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ABSTRACT. We present a model selection procedure for use in Mixture and Mixture-Process Experiments.

Certain combinations of restrictions on the proportions of the mixture components can result in a very

constrained experimental region. This results in collinearity among the covariates of the model, which can

make it difficult to fit the model using the traditional method based on the significance of the coefficients.

For this reason, a model selection methodology based on information criteria will be proposed for process

optimization. Two examples are presented to illustrate this model selection procedure.
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1 INTRODUCTION

Formulations obtained from Mixture Experiments (ME) are commonly found in the chemical,
pharmaceutical, and food industries, as well as in other industrial segments. In those experiments,
the decision variables are the proportions of the components in a mixture and the response is a

variable that characterizes the quality of the product, assumed as a function of component propor-
tion. In these experiments, the sum of component proportions is always equal to one. In certain
industrial processes, there may be other variables, in addition to the mixture components, that

affect the characteristics of the process and must be included in the experiment as factorial de-
signs. Such experiments are called Mixture-Process Experiments (MPEs). Therefore, we intend
to determine not only the optimal proportions of the mixture components but also the optimal

levels of the process variables.
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In MEs, it might be necessary to limit the proportion of one or more components that, for tech-

nical or practical reasons, cannot be present in all possible proportions. Those limitations of the
components, which are very common in industrial cases, may be upper, lower, or a combination
of both. Certain combinations of limitations on the proportions of the components may result in a

very limited experimental region, which results in collinearity among the covariates of the model,
making it difficult to fit the model using the traditional method based on the significance of the
coefficients. Consequently, a model selection methodology based on information criteria will be

proposed. In order to illustrate this methodology, two examples are used. Matlab R© routines were
then written for the model selection and the process optimization.

Cornell (2002) is the main reference on ME, being the Chapter 7 dedicated to MPE cases. In it,
a comprehensive and detailed exposition can be found. Myers & Montgomery (2002) dedicate

Chapters 12 and 13 to ME and MPE, thus comprising a good introduction to the topic. Piepel
(2004) summarizes a survey related to mixture experiments for a period of 50 years, ranging from
1955 to 2004. Prescott et al. (2002) propose a quadratic model as an alternative to the models

traditionally used in ME (Scheffe models). Cornell (2000), Cornell (2002, Chapter 6), Cornell
& Gorman (2003) and Khuri (2005) carried out comparative studies between models that they
named as slack-variable models and Scheff´e models. Piepel (2007) compares the CSLM (Com-
ponent Slope Linear Model) with the SLM (Scheffé Linear Model) and the CLM (Cox Linear

Model). They conclude that the models SLM, CLM and CSLM are mathematically equivalent
and provide the same statistics for a given ME. The differences lie in the interpretations of their
coefficients. Dal Bello & Vieira (2011b) present a tutorial on mixture-process experiments.

Goos & Donev (2006) describe an algorithm to plan experiments in blocks involving mixtures.

They show that, for restricted and unrestricted experimental regions, the resulting design of ex-
periments is statistically more efficient than the options of experiments in blocks presented in the
literature. Goos & Donev (2007) describe an algorithm to plan split-plot experiments in cases

involving mixture and process variables. They use an optimization criterion for the choice of ex-
perimental points and show that it is preferable to spread the replications all over the experiment
region, instead of concentrating them in central points.

Kowalski et al. (2002), Prescott (2004) and Sahni et al. (2009) analyzed the MPE modeling.

Goldfarb et al. (2004a) propose the use of a plot method (variance dispersion plot) for MPE
planning. The variance dispersion plot presents a visual way of assessing the variance properties
of an MPE within the joint mixture and process area. That information may be used to select

experiments with an acceptable variance profile.

Goldfarb et al. (2003), Goldfarb et al. (2004b) and Chung et al. (2007) consider the case where,
in addition to the mixture components and process variables (controlled factors), there are un-
controlled factors in the productive process (noise variables), although they may be controlled

in laboratory experiments. The authors address models that allow them to choose the control-
lable variable values (mixture and process) that make the process more robust in relation to the
noise variables.

Pesquisa Operacional, Vol. 35(2), 2015
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Dal Bello (2010) Dal Bello & Vieira (2011a) present a methodology close to the spirit of this

article.

A brief introduction to ME and MPE is presented in Sections 2 and 3. In Section 4, the infor-
mation criteria used in this work are described and the models chosen according to those criteria
are presented. In Section 5, we present a model selection methodology with two examples, and

we apply this methodology in two other examples. The conclusions are in Section 6.

