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ABSTRACT. Two integer linear programming models are developed for the unrestricted vehicle rout-
ing problem with two-dimensional loading constraints. The first one is a complete model, and the other
uses valid inequalities to guarantee that routes are connected and respect the two-dimensional loading con-
straints. The models are solved with a branch-and-cut algorithm. Computational experiments on benchmark
instances showed the complete model has allowed optimal solutions for 5% of the instances, while the sec-
ond model optimally solved 64% of the instances. Given the superior performance of the second model,
we adapted it to handle the sequential variant of the problem, which is harder, and then optimal solutions
were obtained for 46% of the instances within the given time limit. The second model compared with a
branch-and-cut algorithm from the literature found identical or better solutions for all the instances.

Keywords: vehicle routing problem with two-dimensional loading, multi-drop requirements, integer

programming formulation, branch-and-cut.

1 INTRODUCTION

This paper addresses the Vehicle Routing Problem with Two-Dimensional Loading Constraints
(2L-CVRP), an NP-Hard problem (Iori et al., 2007). It integrates two other NP-hard optimiza-
tion problems: Capacitated Vehicle Routing Problem (CVRP) (Dantzig & Ramser, 1959; Clarke
& Wright, 1964; Mor & Speranza, 2020) and Two-Dimensional Bin Packing Problem (2BPP)
(Kantorovich, 1960; Sweeney & Paternoster, 1992; Coté et al., 2021). The two-dimensional
loading in the CVRP emerges when it is impossible to stack items due to fragility or size. More-
over, including loading constraints in CVRPs will yield more accurate route planning since this
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2 INTEGER FORMULATIONS FOR THE INTEGRATED VEHICLE ROUTING PROBLEM

problem appears in many practical situations, especially in logistics. C6té et al. (2017) pointed
out that solving the 2L-CVRP in a non-integrated way may increase the cost of solutions by 7%
on average.

In the 2L-CVRP, we are interested in minimum-cost routes to satisfy customers’ demands for
two-dimensional rectangular items. Vehicles depart from a central depot, visit one or more cus-
tomers to deliver items, and return to the depot. Besides respecting the vehicles’ maximum
weight and area capacities, we need to give attention to the positioning of items on the vehi-
cles’ rectangular base. These loading subproblems require items not to overlap each other, and
they must be entirely inside the base. In some cases, it is required that items must have free pas-
sage when unloading at customers. The latter refers to multi-drop requirements or the sequential
variant, where re-handling items is not allowed when unloading; otherwise, we have the unre-
stricted variant, where items can be re-handled during unloading operations (Iori & Martello,
2010).

In this paper, two integer models are developed for the 2L-CVRP and solved with a Branch-
and-Cut algorithm (B&C). Differently from the literature (e.g., lori et al. (2007), Azevedo et al.
(2009), and Hokama et al. (2016)), the first model considers the entire problem, meaning we
deal simultaneously with routing and packing decisions in the model. This first model has three-
index routing variables and five-index packing variables. On the other hand, the second model
follows the literature and has two-index routing variables, where valid inequalities are added as
demanded after running separation routines to deal with the loading subproblems.

Our contributions to the 2L-CVRP rely on: (i) proposal of a complete model; (ii) proposal of
a tailored separation routine for detecting violated packing decisions; (iii) comparison between
two methodologies (to insert all constraints at once and to detect/insert valid inequalities during
optimization); and, (iv) computational results for a wide range of experiments, comprising both
the unrestricted and sequential variants of the 2L-CVRP.

In the next section, a literature review related to the 2L-CVRP is presented. Some variants of
the 2L-CVRP consider constraints, such as time windows, heterogeneous fleets, and multiple
depots. Concerning the loading subproblem, additional constraints are related to cargo stability,
fragility conditions, load balance, and grouping of items. Section 3 has the developed models
and separation routines. Computational experiments and results are detailed in Section 4. Finally,
concluding remarks and proposals for future works are given in Section 5.

2 LITERATURE RELATED TO THE 2L-CVRP

The 2L-CVRP was introduced by Iori et al. (2007). The authors described an integer linear pro-
gramming model to solve the sequential variant of the 2L-CVRP. This model was solved with
a B&C algorithm in which cutting planes related to sub-tours were added during the optimiza-
tion process. The loading subproblem associated with each route was solved with a Branch-
and-Bound algorithm (B&B) called Check-2L, where lower and upper bounds were also ap-
plied to prevent unnecessary enumeration. Computational experiments were carried out on in-
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stances adapted from Reinelt (1991) and Toth & Vigo (2001), totaling 60 instances with up to 35
customers and 114 items.

In the literature, there are few exact algorithms to deal with the 2L-CVRP and its variants.
Azevedo et al. (2009) proposed a B&C to the 2L-CVRP. The authors developed new separa-
tion routines and valid inequalities based on those of the CVRP. An exact algorithm, combined
with simple heuristics, was used to solve the loading subproblems. In the sequential variant, they
compared their results with those of Iori et al. (2007). They were able to find optimal solutions
to more instances, besides reducing the runtime required to solve many others.

Hokama et al. (2016) presented a B&C to solve the sequential 2L-CVRP, where valid inequalities
were proposed following the literature in the CVRP. The authors proposed a constraint program-
ming formulation to handle the loading subproblems. When comparing their results with those
from the literature, they improved in 9% the number of optimal solutions obtained.

Coté et al. (2017) compared solutions of the 2L-CVRP with those obtained from solving each
problem (i.e., the CVRP and 2BPP) independently and then combining their solutions to obtain
a feasible 2L-CVRP solution. The computational experiments on benchmark instances using
integer programming models showed that an improvement of approximately 7% can be achieved
if the 2L-CVRP is solved directly. They also pointed that the loading subproblem may be the
bottleneck of this problem.

