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ABSTRACT. A recent optimal control problem in the area of economics has mathematical properties that

do not fall into the standard optimal control problem formulation. In our problem the state value at the final

time the state, y(T ) = z, is free and unknown, and additionally the Lagrangian integrand in the functional

is a piecewise constant function of the unknown value y(T ). This is not a standard optimal control problem

and cannot be solved using Pontryagin’s Minimum Principle with the standard boundary conditions at the

final time. In the standard problem a free final state y(T ) yields a necessary boundary condition p(T ) = 0,

where p(t) is the costate. Because the integrand is a function of y(T ), the new necessary condition is that

y(T ) should be equal to a certain integral that is a continuous function of y(T ). We introduce a continuous

approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and

solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary

Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the

Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also

presented.

Keywords: optimal control, non-standard optimal control, piecewise constant integrand, economics, com-

parative nonlinear programming results.

1 INTRODUCTION

Calculus of Variations (CoV) provides the mathematical theory to solve extremizing functional
problems for which a given functional has a stationary value either minimum or maximum [13].
Optimal control is an extension of CoV and it is a mathematical optimization method for deriving
optimal control policies. Optimal control channels the paths of the control variables to optimize
the cost functional whilst satisfying (in this paper) ordinary differential equations. Economics is
a source of interesting applications of the theory of CoV and optimal control [7]. A few classical
examples that reflect the use of optimal control are the drug bust strategy, optimal production,
optimal control in discrete mechanics, policy arrangement and the royalty payment problem
[5, 7, 9].
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In a recently studied economics problem a firm struggling with intensively low demand of their
product will purposely increase the marginal cost by reducing the production of the product and
increase the selling price [11]. Therefore the requirement to pay a flat-rate royalty on sale has the
effect of increasing the marginal cost and thereby decreasing the output while simultaneously
increasing the price. The effect of permitting a nonlinear royalty leads to a non-standard CoV
problem not previously considered. In this paper we will demonstrate some ways of solving the
problem without discussing the precise economics details.

Let us start by considering a simple problem. We wish to determine the control function u(t)
where t ∈ [0, T ] that maximises the integral functional

J [(∙)] =
∫ T

0
f (t, y(t), u(t), y(T ))dt (1)

subject to satisfying the state ordinary differential equation dy
dt = u(t) with y(0) known and

the endpoint state value y(T ) at time t = T unknown. The Lagrangian integrand depends on the
unknown final value y(T ) and this is not a standard optimal control problem because the function
depends on y(T ). A standard optimal control often solves a problem with the final state y(T )

free and then the boundary condition p(T ) is zero [12]. The Hamiltonian for optimal control
theory arises when using Pontryagin’s Minimum Principle (PMP) [13]. It is used to find the
optimal control for taking a dynamical system from one state to another subject to satisfying the
underlying ordinary differential equations [12]. We introduce a continuous approximation of the
piecewise constant integrand function by using a hyperbolic tangent approach. The present paper
will indicate how such problems can be solved. In the next section we will discuss the theoretical
approach in order to solve the problem. We will follow the work of Malinowska and Torres [6],
in proving the boundary condition for CoV [2]. Then we will demonstrate a numerical example
and we will use C++ to solve it. We also compare the results with a nonlinear programming(NP)
discrete-time approach and then present some conclusions.

2 NON-STANDARD OPTIMAL CONTROL

In classical optimal control problems, the function (1) does not depend specifically on the free
value y(T ). However, in our case, the Lagrangian integrand function f depends on y(T ). We
present a recent theorem that indicates that p(T ) is equal to a certain integral at time T . Ma-
linowska and Torres [6] have proven this boundary condition for CoV on time scales [2]. The
following theorem can be applied to our problem.