2 MIXTURE EXPERIMENTS

Consider xi , the variables that represent the proportions of the q mixture components. Then:

q∑
i=1

xi = 1; xi ≥ 0; i = 1, . . . , q (1)

In many MEs there are limitations on the component proportions, making the experimental
space a sub-region of the original space. Therefore, upper and/or lower limits on the proportions
are established, and are represented as follows:

0 ≤ Li ≤ xi ≤ Ui ≤ 1; i = 1, . . . , q (2)

where Li is the lower limit and Ui is the upper limit of the component proportion i.

When the upper and lower limits on the proportions of one mixture are established, the experi-
mental region is reduced to a sub-region of the original region. In these cases, the coordinates of
the sub-regions may be redefined in terms of “pseudo”-components.

The models which are traditionally used in MEs are Scheffé’s canonical polynomials (Scheffé,

1958). Scheffé’s cubic model is as follows:

C(β, x) =
q∑

i=1

βi xi +
∑ q∑

i< j

βi j xi x j +
∑ ∑ q∑

i< j<k

βi jk xi x j xk

+
∑ q∑

i< j

βi− j xi x j (xi − x j )

(3)

where the βs are the model’s parameter coefficients. Note that this model does not have the

intercept, as it is eliminated by a simplification originating from the basic limitation presented
in Eq. (1).

3 MIXTURE-PROCESS EXPERIMENTS

An adequate model for r process variables z1, z2, . . . , zr involving second-order terms is:

Q(δ, z) = δ0 +
r∑

l=1

δl zl +
r∑

l=1

δll z
2
l +

∑ r∑
l<m

δlm zl zm (4)

Pesquisa Operacional, Vol. 35(2), 2015



�

�

“main” — 2015/6/30 — 15:17 — page 380 — #4
�

�

�

�

�

�

380 PROCEDURE IN MIXTURE-PROCESS EXPERIMENTS FOR INDUSTRIAL PROCESS OPTIMIZATION

where the δs are the model’s parameter coefficients for process variables. The experiment for

the process variables may be a factorial design with two or more levels. In order to include
terms with the variable z2

j in the model, an experiment with at least three levels of each process
variable and a total number of points sufficient to fit and test the model is required. In order to fit

a model without the variable z2
j , considering only the main effects of the process variables and

the interactions among them, only two levels of each variable are necessary.

We use the form of the simultaneous additive and multiplicative combined model, which includes
Scheffé’s cubic model for the mixture and the reduced quadratic model, considering only the

main effects of the process variables and the interactions among them:

C(γ, δ, x, z) =
q∑

i=1

yl
i xi +

∑ q∑
i< j

γ l
i j xi x j +

∑ ∑ q∑
i< j<k

γ l
i jk xi x j xk

+
∑ q∑

i< j

γ l
i− j xi x j (xi − x j ) +

r∑
l=1

δl zl +
∑ r∑

l<m

δlm zl zm

+
r∑

l=1

⎡
⎢⎢⎢⎢⎢⎣

q∑
i=1

γ l
i xi +

∑ q∑
i< j

γ l
i j xi x j +

∑∑ q∑
i< j<k

γ l
i jk xi x j xk

+
∑ q∑

i< j

γ l
i− j xi x j (xi − x j )

⎤
⎥⎥⎥⎥⎥⎦

zl

+
r∑

l<1

⎡
⎢⎢⎢⎢⎢⎣

q∑
i=1

γ l
i xi +

∑ q∑
i< j

γ l
i j xi x j +

∑∑ q∑
i< j<k

γ l
i jk xi x j xk

+
∑ q∑

i< j

γ l
i− j xi x j (xi − x j )

⎤
⎥⎥⎥⎥⎥⎦

zl zm

(5)

where the γ s are the parameters for the mixture’s combined model including process variables

and the δs are the parameters for the process variables. The lower indexes of γ refer to mixture
variables, whereas the upper ones refer to process variables. The lower indexes of δ refer to
process variables.

4 INFORMATION CRITERIA AND MODEL SELECTION

An information criterion that has been widely used in model selection is Akaike’s criterion (AIC)
(Akaike, 1973).

