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ABSTRACT. This paper presents a robust deterministic method for the treatment of uncertainty in decision-
making systems based on Sonar Method. It introduces uncertainty into mathematical models as interval
numbers. This work proposes an interactive approach that identifies the efficient vertices of the Multiobjec-
tive Linear Programming (MOLP), where some or all the coefficients of the objective functions, constraints
or limits of the constraints are interval of real numbers. The method identifies robust solutions to MOLP
under uncertainty, showing how the interactive approach presented in this paper can provide the possibility
of exploring in new decision support methodologies.

Keywords: uncertainty modeling, interval programming, multiobjective linear programming, robust
solution, interactive approach.

1 INTRODUCTION

The decision-making in management is always a challenge that requires technical and intellec-
tual development. The use of qualitative and quantitative tools must be added to the prospec-
tive vision ability. The dynamics of the relevant facts that need to be considered at the time of
decision-making changes quickly, making it difficult to analyze the scenario. The computational
developments are constantly accelerating, making it appropriate to use them to solve real prob-
lems, since the support of new techniques in this environment can represent sustainable decisions
(Lucas, 2012).

Most times, representing a real problem for a mathematical model is not a simple task and con-
sidering that the model parameters are under uncertainty, more knowledge about the problem is
required. Often, this uncertainty is associated with the dynamics of the competitive environment
and sometimes it can be related to the entry data of the research as well as to measurement errors.
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2 ROBUST SOLUTION IDENTIFICATION FOR UNCERTAINTY MANAGEMENT IN MOLP

In the scientific literature, some authors present different concepts such as “risk”, “fuzziness”,
“uncertainty”, among others. These terms are associated with different areas. For example, in
the risk studies, statistics techniques are usually applied. However, in this paper, a deterministic
method is presented.

The objective of this paper is to present a new approach, which supports decision-making where
uncertainty is introduced into the mathematical model as an interval of real numbers.

Bitran (1980) presents the method called Interval Objective Function that introduces the un-
certainty in the coefficients of objective function with interval number in Multiobjective lin-
ear programming. This work is very important for further research with interval analysis in
multiobjetctive linear programming

Lucas, Antunes & Clı́maco (2005) develops the Sonar Method creating a new way of modeling
the uncertainty in linear programming problems, where one or more objectives are optimized,
opening doors for the development of new interactive decision support methodologies.

Oliveira & Antunes (2007) provide an overview of multiple objective linear programming models
with interval coefficients.

Lucas (2009) applies the Sonar Method to the Petrobras’s Plangas System of and obtains the
Most Optimist Solution and the Least Optimist Solution for the company’s Production and Sales
Planning. The results are the optimal solutions of the linear programming problem where uncer-
tainty is introduced an interval number. The work shows to be interesting for real problems and
opens doors for the development of new methodologies to support decision maker.

Hladik (2012) looks for the Optimal Value Range for the Linear Programming Problem with the
coefficients of objective function, coefficients and bounds of constraints on interval numbers and
intends to determine a tight enclosure to the optimal solution set.

The interactive methodology in this paper aims to identify, whenever possible, robust solutions
for the uncertainty in a Multiobjective Linear Programming (MOLP) problem, where some or all
of the coefficients of the objective functions, constraints or limits of the constraints can be inter-
vals of real numbers. The decision maker can analyze the solutions with respect to their quality,
analyzing the objective function values, and with respect to their feasibility. This approach is
based on Sonar Method.

The concept of robustness used in this paper calls a solution robust when it is obtained several
times or every time that a set of possible problem coefficient values are implemented (Roy, 1998).
The positive side of the interactive approach is having the intervention of the decision maker to
ease any practical difficulties that may arise for the process of decision support, avoiding a large
number of solutions to be evaluated.

Lucas, Antunes & Clı́maco (2006) use the Sonar Method to model the uncertainty in the problem,
evaluating the robustness of solution to the uncertainty of the data using the parametric diagram.
A robustness index is constructed based on the frequency that basis is generated and the degree
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of superposition of the indifference regions computed for it with random coefficient generations
within the intervals.