Theorem: [6, 7]

If ỹ(∙) is the solution of the following problem

J [(∙)] =
∫ T

0
f
(
t, y(t), ẏ(t), y(T )

)
dt (2)

y(0) = α and y(T ) is free (3)
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y(∙) ∈ C1 (4)

then
d

dt
f ẏ

(
t, ỹ(t), ˙̃y(t), ỹ(T )

)
= fy

(
t, ỹ(t), ˙̃y(t), ỹ(T )

)
(5)

for all t ∈ [0, T ]. Moreover

f ẏ
(
t, ỹ(t), ˙̃y(t), ỹ(T )

)
= −

∫ T

0
fz

(
t, ỹ(t), ˙̃y(t), ỹ(T )

)
dt

From an optimal control perspective one [12, 13] has the costate p(T ) = f ẏ
(
t, ỹ(t), ˙̃y(t), ỹ(T )

)
.

Hence

p(T ) = −
∫ T

0
fz

(
t, ỹ(t), ˙̃y(t), ỹ(T )

)
dt (6)

where p(t) is the Hamiltonian multiplier or costate function. Theorem 1 shows that the necessary
optimal condition does not have p(T ) = 0 as is the case for the standard classical optimal control
problem.

Suppose that we wish to consider a piecewise constant function f in (2). For example, consider

J [(∙)] =
∫ T

0
f (t, y(t), u(t), z)dt

where z = y(T ) and

f (t, y, u, z) = 0.3u(t)2 + W (zy(t) sin(π t) + 0.5) (7)

and

W =

{
a for y ≤ 0.5z
b for y > 0.5z

(8)

with a and b real numbers. We have a discontinuous integrand that cannot be differentiated as
required in the final boundary condition (7). We introduce a continuous approximation of the
piecewise constant integrand function by using a hyperbolic tangent approach in order to have a
continuous smooth function. Other approximations have been tried but they required hundreds
of terms, for instance in a Fourier series approximation. The tanh(ky) approximation used here
is very accurate. A numerical example will be presented in the next section.

3 NUMERICAL EXAMPLE

The example is a simplified version of the proposed economics problems but has the same main
features. The state equation (ODE system) is described by

ẏ(t) = u(t) (9)

We wish to maximise

J [(∙)] =
∫ T

0
f (t, y(t), u(t), z)dt (10)
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where

f (t, y, u, z) =
3

4

√
u − W (y)

(
19

20
+ zy sin

(
π t

10

)
u(t)

)
(11)

is a continuous function and T = 10. W (y) is a piecewise constant function where

W (y) =

{
1 for y ≤ 0.5z

1.2 for y > 0.5z
(12)

We approximate W (y) using a hyperbolic tangent function

W = 1.1 + 0.1 tanh(k(y − 0.5)) (13)

and we select k suitably large. k = 450 say. For larger values of k we obtain a smoother
approximation of the function W (y) (see Fig. 1). The known initial state is y(0) = 0 and final
state value z = y(T ) is free. Therefore the Hamiltonian is described by H(t, y, u, p) = f + p.u
and

ẏ(t) = Hp(t, y(t), u(t), p(t)) (14)

ṗ(t) = −Hy(t, y(t), u(t), p(t)) (15)

Figure 1 – W (y) approximation.

The costate satisfies

ṗ =
(

40 − 40 tanh(50y − 25z)2
) (

19

20
+ zy sin

(
π t

10

))
u(t) + W

(
z sin

(
π t

10

))
u(t) (16)

The stationarity condition is Hu = 0 and this yields

u(t) =
9

64
(

W
(

19
20 + zy sin

(
π t
10

))
− p

)2
(17)
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Equation (6) holds so

p(T ) = −
∫ 10

0

(
−

5

2
+

5

2
tanh(50y − 25z)2

)(
19

20
+ z y(t) sin

(
π t

10

)
u

− W (y)

(
y(t) sin

(
π t

10

)
u(t)

))
dt

= −
∫ 10

0
η(t)dt

4 RESULTS

There are several necessary conditions that need to be satisfied, such as the state equation (9)
and the costate equation (16) along with the stationarity condition (17). Also the initial condition
of y(0) is given and we select a guessed initial value of p(0). We also need to make sure the
boundary condition of (18) will be satisfied at the final time, T . This is a two point boundary
value problem. We need to ensure that the iteration value of z used in (17) will be equal to y(T )

at the final time T . This is satisfied in our algorithm only when the p(T ) boundary condition
converges. Then we will have the optimal solution. The minimising free value y(T ) is calculated
in an outer loop iteration using the Golden Section (or Brent) maximising line search algorithm.
We used the Newton shooting method with two guessed values v1 = p(0) and v2 = p(T ). We
use the programming language C++ in order to solve the shooting method and other algorithms
described in the Numerical Receipe library [8]. We iterate the system with the state equation
y(t), costate equation p(t), the integral of η(t) and the cost function J (t).