AIC = −2
n∑

i=1

ln L(μ̂i , yi) + 2 p (6)

where yi is the ith value of the response and μ̂i is the estimate of yi when a model of p parameters
is fitted through maximization of the Log-Likelihood Function (LLF). The term added to LLF,

called the penalty function, aims at correcting a bias originating from the comparison of models
with different numbers of parameters. Among the several candidate models, the one with the
lowest AIC value must be chosen. AIC was developed from Kullback-Leibler distance, which

Pesquisa Operacional, Vol. 35(2), 2015
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is a distance between the true model and the candidate model. Burnham & Anderson (2002)

recommend the use of AIC only when n/p ≥ 40. Considering a case of responses with normal
distribution, the AIC expression may be simplified to give the following:

AIC = n ln(σ̂ 2
p) + 2(p + 1) (7)

φ̂2
p =

∑n
i=1(yi − φ̂i )

2

n
(8)

where σ̂ 2
p is the maximum likelihood estimator of the error variance.

Considering responses with normal distribution and small samples (n/p < 40), Hurvich & Tsai
(1989) developed the AICc criterion:

AICc = AIC + 2(p + 1)(p + 2)

n − p − 2
(9)

Burnham & Anderson (2002) recommend the calculation of AIC differences between the can-
didate models and the model with the lowest AICc value (AICc min).

�i = AICc i − AICc min (10)

The calculation methodology for AIC differences may also be used for AICc differences. �i

values can be interpreted easily and allow a quick comparison of candidate models. The higher

the �i , the less likely it is that the fitted model is the best model according to Kullback-Leibler
distance. Burnham & Anderson (2002) affirm that models with �i > 10 may be omitted in
future considerations and models with �i between 0 and 2 may be regarded as non-different.
The calculation of AICc differences is used in the proposed methodology for model selection

which will be used in Section 5.

5 PROPOSED METHODOLOGY

In the first stage of this methodology we use the full Scheffé’s canonical polynomials for a

ME and a combined model for a full MPE. Thus, we obtain all the candidate terms for the
model under study. Then, we use the AICc criterion to select the model with the lowest AICc

according to the number of parameters. Afterwards, we calculate the AICc differences between

the candidate models and the model that has the lowest AICc and we select the non-different
models.

Analyzing the non-different models, we choose the model, now named the Base Model, which
has the lowest mean-squared error (MSE) and prediction error sum of squares (PRESS).

In the second stage of the methodology we obtain a better model, taking into account the Base

Model terms and all terms which are equivalent to the terms of the Base Model. Such Equivalent
Terms are created considering Eq. (1), which is the basic restriction of MEs. For example, the
term x1x2 is equivalent to term x1(1−x1 −x3) or term (1−x2 −x3)x2. After determination of all

Pesquisa Operacional, Vol. 35(2), 2015
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the candidate terms (terms of the Base Model and Equivalent Terms), we use the AICc criterion

again in order to select the model with the lowest AICc . Afterwards, we calculate the AICc

differences between the candidate models and model that has the lowest AICc and we select the
non-different models.

Analyzing the non-different models, we choose the model with the lowest PRESS and MSE as

the Final Model. The proposed methodology is illustrated through two examples.

5.1 Example 1

The problem of Example 1 was presented by Myers & Montgomery (2002). An adhesive is

being formulated for use in an aerospace application. The adhesive consists of a resin x1 and
two crosslinkers, x2 and x3. The mixture constraints for these variables are x1 + x2 + x3 = 1;
0.70 ≤ xi ≤ 0.90; 0.05 ≤ x2 ≤ 0.10; and 0.05 ≤ x2 ≤ 0.20.

The adhesive is applied to the components and then the entire assembly is cured for 12 h at
controlled temperature and humidity. The temperature z1 and relative humidity z2 are process
variables that can be controlled by the experimenter. The ranges of theses process variables that
experimenters think are appropriate are 40◦F ≤ temperature ≤ 100◦F and 15% ≤ relative hu-

midity ≤ 85%. The response variable of interest is the pulloff force required to separate the
components after curing. It should exceed 40 pounds.

The authors use L-pseudocomponents according to the relation vi = xi −L1
1−L ; i = 1, 2, . . . , q ,

where L = ∑q
i=1 Li and Table 1 presents the experiment.

Where
ŷ1: Response obtained by Myers & Montgomery (2002) model.
ŷ2: Response obtained by Final Model 1 in this article.

The model selected by Myers & Montgomery (2002) presented PRESS, MSE and AICc equal

to 903.20, 15.45 and 122.57, respectively, and is shown in Eq. (11).