The quality and feasibility of the solution identify robust solutions in the sense that “no matter
what” (for any setting in which the coefficients are presented within the intervals) the respective
values of objective functions are never below certain satisfaction levels suggested by the deci-
sion maker. In most cases, the values of the objective functions do not change drastically under
possible variations of the coefficients, and in most cases the solution is possible (Lucas, 2009).

This approach looks for solutions to deal with the uncertainty in MOLP problems and it tries not
to generate only very conservative solutions (such as the MINIMAX based models).

The main purpose of the presented approach is to help identifying efficient solutions that have a
behavior judged as satisfactory by the decision maker, who is confronted with variations of the
interval coefficients of the MOLP model, with respect to the quality of the solution, analyzing
the objective function values, and with respect to the feasibility of the solution.

2 UNCERTAINTY MANAGEMENT IN SINGLE AND MULTIPLE OBJECTIVE
PROGRAMMING

Lodwick & Salles-Neto (2021) define Flexible and Generalized Uncertainty in an excellent work.
“Flexibility in the context of an optimization problem, is the relaxation of the meaning of set
relationships such as belonging (to the constraint set) or optimizing (in the objective)” and “Gen-
eralized uncertainty theory is a mathematical theory of incompleteness or lack of information,
lack of specificity, or imprecision”.

The Sonar Method can be used in Flexible and Generalized Uncertainty whenever it is expressed
by interval numbers.

Uncertainty is an intrinsic characteristic of real-world problems arising from multiple sources of
distinct nature (Antunes, Lucas & Climaco, 2006). Robust optimization (Bertsimas & Sim, 2004;
Ben-Tal & Nemirovski, 2008) has been used to treat uncertainty in many classes of problems. In
uncertain multiobjective problem (UMOP), several authors have addressed robust solutions. The
necessary and sufficient optimality conditions for robust multiobjective efficiency are presented
in Kuroiwa & Lee (2012) and Bokrantz & Fredriksson (2017). Optimality conditions and duality
theorems for UMOP are investigated in Goberna, Jeyakumar, Li & Vicente-Pérez, (2014), Lee &
Lee, (2016); Chen, Köbis & Yao, (2018).

The Minmax (Ben-Tal, Ghaoui & Nemirovski, 2009) robustness concept in UMOP is addressed
in Ehrgott, Ide & Schöbel. (2014). They adapted weighted sum scalarization and epsilon-
constraints to this new concept. The Tchebycheff function to generate nondominated robust
solutions with an interactive weighted procedure is presented in Hassanzadeh, Nemati & Sun
(2014). The numerically tractable optimality conditions for highly robust weakly efficient so-
lutions are given in Goberna, Jeyakumar, Li & Vicente-Pérez, (2015). Eichfelder, Krüger &
Schöbel (2017) present prove that decision robust efficient solutions can be found by solving
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a deterministic problem in case of linear objective functions. Different robustness concepts for
UMOP are compared in Goberna, Jeyakumar, Li & Vicente-Pérez (2015); Ide & Schöbel (2014).

The conservatism of MinMax method has been observed in several papers (see numerical exam-
ple, Bokrantz & Fredriksson, 2017). In Minmax, the efficient solutions are found by optimizing
in the worst case; hence, it is more conservative and not that good in other scenarios. In a sin-
gle objective problem, Fischetti & Monaci (2009) developed Light Robust efficiency concept
with a “flexible counterpart robust”. The model finds the efficient solutions by controlling the
loss in the objective function values, with tolerable degradations, in the most typical scenario
(Zhou-Kangas & Miettinen, 2019). Kuhn, Raith, Schmidt & Schöbel. (2012, 2016) extended
Light robust concept for bi-objective optimization with uncertainty in only one objective. They
propose a two-step algorithm that solve a deterministic multiobjective problem and filter among
the efficient solutions found robust efficient solutions. Ide & Schöbel (2013, 2016) generalize
Light robust for UMOP. The relationships between Minmax robust efficient, lightly robust effi-
cient and nominal efficient solutions are analyzed in Zhou-Kangas & Schöbel (2018). They use
two measures ‘price to be paid for robustness’ and ‘gain in robustness’ to support the decision
maker in considering the trade-offs between robustness and quality.