Junqueira et al. (2013) solved the problem with three-dimensional items, presenting a complete
model that was solved with a B&C algorithm. Their model combined a time-dependent formu-
lation for the routing counterpart and a grid-based formulation for the loading subproblem. The
model has four-index variables related to the routing and seven-index variables related to the
loading and allowed optimal solutions to small instances within some hours of running time. The
authors also studied the impact of some practical constraints in the loading subproblem, such as
cargo stability, multi-drop requirements, and load-bearing strength of items. In this work, we pro-
pose a complete model for the 2L-CVRP that has fewer variables and constraints than Junqueira
et al. (2013). Recently, Ferreira et al. (2021) proposed integer programming models and B&C
algorithms for three variants of the 2L-CVRP: allowing split delivery, with green requirements,
and combing split delivery and green requirements.

Regarding heuristics for the 2L-CVRP and its variants, Gendreau et al. (2008) proposed a tabu
search-based approach, while Fuellerer et al. (2009) developed an ant colony optimization. In
Zachariadis et al. (2009), there is a guided tabu search heuristic with a structure to save eval-
uated routes and avoid unnecessary computation. In Strodl et al. (2010), a variable neighbor-
hood search handled routing decisions while an exact procedure dealt with loading subproblems.
On the other hand, Leung et al. (2010) developed a simulated annealing able to improve many
solutions reported by Gendreau et al. (2008), Zachariadis et al. (2009), and Fuellerer et al. (2009).

In Duhamel et al. (2011), the greedy randomized-adaptive search procedure (GRASP) was com-
bined with a local evolutionary search for the 2L-CVRP. On the other hand, Leung et al. (2011)
proposed an extended guided tabu search. Shen & Murata (2012) solved the 2L-CVRP with a
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genetic algorithm, where a heuristic based on the bottom-left was used to handle loading sub-
problems. In Bin et al. (2013), the 2L-CVRP was solved by an artificial bee colony algorithm
combined with three heuristics for handling loading subproblems. These authors also allowed
items to rotate orthogonally. Computational tests on instances with up to 100 customers and
310 items showed that such a heuristic performed better than those of Gendreau et al. (2008),
Zachariadis et al. (2009), and Leung et al. (2011).

In Zachariadis et al. (2013) there is a local search method combined with a practical heuristic for
loading subproblems, while Dominguez et al. (2014) proposed a multi-start biased-randomized
algorithm for the 2L-CVRP in which items could orthogonally rotate. In Wei et al. (2015), there
is an efficient variable neighborhood search. The loading subproblems are solved with a skyline-
based heuristic, where different indicators are used to determine which items to arrange in the
available positions. To save computational time, routes already evaluated are kept in a pool. Wei
et al. (2018) combined simulated annealing with the open space technique to efficiently solve the
2L-CVRP. While simulated annealing drives the optimization towards good-quality solutions,
the open space technique deals with loading subproblems. Recently, Ferreira & Queiroz (2022)
solved a generalization of the 2L-CVRP that includes decisions related to the location of depots.
The authors presented a hybrid heuristic that integrates simulated annealing and the artificial
algae algorithm. The heuristic also uses the variable neighborhood descent in the local search
phase and the skyline technique to obtain feasible packings.

Table 1 summarizes the literature related to the 2L-CVRP and its variants. Each row in the table
presents a work, its group, i.e., exact or heuristic, and if the 2L-CVRP is the main problem; other-
wise, the problem is a variant. Other features are also described, such as the variant investigated
in the loading subproblem (unrestricted and/or sequential); if the problem is solved assuming
that the number of routes is exactly equal to (=) or less than (<) the number of available vehicles
(|K]), or it is not imposed (> K); if it is allowed to have routes serving only one customer; which
type of cost ¢;; is assumed to the edges {i, j} (integer or real); and, finally, the main method that
is used to solve the problem (B&C, constraint programming, tabu search, simulated annealing,
genetic algorithm, local search, among others). The entry -’ indicates that no information was
given by the authors.

Table 1 shows that less than 35% of the works proposed integer linear programming models and
exact methods (mainly B&C) to solve the 2L-CVRP and variants. Other works proposed heuris-
tics to tackle large-sized instances, as well as to consider additional constraints in the loading sub-
problem, as allowing items to rotate (Bin et al., 2013), circular items (Martinez & Amaya, 2013),
re-handling of items (Munoz, 2011), stochastic items (C6té et al., 2020), among others. Practical
constraints are also included in the routing problem, such as considering pickup and delivery
(Malapert et al., 2008; Zachariadis et al., 2016), a heterogeneous fleet of vehicles (Dominguez
et al., 2016), time windows to visiting customers (Martinez & Amaya, 2013; Khebbache-Hadji
et al., 2013), each vehicle may perform more than one route (Martinez & Amaya, 2013), splitting
the delivery (Ferreira et al., 2021), and green requirements (Ferreira et al., 2021).
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6 INTEGER FORMULATIONS FOR THE INTEGRATED VEHICLE ROUTING PROBLEM

Concerning the sequential and unrestricted variants, approximately half of the works in Table 1
have tackled both, while less than 25% of the works focused only on the unrestricted variant.
Besides that, many works (i.e., more than 65%) allowed the number of routes to be equal to or
less than the number of vehicles and vehicles that can perform single routes. On the other hand,
less than 35% of the works presented results of the case in which edges have integer costs, most
of them when a B&C is used. It is worth mentioning that we could not find any work making a
proper comparison of models for the 2L-CVRP, thus pointing their advantages and weaknesses
(for example, in terms of inserting all constraints at once or cutting planes as demanded).