An optimal solution was obtained with high accuracy. The results are

y(T ) = 0.654221, p(T ) = −0.022793, eta(T ) = −0.022793 and J (T ) = 1.138440.

Figures 2–4 shows the optimal curves of the state variable y(t), adjoint variable p(t) and the
integral eta(t) and the control variable u(t).

Figure 2 – State v time shooting algorithm.
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Figure 3 – Costate v time shooting algorithm.

Figure 4 – Control v time shooting algorithm.

As a comparative approach, we used a different nonlinear programming discrete-time technique
to solve the same problem [1, 7]. We solved the problem using Euler and also Runge-Kutta
discretisation, and an optimization algorithm in order to solve the unknown control variables uk

at each time tk [1]. We used the AMPL program language [3] and the MINOS nonlinear solver
with 45 time steps in order to solve the problem.

reset;

####################

### PARAMETERS ###

param N = 45;

param x0 = 0;

param T = 10;

param N1 = N-1;

param TN = T/N;

param S = T/N/2;

param pi = atan(1.0)*4.0;

###################
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### VARIABLES ###

var x {0..N}, default x0;

var u {0..N} >= 0.0001;

###################

### OBJECTIVE ###

maximize J: sum {j in 0..N1} (0.75*sqrt(u[j]) - (1.1+0.1*tanh(450.0*x[j]-

25.00*x[N]))*0.95*u[j] -

(1.1+0.1*tanh(450.0*x[j]-225.00*x[N]))*x[N]*x[j]*u[j]*sin(pi*j*TN/10))*TN;

#####################

### CONSTRAINTS ###

subject to xinit: x[0] = x0 ;

### RK4 METHOD

var xp1 {i in 0..N1} = u[i];

var xp2 {i in 0..N1} = u[i] + S*xp1[i];

var xp3 {i in 0..N1} = u[i] + S*xp2[i];

var xp4 {i in 0..N1} = u[i] + TN*xp3[i];

subject to xdyn {i in 0..N1}: x[i+1] = x[i] + TN*(1/6*u[i] +

2/3*(u[i]+u[i+1])*0.5 + 1/6*u[i+1]);

subject to uN : u[N] = u[N1];

############# SOLVING OPTIONS ##############

option solver minos;

solve;

###### OUTPUT SCREEN

display J;

display x[N];

display xinit;

printf: " # N = %d\n", N;

printf: " # Data\n";

printf{i in 0..N-1}: " %24.16e %24.16e %24.16e %24.16e\n\n",

i*TN, x[i], u[i], xdyn[i];

printf: " %24.16e %24.16e %24.16e\n",

J, x[N], u[N-1];

display {i in 0..N1} i*TN, x, xdyn, u > resultzurichRK.txt;

end;

Figures 5–7 show the plot of optimal results for both the shooting and nonlinear programming
(NP) approaches for the state variable y(t), costate and control variable u(t). The results are
essentially the same. The NP results are good but the Hamiltonian shooting approach is a much
more accurate approach.

5 CONCLUSION

In this paper we have shown how to solve a non-standard optimal control problem. We have
presented the necessary conditions and the computational procedures in order to obtain optimal
solutions. The optimal solution of a test problem has been presented. A shooting algorithm to-
gether with a maximising approach was used to obtain a highly accurate solution, and compared
with a discrete-time nonlinear programming solution. Our techniques can be applied to the ac-
tual rather more complicated economics problem where the Lagrangian integrand is piecewise
constant in many stages and depends upon y(T ) which is a priori unknown.
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Figure 5 – State v time shooting and NP(x) algorithms.

Figure 6 – State v time shooting and NP(x) algorithms.

Figure 7 – State v time shooting and NP(x) algorithms.
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