The compensatory analysis between robustness and quality, or solution to the worst case or so-
lutions that are also valid in other scenarios, has been a concern in almost all papers. Raith,
Schmidt, Schöbel & Thom (2017) notes that the number of sub-problems that have to be solved
increases with decreasing values of parameter Price of Robustness (Bertsimas & Sim, 2004).The
interactive method of Robust solutions for MOLP problems using interval programming present
in this work can be suitable to solve this dilemma.

The method presented is able to search robust solutions on the most important region of decision
space in a model of multiobjective linear programming that is the area near of the contour of the
feasible set. Other important contribution is to introduce uncertainty through interval coefficients,
considering that the interval number is easy to understand and to implement. If an expert is asked
about the uncertainty of an important parameter in a specific real problem, the expert can indicate
the lower and upper bound to solve the difficult situation and these bounds can be presented in
interval number. That option is easier than to require previous knowledge about the probability
distributions of the target problem data.

This paper is subdivided into six sections. Initially, in section 2 and 3, the principal’s points of
Multi-Objective Linear Programming theory and Interval Analysis are introduced. The fourth
section shows the new Robust Interactive approach to MOLP based on reference points. Section
5 considers future possibilities of this approach and in the last section, conclusions and future
possibilities of this approach are presented.
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3 MINIMIZING THE DISTANCE FROM A REFERENCE POINT IN MULTIOBJEC-
TIVE PROGRAMMING

The search for technical decision-making requires knowledge of the target problem, considering
the relevance of each of the aspects of possible issues, and techniques that can systematize and
enhance the scope of a rational decision (Zeleny, 1974).

The multicriteria problems are usually subdivided into two major groups, which are associated
with their methodological approaches: the multi-attribute problems and multiobjective problems.

In multi-attribute analysis, permissible alternatives are explicitly known and finite in number.
In this context, one can distinguish among the selection, ordering or characterization problems
(Roy, 1990).

In multiobjective programming, the constraints define the set of feasible solutions forms a contin-
uous (as well as the mono-objective programming). However, the set of feasible solutions within
the decision variables is mapped in the space of objective functions, so that each alternative is as-
sociated with a vector whose components are the values of the objective functions corresponding
to this alternative (Steuer, 1986; Cohon, 1978).

According to the process used for aggregating the decision makers’ preferences, Multiobjec-
tive Programming methods can be classified into three categories: methods where an a priori
aggregation of preferences is made; methods of progressive articulation of preferences (interac-
tive methods) and methods in which no articulation of preferences is made (generating methods)
(Antunes, Alves & Clı́maco, 2016, p3-4).

3.1 MOLP Problem

The MOLP problem presents p -linear objective functions subject to a set of linear constraints.

It is considered that the objective functions are all to maximize:

max f1 (x) = c1x
max f2 (x) = c2 x
. . . . . . . . . . . . . . . . . . . . . . . .

max fp (x) = cp x
s.t x ∈ X {x ∈ℜn | x ≥ 0 , Ax = b , b ∈ ℜm }

or
ital Max f (x) = C x

s. t x ∈ X

where p is the number of objective functions, n is the number of variables, m is the number
of constraints, x is the vector of decision variables, C is the matrix of objectives (dimension p
× n), whose rows are the vectors cp (coefficient of objective function f p ), A is the matrix of
technological coefficients (m × n) , b is the vector of independent terms, X is the feasible region
in the space of variables (Steuer , 1986; Climaco, Antunes & Alves, 2003).

Pesquisa Operacional, Vol. 42, 2022: e247885



6 ROBUST SOLUTION IDENTIFICATION FOR UNCERTAINTY MANAGEMENT IN MOLP

Methods to solve MOLP are presented by Luc (2016, p 241,264,289): Multiobjective Simplex,
Normal Cone and Outcome Space.