3 INTEGER PROGRAMMING MODELS FOR THE 2L-CVRP

The 2L-CVRP is defined on a directed graph G = (V,E), where V is the set with n+ 1 nodes,
corresponding to the central depot (j = 0) and customers (j = 1,2,...,n), and E is the set of
arcs, in which E = {(i, ) : i,j € V,i # j}. Each arc (i, ) € E has a non-negative cost c;; to
traverse it. Let K be the set of identical vehicles, each vehicle of capacity P and available at the
depot. The dimensions of the vehicle’s rectangular base are W (width, along the x-axis) and H
(height, along the y-axis), with total area A = WH, defined in the Cartesian plane with the origin
at (0,0). Each customer j demands a set M; of rectangular items, where M = U jev\{0yM;. Each
item m € M; has width wj,,, height 4}, and weight p;,. The total area of all items belonging
to the customer j is a; = ZmeMj Wjmhjn and the total weight is p; = ZmeMj D jm- Without loss
of generality, all dimensions are assumed to be positive integer numbers. The problem has the
following constraints:

* The number of routes can be less than or equal to the number of vehicles;
» Each route starts and ends at the central depot and is associated with exactly one vehicle;
* Routes serving a single customer are allowed;

» Each customer must be served by exactly one vehicle, and all its items must be delivered
at once (i.e., splitting deliveries is not allowed);

* Vehicle capacities must be respected, both in terms of weight and area;

* Each route produces a loading subproblem. In this subproblem, all items belonging to the
customers of such a route must be orthogonally packed on the vehicle base without over-
lapping and fully inside the base. Moreover, items cannot be rotated (i.e., fixed orientation)
and are arranged by their bottom-left corners. When items do not always have free passage
during the unloading operation at a customer, the problem is called unrestricted, meaning
items can be re-handled. Otherwise, when each item has a free passage in the unloading
operation (re-handling items is not allowed), the problem is called sequential.

The objective of the 2L-CVRP is to obtain routes with the minimum total cost to serve all cus-
tomers’ demands, respecting the above-mentioned constraints. We develop in the next subsec-
tions two integer linear programming models to solve the unrestricted 2L-CVRP. The first model
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has three-index variables related to routing decisions and five-index variables related to loading
subproblems. It is a complete model in which all constraints are inserted at once. The second
model has only two-index variables, such that valid inequalities concerning the elimination of
sub-tours and infeasible loadings in each route are detected and added during the optimization
process.

3.1 Complete model

The complete model can be seen as an improvement in the integer programming model of Jun-
queira et al. (2013) originally proposed to the 3L-CVRP. For the loading subproblem, without
loss of generality, the vehicles’ rectangular base is discretized on the grid of canonical dissec-
tions proposed by Herz (1972). Items are arranged on this grid. Sets 2% in (1) and 2% in
(2) have the canonical dissection coordinates along the x- (width direction) and y-axis (height
direction), respectively. Notice that variable pj, is used to indicate whether item m of customer
J appears in the binary linear combination }_ ey (o} ZmeMj PjmWjm to obtain the coordinate s
(similarly for the coordinate ¢).

PV ={sezt|s= Y Y pimwim0<s<W, forpj, €{0,1},jeV\{0},meM;} (1)
JjeV\{0ymeM;

P ={tezt t= Y Y Pimhjm,0<t<H, forpj, €{0,1},j€V\{0},meM;}  (2)
JEV\{0} meM;
From sets (1) and (2), the respective sets 9}% and gzﬁn of valid coordinates for each item m

of customer j are obtained. Therefore, &}; and ! are the respective sets & and 27,

m jm
where coordinates after W —w;,, and H — hj,, are disregarded because they are no longer valid

to arrange item m in the vehicle rectangular base.

The complete model uses the binary variable x; jx, which is equal to 1 if arc (7, j) € E has vehicle
k € K traversing it; otherwise, x;j is equal to zero. Another variable is y;, which indicates the
vehicle’s load weight at customer j. The model also has the binary variable z;*;{“" , which is 1 if
item m of customer j is on vehicle k, having its lower-left corner positioned in the point (s,7),
where s € ‘@ﬁ/n andt € gzﬁn otherwise z;.’}f’ is zero. The complete model has objective function
(3) and constraints (4)-(8), which are related to the routing decisions, and constraints (9)-(10),
concerning the loading subproblems.

Minimize Z Z CijXijk 3)
(i,/))€E kek
Subject to:
Xijk = 1, Vie V\{O} )
keK {jeV| (i,j)eE}
Xinke = Z Xhjks Vh e V\{0},Vk € K 5)
{ieV| (i,h)eE} {jev] (h.j)€E}
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Z ijkgl, Vke K (6)
Jjev\{o}
Y xou= Y xo VkeK (7N
jev\{o} ieV\{0}
Yi —Yj+Pxij+ (P —pi—pj)xju < P—pj, Vi,j e V\{0}, i# j,VkeK (8)
Y L= Y we  Ven(ovmeMvkek )
se W et {iev| (i.j)eE}

Y ) )y Y <1, (10)

jeV\{0} meM;j (se PV | u—w jp+1<s<u} {te,@_/’.{n\ v—hju+1<t<v}

Jm
Vue 2V we 21 vkek

pi<yj <P VjeV\{0} (11)
xip€{0,1},  V(i,j)€ENVkeK (12)
2t efo,1},  VjieV\{0},Yme M, Vs P}, i€ Pi ke K (13)

The objective function (3) is related to a solution (i.e., set of routes) of minimum total cost.
Constraints (4) ensure that each customer i is served by exactly one vehicle k. Constraints (5)-(7)
are related to the flow conservation. In (5), each customer /4 has the same incoming and outgoing
flows. In (6), the number of routes may be less than the total number of vehicles. In constraints
(7), a vehicle must start and end at the central depot if it is used.

