 assets. We have
tried to copy as much as possible the graphs showing the boundaries of the non-dominated so-
lutions, obtained by the Epsilon constraints method, corresponding to the Hang Seng, SP100,
SP500, and Nasdaq indexes Bezoui et al. (2018) and to compare them with our results obtained
by applying the NSGA III genetic algorithm.

Figure 8 shows the efficient frontiers obtained by the two approaches for SP500 and Nasdaq
according to two values of the cardinality: 100,300. Our approach is much better than the iter-
ative approach. In fact, with K = 300 for SP500, the maximum return obtained by the iterative
approach is less than 0.016 but with NSGA III we found portfolios with a value of return equal
to 0.02. Similarly for Nasdaq, the maximum return obtained by NSGA III is 0.025, which is not
the case with the iterative method.

Figure 9 shows the frontiers of the non-dominated solutions obtained by the two approaches: the
genetic algorithm NSGA III and the iterative approach proposed by Bezoui et al. (2018). Both
approaches were applied to SP100 index with a fixed cardinality value equal to 50 and to the
Hang Seng index with a fixed cardinality value equal to 10. Thus, if we favor portfolios with an
expected return belonging to the interval [0.008, 0.01], generated for Hang Seng, and belonging
to the interval [0.005, 0.009], generated for SP100, we can say that the two approaches give the
same results. Furthermore, the NSGA III can generate some portfolios with an expected return
greater than 0.01079 for Hang Seng and than 0.009 for SP 100, which is not the case with the
iterative approach. We also note that the iterative approach makes it possible to find portfolios
with a low risk value.
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Figure 9 – Frontiers of non-dominated solutions obtained by the two approaches applied to SP100 for
K = 50 and to HANG SENG for K = 10.

Finally, we can say that the combination of the ant colony optimization metaheuristic and the
genetic algorithm NSGA III gives absolutely better results than the iterative approach for the
SP500 index with two values for cardinality K = 100 and K = 300. We also have better results
for the Nasdaq index with K = 300. For Hang Seng and SP100 our approach is only better if
we focus on portfolios with a high return value, whereas the iterative approach obtained better
solutions only if we favor portfolios with lower values of risk.

7 CONCLUSION

In this paper, we proposed two approaches: an optimization of the colony of ants metaheuristic
that was used to select the best candidates of assets constituting the efficient portfolio that offers
the best trade-off between risk and return under budget constraint, cardinality constraint, and
pre-allocation constraint. Next, we used two versions of the Non-Dominated Sorting Genetic
Algorithm (NSGA II and NSGA III) to find the proportions allocated to the selected portfolio
and compare its performance to an exact method proposed by Bezoui et al. (2018).

Experimental results reveal that the proposed approaches can give a high quality of efficient port-
folios compared to the exact method. The generated portfolios obtained by using our approaches
can make a trade-off between return, risk and cardinality, which means that the combination of
Ant colony optimization ACO and the Non-dominated Sorting Genetic Algorithm NSGA III is a
good Multiobjective Approach to the Portfolio Optimization Problem.

As for future work, we are working to include the time factor in the model and to study this
problem over several time periods
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Acknowledgements

The authors thank the anonymous referees for their helpful comments and suggestions which
contributed to the improvement of the contents of this paper.

The authors wish to thank the Directorate-General of the Scientific Research and the
Technological Development of Algeria for its institutional support.

References

ANAGNOSTOPOULOS KP & MAMANIS G. 2010. A portfolio optimization model with three
objectives and discrete variable. Computers & Operations Research, 378(7): 1285–1297.

BEASLEY JE. 1990. OR-Library: Distributing Test Problems by Electronic Mail. J Oper Res
Soc, 41: 1069–1072.
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IKHLEF M & AÏDER M. 2023. Multiobjective Evolutionary Metaheuristic Approach to the
Constrained Portfolio Optimization Problem. Pesquisa Operacional, 43: e266962. doi:10.1590/0101-
7438.2023.043.00266962.

Pesquisa Operacional, Vol. 43, 2023: e266962