3.2 Efficient Solution and Non-Dominated Solution

A solution is called efficient for a multiobjective problem if and only if there is no other feasible
solution that enhances the value of an objective function without worsening the value of at least
one other objective function (Pareto, 1986; Climaco, Antunes & Alves, 2003).

XE =
{

x∈X | x′∈X : f
(
x′
)
≥ f (x)

}
where f (x′)≥ f (x) if and only if f (x′)≥ f (x) and f (x′) 6= f (x).

In MOLP, the feasible set produces another vector space called the Criteria Space, which is the
image of the feasible set. The criteria space has p dimensions and its size varies according to the
number of objective functions.

The non-dominated solution is the image of efficient solutions in the Criteria Space.

3.3 Ideal Solutions

The ideal solution is the point z* in the space of objective functions that would optimize all
functions simultaneously. Each component of the ideal solution is the optimal value of each
objective function, individually optimized in the feasible region. When the objective functions are
in conflict, the ideal solution is beyond the feasible region, but each zk* is individually accessible.
The ideal solution can be used as the reference point in surrogate scale functions that are designed
to calculate the nearest non-dominated solution, according to a given metric. Note that there can
be no x* solution in the space of decision variables (even not feasible) having z* as image within
the objective functions space, so the ideal solution is defined only in this space (Climaco, Antunes
& Alves, 2003).

The pay-off table contains the values of the objective functions for each non-dominated solution,
which is the individual optimal of each function. This table allows to obtain the information on
the ranges of values of each objective function in the non-dominated region.

Table 1 – Pay-Off Table.

x1 x2 xk xp

f1 z1,1 = z∗,1 z2,1 ... zk,1 ... zp,1

f2 z1,2 z2,2 = z∗,2 ... zk,2 ... zp,2

... ... ... ... ... ...
fk z1,k z2,k ... zk,k = z∗,k ... zp,k

... ... ... ... ... ...
fp z1,p z2,p ... zk,p ... zp,p = z∗,p
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The pay-off table has the following form, where zi , k = ck xi , with zi , i = ci xi = z * , i where the
columns are represented by xi solutions that are ordered in the same sequence of their objective
functions, i.e. in column 1 the value of f 1 is calculated with its optimal solution and displayed
in the cell z1,1 and the other lines the optimal solution of f 1 is assigned to the other objective
functions . In the second column, the solution which optimizes f 2 is introduced and so on.

The ideal solution can be identified in the diagonal of the individual optimal table (elements z*, k

= zk , k).

However, for problems with more than two objective functions, the worst values of each objective
function in the non-dominated region may not be available in this table. It may be that the worst
value of a given objective function in the non-dominated region is not reached in a solution that
is the individual optimal of another objective function (and only these solutions are shown in the
table).

3.4 Adding Multiple Objectives

The optimization of the substitutive scalar function that, temporarily, adds the multiple objective
functions, results in the non-dominated solutions of the original problem and includes informa-
tion of preference of the decision maker parameters (Wierzbicki, 1986; Vanderpooten, 1989,
1990; Vanderpooten & Vincke , 1989; Antunes, 1991; Climaco, Antunes & Alves, 2003).

In the context of interactive methods, the substitutive scalar function can be used to evaluate the
non-dominated solutions guided by the preference of the decision makers but without considering
as the true analytical representation of their preference (Clı́maco, Antunes & Alves, 2003).

3.4.1 Minimizing the distance from a reference point

This process of minimizing the distance from a reference point determines the efficient solu-
tions, according to the preference of the decision maker. Often the ideal solution is used as this
reference point, since each of the ideal solution components is the best possible value for it
individually optimized objective function (Clı́maco, Antunes & Alves, 2003).