Constraints (8) are used to eliminate sub-tours and were proposed by Kara (2010). These con-
straints ensure that the vehicle’s load weight y; when at customer i is less than y; if vehicle
k is going from i to j (i.e., x;jx = 1). Constraints (9) link the routing decisions (i.e., variables
X;jx) with the loading subproblems (i.e., variables z’}}f’ ), ensuring that item m of customer j is
arranged on vehicle k if k visits j from any other customer i. Therefore, constraints (10) ensure
the non-overlapping between items, imposing each point of the grid, for each vehicle &, on being
covered by at most one item m of a customer j that is served by k. Finally, the variables’ domain
is expressed in (11)-(13), with continuous and binary variables.

We also considered constraints to remove the symmetry in the routes by forcing the first route
to have the largest weight (area), the second route to have the second-largest weight (area),
and so on. However, preliminary experiments with the complete model having these constraints
showed an important reduction in the number of instances with a solution and the gap increased.
Therefore, we decided not to use them.

3.2 Two-index model

There are different models for the CVRP in which two-index variables are used, indicating
whether a vehicle traverses an arc without explicitly specifying which vehicle is performing
this. Our model is based on Iori et al. (2007) and Coté et al. (2017). Let X;; be an integer variable
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that is equal to 1 if a vehicle traverses arc (i, j) € E; otherwise, it is equal to zero. Let . be the
set of all infeasible routes due to the loading subproblem, and let 7(S) be the smallest number of
vehicles needed to serve all customers in S. The exact value of r(S) can be obtained by solving
an instance of the 2BPP. The two-index model for the 2L-CVRP has the objective function (14)
and constraints (15)-(21).

Minimize Z CijXij (14)
(i,))€EE
Subject to:
Y fo<[K| (5)
jevi{o}
Z Xoj = Z Xio (16)
jev\{o} iev\{0}
=1, Vh e V\{0} 17)
{ieV| (i,h)€E}
fa= Y &y, VheV\{0) (18)
{ieV| (i,h)eE} {jev| (h,j)eE}
Y w<ISI-r(S),  VSCV\{0},S#0 (19)
ieS{jeS| (i,j)eE}
Y mi<isl-1,  vSes (20)
ie€S{jeS| (i,j)eE}
%e{01},  V(ij)€E @D

The objective function (14) minimizes the sum of the routes cost. Constraint (15) ensures that
the number of routes may be smaller than the number of available vehicles, while constraints
(16) guarantee the same incoming and ongoing flows to the depot. Constraints (17) impose each
customer on being visited exactly once, while constraints (18) are related to the continuity of
routes.

Constraints (19) ensure that routes are valid (i.e., there is no sub-tour and respect the vehicle’s
weight and area capacities). Constraints (20), which are related to the loading subproblems, im-
pose routes on having feasible packings. Both types of constraints are detected and added as
cutting planes during the optimization process. Finally, the domain of variables %;; is given in
20n).

The exact value of r(S) may be obtained from solving an instance of the 2BPP, taking into
consideration all items of the customers in the route S. Hence, following Lysgaard et al. (2004),
r(S) is changed to #/(S) as in (22), which returns the minimum number of vehicles required to
service the customers’ demands in terms of weight and area. According to Naddef & Rinaldi
(2002), constraints (19) with #/(S) are called the rounded capacity inequalities. From now on,
constraints (19) are redefined with #/(S) instead of r(S).

F(S) = max{ ’VZieI;S‘pi—‘ ’ P:izsai—‘ } 22)
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Because of constraints (19) and (20), separation routines are called during the optimization to
detect their violation. These routines can be applied to fractional or integer solutions to elimi-
nate infeasible solutions. Therefore, the B&C starts solving the two-index model without these
constraints since there is an exponential number of them.

Rounded capacity inequalities

For separating constraints (19), where r(S) is replaced by r/(S), the CVRPSEP package of
Lysgaard et al. (2004) is used, resulting in Procedure 1 and Procedure 2 below. These proce-
dures are applied whenever a fractional or integer solution is found in the B&C tree. In the case
of integer solutions, after applying the procedures, we check whether the solution is feasible after
all.

Procedure 1: Let G* = (V,E*) be a support graph that is built from the optimal (linear program-
ming) solution x* of the current node in the B&C tree. This graph has the original set of nodes
V, while its set of edges E* has only the arcs (i, j) € E for which &}, > 0. The cost of each arch
(i,J) € E* is precisely the value that the variable )El’-‘j has. The weight p; of each customer j € V
is used as the demand of j to find sets S that violate the rounded capacity inequalities. There-
fore, the CVRPSEP package’s routine to separate rounded capacity inequalities is called, and the
found cuts are added as lazy constraints.

Procedure 2: It is similar to Procedure 1, but now it uses the area a; of each customer j € V as
the demand of j to find sets S.

We also tested the other separation algorithms in the CVRPSEP package for the framed capac-
ity, strengthened comb, multistar, and hypotour inequalities (Lysgaard et al., 2004). However,
we have found it more effective to prioritize and use the computing time they could require to
separate the loading feasibility inequalities.