The most commonly used metrics are L1, L2 (Euclidean) and L∞ (by Chebycheff) metrics. The
Figure 1 shows the iso-distance contours (locus of equidistant points) for z* for these metrics. In
Figure 2, the points z1, z2 and z∞ minimize the distances from the ideal solution z* using the L1,
L2 and L∞ metrics, respectively. Adopting the ideal solution as a reference point, the calculation
of the solution which minimizes the Lp metric distance is min || z* - f(x) ||p s. t x ∈ X.

For p = 1 all deviations from the reference point are considered. As p increases, greater devia-
tions will have greater impact on the distance value. For the L∞ metric, the greatest deviation
supersedes all others and it is the only one considered (it results in the minimizing of the greatest
deviation). In this case, a MINIMAX type of problem occurs that can be transformed into a linear
problem by introducing an additional variable.
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Figure 1 – Iso-distance contours of the L1, L2 and L∞ metrics.
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Figure 2 – L1, L2 and L∞ metrics in distance functions.

min v

s. t v + fk(x) ≥ zk* k=1,...,p

x ∈ X

v ≥ 0.

If the original multiobjective problem is linear, the substitute scalar problems are only linear with
the L1 and L∞ metrics.
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4 INTERVAL ANALYSIS

Interval Mathematics is a generalization in which the interval numbers replace the real numbers,
the interval arithmetic replaces the real arithmetic and interval analysis replaces the real analysis
(Hansen, 1992).

Interval mathematics began with Moore’s book “Interval Analysis” in 1966. This work is used
as a viable tool for error analysis. Rather than merely treating rounding error, Moore (1966) ex-
tended the use of interval analysis to limit the effect of all types of error, including approximation
and data error. Since then, numerous studies on interval analysis have been published (Hansen,
1992). An overview of theory and applications of interval analysis is given by Alefeld & Mayer
(2000).

4.1 Main definitions

The real interval X = [a, b] considers the interval number X as a number which is a closed interval
in the set {x: a ≤x ≤ b} of real numbers including the points a and b.

The real number x is equal to an interval [x, x]. Such interval is called degenerate interval. When
a real number is expressed as an interval, it usually keeps the simple notation. For example, the
number 2 is displayed in place of [2, 2] or x in place of [x, x].

The rules of interval arithmetic are simple when one or both terms are degenerate intervals. In
this case, it is better to leave a degenerate interval as a real number.

An interval X = [a, b] is said to be positive (or not negative) if a ≥ 0, strictly positive if the a >

0, negative (or not positive) if b ≤ 0 , and strictly negative if b < 0 .

Two intervals [a, b] and [c, d] are equal if and only if a = c and b = d.

The interval numbers are partially ordered. We have [a, b] < [c, d] if and only if b < c. (Hansen,
1992).

4.2 Interval Arithmetic

Addition, subtraction, multiplication and division are indicated by the signs + , − , ∗ , / respec-
tively. If op stands for one of these arithmetic operations for the x and y real numbers, so the
arithmetic operation corresponding to the interval numbers X and Y (Hansen, 1992) is:

X op Y = {x op y: x ∈ X, y ∈ Y}

Thus, the X op Y interval resulting from this operation includes all numbers that can be formed
as x op y for each x ∈ X and each y ∈ Y.
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5 ROBUST INTERACTIVE APPROACH BASED ON REFERENCE POINTS FOR
MOLP

This approach aims to identify efficient solutions in MOLP models in which all (or only some)
coefficients are specified as interval numbers, reflecting the uncertainty associated with the
problem.

- For a given “concretization” of the feasible region, the objective function values are never below
certain reserve levels imposed by the decision maker.

- For the “majority” of cases, there is a sharp degradation of the objective function values; i.e.,
a solution that presents a sharp deterioration to any objective function cannot be classified as
robust.

- For the “majority” of cases, the solution remains feasible.

This approach requires the establishment of some control parameters by the decision maker who
plays a key role in the classification of a solution as robust or not. These parameters introduce
an additional degree of subjectivity (practically impossible to avoid in this context unless it goes
to very conservative solutions of the MINIMAX type) but with the advantage of involving the
decision maker in the process of identifying solutions which are considered robust.