Loading feasibility inequalities

The separation of constraints (20), related to loading subproblems, occurs when an integer so-
lution %" is found in the B&C tree. For each route 2, let its set of customers be S;. A Two-
dimensional Orthogonal Packing Problem (20PP) is solved for each S¢. In the 20PP, given a
set of items and a rectangular bin, the objective is to find a feasible packing of all items. These
items are orthogonally packed, without overlapping, and fully inside the bin. If no such packing
exists, this set of items is said to be infeasible. As the 20PP is a decision problem, any feasible
packing is valid as a solution.

The 20PP, for a set of customers S, is solved with the integer programming model (23)-(25). In
this model, let y,,, be a binary variable that is 1 if item m of a customer in Sy is packed in the
point (p,q) € PV x 2?H; otherwise, it is zero. Constraints (23) ensure there is no overlapping
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between items, similarly to constraints (10). Constraints (24) guarantee that all items, from the
customers in S, are packed. The domain of variables yy,;,, is given in (25).

Y ) Y ) Ymst <1, Vue 2% e 2% (23)

JESpmeEM;; {xeﬁ%: U=wjpm+1<s<u} {ZG,@_gn: v=hjp+1<t<v}

Y Y vw=1, Vj€SzVmeM; (24)

pW pH
sejjmte,@jm

yms €{0,1},  Vj€SpVmeM;Vse P} Nie P (25)
As solving the integer programming model (23)-(25) may be slow, a relaxation of the 20PP is
firstly solved. For that, such an integer model is separated into two other models, relaxing the
20PP on a problem related to the width direction (20PPV) and another related to the height
direction (20PP*). The idea is to quickly check whether the set of items in Sy is infeasible
by substituting the non-overlapping constraints (23) for the relaxed ones. Therefore, the integer
programming model (26)-(28), for the 20PPY, considers the binary variable ¥,,,, which is 1 if
item m of customer j € S is packed in the coordinate s € @yfn on the width direction; otherwise
Vs 18 Zero.

Z Z Z hjm}_’mSSHa MEQW (26)
JESH meM; {se@_%A U=w jp+1<s<u}
Y Jm=1  VjESzYmeM,; @7
seW
Jm
Ims €{0,1},  Vj€Sy VmeM;Vse 2}, (28)

Concerning the model for the 20PPY, constraints (26) ensure that the sum of the items’ height,
for those items that cover coordinate u# when they are packed in coordinate s on the width direc-
tion, must be less than or equal to H. Constraints (27) impose all items of customers j € S5 on
being packed in some coordinate s on the width direction. The domain of variables y,,, is given
in (28). Similarly, the integer programming model (29)-(31) is presented for the 20PP", where
the binary variable J,, is 1 if item m of a customer j € S is packed in the coordinate ¢ € gzﬁn
on the height direction; otherwise, ¥, is zero.

Z Z Z ijymt <W, Ve @H (29)

JE€Sp mEM (1€ PH | v—hjm+1<1<v}

Y dw=1, Vj € Sy, Vme M; (30)
re Pl
Jm

Fm €{0,1},  Vj€Sp,VmeM; vt e 2, (31)
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In the integer programming model (29)-(31), for the 20PP, constraints (29) guarantee that the
sum of the items’ width must be less than or equal to W, for those items packed in the coordinate
¢t and covering the coordinate v on the height direction. Constraints (30) impose all items of
customers j € S on being packed in some coordinate ¢ on the height direction. The domain of
variables J,,; is expressed in (31). Therefore, based on the models discussed in this subsection, the
procedure to separate the loading feasibility constraints, which concern the loading subproblems,
is described in Procedure 3. A hash table is used to save and search for routes Sy that have already
been checked due to their loading subproblem, aiming to reduce computing time.

Procedure 3: Whenever an integer solution ¥* is found in the B&C tree and Procedures 1 and
2 do not succeed in generating a valid inequality, we obtain the set of routes % from x*. For
each route &, we initially check if it is in the hash table. If yes, we retrieve the saved solution;
otherwise, (i) we solve the 20PP" | model (26)-(28). If the resulting solution is feasible, (ii) we
solve the 20PP?, model (29)-(31). If the resulting solution is feasible, (iii) we solve the 20PP,
model (23)-(25). If the resulting solution is feasible, steps (i)-(iii) are repeated for the next route
in ¥ until checking all routes. If the saved/resulting solution of any of these steps is infeasible,
the inequality in (20) is added for S, as a lazy constraint, and the procedure stops. Every checked
route is added to the hash table.

3.3 Sequential 2L-CVRP

We conducted preliminary computational experiments (in Section 4.1) to analyze the complete
and two-index models. The results showed the two-index model performed better than the com-
plete model. Consequently, we decided to handle the sequential 2L-CVRP only with the two-
index model because this variant generally imposes more computing time on solving the loading
subproblems (Coté et al., 2014). According to Junqueira et al. (2013), a complete model for
the sequential 2L-CVRP needs variables and constraints that indicate the sequence on which
customers are visited on each route.

We assume that items are unloaded parallel to the y-axis (along the height direction, from bottom
to top) in the sequential variant. For each route % whose set of customers is Sg, let o; be the
order to visit the j-th customer in & (for ascending order). Hence, if 0; < 0, customer i is visited
before j, meaning that all items M; of i must be arranged so that they have free passage during
the unloading operation at i. It implies that no item in M; of customer j must block any item in
M, of i when carrying out such an operation.

Concerning the two-index model, we add constraints (32) in the model (23)-(25) of the 20PP,
following the proposals in Queiroz & Miyazawa (2013) and Nascimento et al. (2021). Once j is
visited after i on the route S, that is 0; < 0}, these constraints ensure that if item m of customer j
is packed in the point (s,7) € f@ﬁ’n X L@ﬁn, then no item / of customer i must be packed in points
(u,v) such that m blocks I from having free passage during the unloading operation at i.
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Z Z Yiuy < (1= Ymst) Z |M;|, (32)

{i€S%| 0i<o;} IEM; {MEWIW s—wi+1<u<s+wj,—1} {ve PH| v<t—hy} i€Sy

Vj € S, YmeM; Vs € P Nt € DY,

4 COMPUTATIONAL EXPERIMENTS

The numerical experiments consider 80 benchmark! instances; a subset of them was first solved
by lori et al. (2007), and the remaining ones by Gendreau et al. (2008). In such instances, or-
ganized into 16 sets, the number of customers (n) ranges from 15 to 36 and the total number
of items (M) from 15 to 114. Each set contains five instances divided into classes. The number
and dimensions of the items are randomly generated, considering homogeneous, horizontal, and
vertical items. The traveling/edge cost ¢;; is given by the real value of the Euclidean distance
between i and j.

All models were coded in the C++ programming language, and the B&C framework of the
Gurobi Optimizer 9.5 (with default parameters) was used. The experiments were carried out on
a computer with a processor Intel Xeon E3-1245 3.50 GHz, 32 GB of RAM, and Ubuntu 16.04
LTS. To solve each instance, a time limit of 3,600 seconds was imposed on the B&C, including
the time limit of 60 seconds imposed on each call when solving any of the models related to
the 20PP" and 20PP” | and 120 seconds when solving the model related to the 20PP. We first
present the results of the unrestricted 2L-CVRP, discussing the performance of the developed
integer programming models. Next, we present the results of the sequential 2L-CVRP obtained
with the best model we have developed.

4.1 Unrestricted 2L-CVRP

Tables 2 and 3 have the results of the unrestricted 2L-CVRP. We show the value of the best
solution found and the gap (in percentage) that Gurobi returned for each model. We also report
the number of cuts generated by Procedures 1 and 2 (i.e., with the CVRPSEP package), the
runtime (in seconds) spent with all calls to the models for the 20PP" and 20PP?, the number of
cuts inserted after solving one of the models for the 20PP" and 20PP”, the runtime (in seconds)
spent with all calls to the model for the 20PP, and the number of cuts inserted after solving the
model for the 20PP. The entries marked with an “*” indicate that the imposed time limit was
reached when solving at least one loading subproblem. In this case, the final solution may not be
optimal.

Thttp://www.or.dei.unibo.it/library
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In the results of Tables 2 and 3, the complete model did not find a feasible solution for 21
instances within the imposed time limit, especially those with more customers and items per
customer. Considering the two-index model, the number of instances for which a solution was
not found was 11 out of 80 instances. In summary, concerning the solved instances:

« feasible solutions: the complete model found an optimal solution for 4 instances, while
for the 55 remaining instances, the average, minimum, and maximum gaps are 37.26%,
14.86%, and 71.91%, respectively. The two-index model found an optimal solution for 51
instances, while for the 18 remaining instances, the average, minimum, and maximum gaps
are 21.43%, 0.84%, and 47.64%, respectively. If considering the 54 instances for which
both models found a solution, the average gap is 32.38% and 4.88% for the complete and
two-index models, respectively.

* runtime: the complete model did not reach the time limit for 4 instances. If considering
the 59 instances for which the complete model returned a solution, the average runtime is
3,404.48 seconds. The two-index model did not reach the time limit for 51 instances, with
an average runtime of 1,004.35 seconds when considering the 69 instances with a solution.
On the other hand, if considering all 80 instances, the average runtime is 3,455.81 and
1,361.25 seconds for the complete model and the two-index model, respectively.

From the comparison above, it is clear that the two-index model presented a better performance
than the complete model in terms of solved instances, gap, and runtime. Thus, concerning the
separation routines of the two index model, the results in Tables 2 and 3 show for the 69 instances
with a solution:

» with the CVRPSEP package: the average, minimum, and maximum number of generated
cuts are 4,067, 45, and 28,511, respectively;

« with the models for the 20PPY¥ and 20PP¥: the average, minimum, and maximum number
of generated cuts are 389, 0, and 4,380, respectively. The number of instances for which
at least one cut was generated is 39. Regarding the average, minimum, and maximum
runtime, such values are 100.23, less than 0.01, and 1,334.69 seconds, respectively;

* with the model for the 20PP: the average, minimum, and maximum number of generated
cuts are 0, 0, and 1, respectively. The number of instances for which at least one cut was
generated is 5. Regarding the average, minimum, and maximum spent runtime, such values
are 388.74, less than 0.01, and 3,029.68 seconds, respectively;

+ impact of the 20PP" and 20PP* on the 20PP: for the 39 instances that the models of the
20PPY or 20PP generated cuts, the model of the 20PP needed to further generate cuts
for only 5 instances.
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4.2 Sequential 2L-CVRP

Table 4 reports the results of only the two-index model for the sequential 2L-CVRP since it per-
forms better than the complete model. This table has the same information as presented in Tables
2 and 3. For this variant, with the two-index model, it was not possible to find a feasible solution
for 23 out of 80 instances. This indicates that inserting multi-drop requirements demands more
computing time since the loading subproblems become more complex. In summary, concerning
the 57 instances solved, the two-index model has the following characteristics:

» feasible solutions: it found an optimal solution for 37 instances, while for the 20 remaining
instances, the average, minimum, and maximum gaps are 13.81%, 1.24%, and 30.48%,
respectively;

* runtime: it did not reach the time limit for 37 instances, with the average runtime of
1,532.73 seconds when considering the 57 instances with a solution. On the other hand, if
considering all 80 instances, the average runtime is 2,127.07 seconds;