The MOLP problem formulation with interval coefficients is the following, in which the lower
(denoted by L) and upper (denoted by U) variation limits are known for each coefficient,
assuming that additional information is not available (Lucas, Antunes & Climaco, 2005) :

max zk(x) =
n
∑
j=1

[
cL

kj,c
U
kj

]
x j k = 1, . . . , p

s.t
n
∑
j=1

[
aL

ij,a
U
ij

]
x j≤

[
bL

i ,b
U
i
]

i = 1, . . . , m

xj ≥ 0 j = 1, . . . ,n

Starting from this problem, the proposed interactive approach to support the identification of the
robust effective solutions is developed as follows. (Lucas, 2009)

1a- Calculation of solutions that individually optimize each objective function zk ( x ) ( k = 1,...,p)
with the most favorable coefficients of the objective function in the amplified feasible region. For
maximizing problems and for restrictions of the type ≤, it is

max z U
k (x)

s.t
n
∑
j=1

aL
ij
x j≤ bU

i
, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n.

These values constitute a reference point (z U*
1 , z U*

2 ,..., z U*
p ),under an “optimistic” perspective,

since all interval coefficients of the model are considered simultaneously in their most favorable
extremes.
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1b- Calculation of solutions that individually optimize each objective function zk ( x ) ( k = 1,...,p)
with the least favorable coefficients of the objective function in the reduced feasible region . For
maximizing problems and for restrictions of the type ≤, it is

max z L
k (x)

s.a
n
∑
j=1

aU
ij

x j≤ bL
i
, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n.

These values constitute a reference point (z L∗
1 , z L∗

2 ,..., z L∗
p ) under a “pessimistic” perspective,

since all interval coefficients of the model are considered simultaneously in their least favorable
extremes.

2a- Calculating the solution that minimizes a Chebycheff distance (weighted) for the optimistic
reference point using the central coefficients ( nominal ) of the objective functions , in a feasible
region that favors the region between the amplified feasible region and the reduced feasible region
(Lucas, Antunes & Clı́maco, 2005). In order to mitigate the effects of the magnitude orders of
the objective function values, the coefficients of the objective function can be multiplied by a
scaling factor, or a normalization can be made; also, we can use calculated weights as in the
STEM method (Benayoun at al, 1971). This weighting coefficient is called gk.

min v

s.t
n
∑
j=1

aL
ij
x j ≤ bU

i
, i = 1, . . . , m,

n
∑
j=1

aU
ij

x j ≥ bL
i

, i = 1, . . . , m,

gk ( z U*
k - z C

k (x) ) ≤ v , k = 1, . . . , p,

v ≥ 0

xj ≥ 0, j = 1, . . . , n.

The solution to this problem is (x0U, z0U).

2b - Calculating the solution that maximizes a Chebycheff distance (weighted) for the pes-
simistic reference point using the central coefficients ( nominal ) of the objective functions, in
the same feasible region used above.

max v

s.t
n
∑
j=1

aL
ij
x j ≤ bU

i
, i = 1, . . . , m,

n
∑
j=1

aU
ij

x j ≥ bL
i

, i = 1, . . . , m,

gk (z C
k (x) - z L∗

k ) ≥ v , k = 1, . . . , p,

v ≥ 0
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12 ROBUST SOLUTION IDENTIFICATION FOR UNCERTAINTY MANAGEMENT IN MOLP

xj ≥ 0, j = 1, . . . , n.

The solution to this problem is (x0L, z0L).

In the case of the occurrence of an empty feasible region, the restrictions
n
∑
j=1

aU
ij

x j ≥ bL
i

, i = 1,

. . . , m, are discarded.