» with the CVRPSEP package: the average, minimum, and maximum number of generated
cuts are 6,927, 42, and 38,459, respectively;

* with the models for the 20PPY and 20PP": the average, minimum, and maximum number
of generated cuts are 64, 0, and 1,682, respectively. The number of instances for which
at least one cut was generated is 28. Regarding the average, minimum, and maximum
runtime, such values are 3.09, less than 0.01, and 62.30 seconds, respectively;

 with the model for the 20PP: the average, minimum, and maximum number of generated
cuts are 7, 0, and 133, respectively. The number of instances for which at least one cut was
generated is 18. Regarding the average, minimum, and maximum runtime, such values are
966.48, less than 0.01, and 3,575.91 seconds, respectively;

* impact of the 20PPY and 20PP on the 20PP: for the 28 instances that the models of
the 20PPY or 20PP? generated cuts, the model of the 20PP also generated cuts for 18 of
them.

Another comparison is carried out between the unrestricted and sequential 2L-CVRP for the
results of the two-index model. From Tables 2 to 4, considering the same 56 out of 80 instances
for which such a model returned a solution in both variants (notice that these instances include
the ones discussed in the previous paragraph for the sequential case):

* cost of solutions: the percentage deviation (increase) in the value of solutions when com-
paring the unrestricted with the sequential variants is 2.22%, with the minimum and
maximum of —3.20% and 14.66%, respectively;

« feasible solutions: in the unrestricted variant, it found an optimal solution for 50 in-
stances, while for the 2 remaining instances, the average, minimum, and maximum gaps
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are 13.18%, 0.84%, and 22.39%, respectively. The average gap, given the 56 instances, in
the unrestricted and sequential variants is 1.41% and 4.39%, respectively;

¢ runtime: in the unrestricted variant, it did not reach the time limit for 50 instances. The
average runtime, given the 56 instances, is 464.65 and 1,495.81 seconds in the unrestricted
and sequential variants, respectively;

» with the CVRPSEP package: in the unrestricted variant, the average, minimum, and max-
imum number of generated cuts are 2,719, 45, and 20,449, respectively. In terms of the
average number of generated cuts, the percentage increase from the unrestricted variant to
the sequential one corresponds to 157.60%;

« with the models for the 20PPY and 20PP¥: in the unrestricted variant, the average, min-
imum, and maximum number of generated cuts are 203, 0, and 4,380, respectively. The
number of instances for which at least one cut was generated is 26. Regarding the aver-
age, minimum, and maximum runtime, such values are 26.18, less than 0.01, and 1,013.08
seconds, respectively. In terms of the average number of generated cuts, the percentage
decrease from the unrestricted variant to the sequential one corresponds to 69.04%;

» with the model for the 20PP: in the unrestricted variant, only 1 cut was generated for
3 instances. Regarding the average, minimum, and maximum runtime, such values are
116.31, less than 0.01, and 2,006.30 seconds, respectively.

4.3 Comparing with the literature

Results are compared with those from the Simulated Annealing (SA) of Wei et al. (2018) that
reported the best overall results among all authors in Table 1 for the 2L-CVRP. They also solved
the same problem (and variants) we are handling: the 2L-CVRP allowing routes with a single
customer and fewer routes than the number of vehicles. The SA of Wei et al. (2018) had a time
limit of 1,800 seconds (for each instance) when solving the above-mentioned 80 instances, and
it ran on a different computer. Then, a comparison concerning the runtime is not taken into
consideration. For the two-index model, a time limit of 1,800 seconds was imposed to the B&C,
including the time limit of 30 seconds imposed on each call when solving any of the 20PPW
and 20PP”, and 60 seconds when solving the 20PP. Table 5 has the results with respect to the
best solution found and the percentage deviation between the found solution Sol and the solution
reported by Wei et al. (2018), which is given by 100 x % In summary, we observed that:

¢ solutions for the unrestricted variant: it found a feasible solution for 69 out of 80 instances,
where 51 are optimal. Notice that in Tables 2 and 3, for the time limit of 3,600 seconds,
the number of feasible solutions is 69, for which 51 are optimal;

* solutions for the sequential variant: it found a feasible solution for 55 instances, where
37 are optimal. Notice that in Table 4, for the time limit of 3,600 seconds, the number of
feasible solutions is 57, for which 37 are optimal;
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¢ solutions of the SA in the unrestricted variant: it found equal solutions for 50 instances,
while for the 19 remaining instances, solutions were worse, with an average, minimum,
and maximum deviation of 15.86%, 0.02%, and 44.43%, respectively;

¢ solutions of the SA in the sequential variant: it found equal solutions for 40 instances,
while for the 15 remaining instances, solutions were worse, with an average, minimum,
and maximum deviation of 6.40%, 0.23%, and 18.01%, respectively.

One last experiment was carried out with the two-index model, comparing it with the branch-and-
cut algorithm (BNC) in Hokama et al. (2016). We solved the same instances and assumed the
same constraints the authors imposed when solving the sequential 2L-CVRP. We also considered
the same time limit of 3,600 seconds to solve each instance, including the time limit of 60 seconds
imposed on each call when solving any of the 20PP" and 20PP*/, and 120 seconds when solving
the 20PP. In Table 6, we present the value of the best solution found, the runtime (in seconds),
and the percentage deviation between our solution and the solution reported by Hokama et al.
(2016).

Table 6 — Comparison with the branch-and-cut of Hokama et al. (2016) for the sequential 2L-CVRP.