3 - Solutions are calculated by solving the following substitutive scalar problem with coefficients
randomly generated within their intervals

min v

s.t
n
∑
j=1

ar
ij
x j ≤ br

i
, i = 1, . . . , m,

n
∑
j=1

aU
ij

x j ≥ bL
i

, i = 1, . . . , m,

gk ( z U*
k - z r

k(x) ) ≤ v , k = 1, . . . , p,

z r
k(x) ≥ z L∗

k , k = 1, . . . , p,

z L
k (x) ≥ z L∗

k , k = 1, . . . , p,

v ≥ 0

xj ≥ 0, j = 1, . . . , n.

Where r denotes the randomly generated coefficients with a uniform distribution within their
intervals.

Among a set of solution generated through problem solving, we consider as robust solutions
those whose values of objective functions, with the central coefficients (nominal):

- Are never worse in a value greater than ∆k (k = 1, ... , p) , which can be given in absolute
terms or as a percentage in relation to the values of objective functions with the most
favorable coefficients, and

- Are always better at least in a value φ k ( k = 1, ... , p) (possibly ∆k = φ k , for any or all
k = 1, ... , p) with respect to their values of objective functions with the least favorable
coefficients , and

- Never vary over ε % in relation to the objective function values obtained with random
coefficients within the intervals in all simulations (steps 2 and 3).

6 FUTURE POSSIBILITIES

A possible application of this approach is to develop an automatic monitoring system for
uncertainty management as follows.

The problem solving in step 3 could be done by repeating h times the random generation of the
coefficients of the objective functions within their intervals.
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If the values of the objective functions are located more than q times in a region ∆k (k=1,...,p) near
z0U=z(x0U), or near z0L=z(x0L), then x0U, or x0L is classified as robust solution given the quality
of the values of the objective functions . The q parameter serves as a solution quality threshold. It
would also be possible to establish a veto parameter to “veto” the quality of the solution whenever
the respective values of the objective functions are situated more than a distance from a desired
value, or within a certain distance from an unwanted value.

Additionally, the aij and bi coefficients are randomly generated within the intervals. If the solution
is not feasible (with respect to the interval restrictions) a number of times lower than s, it is then
classified as robust solution according to the feasibility.

If a solution is found to be robust according to the quality (of the values of the objective functions)
and according to the feasibility, it is then classified as robust.

The system can be fed automatically and to be considered under control if the results are obtained
by robust solution. When there is no robust solution, the system gives a warning sign to update
the model under uncertainty.

Another future perspective is the development of a computer application to use the Sonar Method
to treat uncertainties.

7 CONCLUSION

The world is changing rapidly. The advancement of Information Technology has changed the life
and dynamics of society, people and enterprises through system automation, expert systems, and
the use of artificial intelligence.

The modeling of real problems under uncertainty still presents a major scientific challenge. The
management of uncertainty needs to be explored in many areas, requiring the development of
new techniques appropriate for specific problems.

Thus, the method presented in this paper proposes the use of the interval numbers to exploit the
problem uncertainty and to find the robust solution, considering both quality and feasibility of
the solution.

In order to help the decision maker there is a large field of the development of the software to be
able uncertainty management to be applied to various scientific areas, such as Health, Sustain-
ability and Public Management, where small changes can have great impact on the solutions of
the target problems.
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ANTUNES CH. 1991. Apoio à Decisão em Programação Linear Multi-Objetivo - Um Modelo
para o Planeamento Estratégico de Redes de Telecomunicações. Tese de Doutoramento em
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Doutoramento em Engenharia Electrotécnica e de Computadores, Faculdade de Ciências e
Tecnologia, Universidade de Coimbra.

LUCAS SF. 2012. Uma Abordagem Interativa para o Tratamento da Incerteza em PLMO com os
Coeficientes Intervalares Baseada em Pontos de Referência. Annals of XVI CLAIO/ XLIV SBPO,
24 a 28 de Setembro, Rio de Janeiro.

OLIVEIRA CO & ANTUNES CH. 2007. Multiple objective linear programming models with in-
terval coefficients – an illustrated overview. European Journal of Operational Research, 181(3):
1434–1463.

PARETO V. 1896. Course d’Economic Politique. Lausane, Rouge.
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