Instances Hokama et al. (2016) Two-index model Instances Hokama et al. (2016) Two-index model

Name Class Sol. Time Sol. Dev. Name Class Sol. Time Sol. Dev.
E016-03m 1 273 0.65 273 0.00 | E023-03g 1 558 0.44 558 0.00
2 285 3,600.00 285*  0.00 2 724 3,600.00 724 0.00

3 280 2658.45 280* 0.00 3 698 3,600.00 698*  0.00

4 288 57.51 288  0.00 4 714 3,600.00  714*  0.00

5 279 253.69 279 0.00 5 742 1,533.29  742*  0.00

E016-05m 1 329 1.03 329 0.00 | E023-05s 1 657 0.44 657 0.00
2 342 9.77 342 0.00 2 720 553.63  720%  0.00

3 347 30122 347 0.00 3 730 3,600.00  730*  0.00

4 336 131.32  336* 0.00 4 701 3,600.00 701*  0.00

5 329 248.69 329* 0.00 5 721 122,67  721*%  0.00

E021-04m 1 351 1.58 351 0.00 | E026-08m 1 609 0.85 609 0.00
2 396 988.5 396  0.00 2 612 15.33 612 0.00

3 387 3,600.00 387* 0.00 3 615 19593  615%  0.00

4 374 1030  374*  0.00 4 626 540.25  626%  0.00

5 369 88.69 369 0.00 5 609 155.38 609 0.00

E021-06m 1 423 045 423  0.00 | E030-03g 1 524 13.40 524 0.00
2 434 276.3 434 0.00 2 - 3,600.00  687* -

3 432 349.34  432*%  0.00 3 637 3,600.00 637*  0.00

4 438 31146 438  0.00 4 - 3,600.00 - -

5 423 197.84 423*  0.00 5 - 3,600.00 - -

E022-04g 1 367 0.16 367 0.00 | E033-03n 1 1,991 0.79 1,991 0.00
2 380 1,956.46 380  0.00 2 - 3,600.00 - -

3 373 2,351.18 373* 0.00 3 2854 3,600.00 2854*  0.00

4 377 760.45 377 0.00 4 - 3,600.00 - -

5 389 4441 389  0.00 5 2,672 3,600.00 2,672% 0.00

E022-06m 1 488 339 488 0.00 | E036-11h 1 682 772.98 682 0.00
2 491 64.52 491  0.00 2 682 3,600.00 682 0.00

3 496 2,099.52  496* 0.00 3 682 937.80 682 0.00

4 489 392.55 489* 0.00 4 691 3,600.00  691*%  0.00

5 488 6241 488  0.00 5 - 822.03 682 -

Observing the results of Table 6, the branch-and-cut of Hokama et al. (2016) found a solution to
54 out of 60 instances within the imposed time limit. Using the two-index model, we obtained
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the same solution these authors obtained for these 54 instances, besides returning a solution to
two more instances (E030-03g in class 2 and E036-11h in class 5). In summary, with relation to
the solved instances, the two-index model has the following characteristics:

* feasible solutions: it found an optimal solution for 43 instances, although the time limit to
solve any of the loading subproblems was reached for 26 instances;

* solutions of the branch-and-cut: it found equal solutions for 54 instances and better so-
lutions for 2 instances. For the 4 remaining instances, no solution was found within the
imposed time limit. The branch-and-cut of Hokama et al. (2016) did not find any solution
for 6 instances;

 runtime: it did not reach the time limit for 43 instances, with the average runtime of
1,198.33 seconds when considering all the 56 instances with a solution. If considering
all the 60 instances, the average runtime increases to 1,358.45 seconds.

5 CONCLUDING REMARKS

In this work, a combined vehicle routing problem with a bin packing problem (i.e., the 2L-
CVRP) has its unrestricted and sequential variants handled with a branch-and-cut algorithm.
Two integer linear programming models are discussed. The first one has all constraints added
at once, while the second has cutting planes related to the connectivity, capacity, and loading of
routes. The separation routines deal with the rounded capacity inequalities and the resolution of
integer programming models for the loading subproblem of each route.

After the computational experiments conducted on 80 benchmark instances, the models’ per-
formance could be clearly stated. Concerning the unrestricted 2L-CVRP, the two-index model is
superior to the complete model, mainly in terms of optimal solutions, gap, and runtime. Although
such a model obtained better results, it depends on separation routines to detect violated inequal-
ities and guarantee a feasible solution. This dependence may be complicated when compared
with a complete model that, in turn, can be solved with any solver. The complete model allowed
to solve instances with up 23 customers, while the two-index model could solve instances with
up 35 customers. The latter is also very competitive (even with a limitation in the runtime) when
compared with a heuristic from the literature.

In the sequential variant, where multi-drop requirements are imposed on the 2L-CVRP, obtaining
an optimal solution requires more computing time. The results of the two-index model for this
variant show how the number of optimal solutions may decrease, and the gap may increase com-
pared to the unrestricted variant. Regarding the comparison with a heuristic from the literature,
the two-index model is still an exciting choice when a shorter time limit is imposed. Moreover,
the two-index model is simpler and could be an alternative to other models from the literature
since when comparing it with another branch-and-cut, it could return equal or better solutions
for all the instances.
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Future works could focus on practical constraints to the loading subproblem, particularly load
balancing and cargo stability (Queiroz & Miyazawa, 2013; Oliveira et al., 2021a,b; Junqueira &
Queiroz, 2022) since the literature in these constraints is scarce. Another interesting direction
is to investigate infeasible routes further by looking for sub-routes that are still infeasible, espe-
cially concerning the loading subproblems. Thus, stronger inequalities may be derived and the
computing time for solving large instances may be reduced.
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