ŷ = 40.66v1 + 71.95v2 + 46.16v3 − 30.58v1v3 + 9.32v1z1

− 15.49v1z2 + 29.92v2z1 − 20.18v2z2 + 7.43v3z1

− 4.41v3z2 + 19.39v1v3z1 − 2.60v3z1z2

(11)

5.1.1 Model Selection Methodology

All the candidate terms for the MPE are the terms in Eq. (5). The model selected according to

the AICc criterion was the following:

ŷ = 40.36v1 + 67.32v2 + 35.09v3 + 11.79z1 − 16.19z2 + 11.25v3z2

− 3.53v1z1z2 − 106.74v2v3(v2 − v3) + 172.09v1v2v3z1

− 45.36v1v2z1z2 + 138.49v1v2z1z2(v1 − v2)

(12)

A Matlab R© routine was then written for the calculation and storage of AICc values and selection
of non-different models considered, that is, those that presented AICc differences (�i ) between

Pesquisa Operacional, Vol. 35(2), 2015
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Table 1 – The experiment of Example 1 with L-pseudocomponents for mixture components

and coded for process variables.

Std Run v1 v2 v3 z1 z2 Force (lb) ŷ1 ŷ2

1 26 1.000 0.000 0.000 –1.000 –1.000 44 46.830 42.410

2 6 1.000 0.000 0.000 1.000 –1.000 70 65.470 71.010

3 21 1.000 0.000 0.000 –1.000 1.000 19 15.850 17.250

4 8 1.000 0.000 0.000 1.000 1.000 33 34.490 31.490

5 5 0.000 0.250 0.750 –1.000 –1.000 48 45.958 48.273

6 2 0.000 0.250 0.750 1.000 –1.000 72 75.963 74.638

7 30 0.000 0.250 0.750 –1.000 1.000 32 33.153 32.358

8 24 0.000 0.250 0.750 1.000 1.000 59 55.358 58.723

9 17 0.250 0.000 0.750 –1.000 –1.000 32 32.743 33.245

10 23 0.250 0.000 0.750 1.000 –1.000 58 59.719 56.460

11 33 0.250 0.000 0.750 –1.000 1.000 21 22.283 19.125

12 9 0.250 0.000 0.750 1.000 1.000 38 41.459 38.750

13 11 0.750 0.250 0.000 –1.000 –1.000 51 50.675 51.434

14 20 0.750 0.250 0.000 1.000 –1.000 76 79.615 74.956

15 19 0.750 0.250 0.000 –1.000 1.000 22 17.350 16.251

16 22 0.750 0.250 0.000 1.000 1.000 49 46.290 45.459

17 10 0.500 0.125 0.375 –1.000 1.000 17 15.132 16.087

18 16 0.125 0.125 0.750 1.000 –1.000 69 67.841 67.978

19 32 0.125 0.125 0.750 –1.000 –1.000 40 39.350 38.329

20 3 0.375 0.250 0.375 –1.000 –1.000 37 41.289 36.113

21 7 0.500 0.125 0.375 1.000 1.000 46 42.826 43.705

22 29 0.375 0.250 0.375 –1.000 1.000 21 18.224 20.338

23 27 0.375 0.250 0.375 1.000 –1.000 82 76.215 80.948

24 34 0.375 0.250 0.375 1.000 1.000 43 49.250 48.469

25 15 0.625 0.000 0.375 –1.000 –1.000 32 32.760 36.563

26 1 0.625 0.000 0.375 1.000 –1.000 60 61.021 62.470

27 28 0.750 0.063 0.187 –1.000 1.000 14 13.160 15.602

28 4 0.750 0.063 0.187 1.000 1.000 38 38.155 39.956

29 14 0.626 0.187 0.187 –1.000 –1.000 45 42.680 43.160

30 13 0.375 0.250 0.375 –1.000 1.000 18 18.224 20.338

31 18 0.125 0.125 0.750 1.000 –1.000 70 67.841 67.978

32 25 0.750 0.250 0.000 –1.000 1.000 10 17.350 16.251

33 12 0.375 0.250 0.375 1.000 1.000 52 49.250 48.469

34 31 0.750 0.250 0.000 1.000 1.000 42 46.290 45.459

Pesquisa Operacional, Vol. 35(2), 2015
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0 and 2, as presented in Section 4. According to the AICc criterion, 23 models are considered

non-different. The Model that presents the lowest PRESS (536.67) and MSE (10.44) was selected
and it’s now named as the Base Model.

The Base Model is shown in Eq. (13):

ŷ = 40.36v1 + 67.37v2 + 35.10v3 + 10.68z1 − 16.20z2 + 9.86v2z1

+ 11.25v3z2 − 3.55v1z1z2 − 106.69v2v3(v2 − v3)

− 141.28v1v2v3z1 − 46.60v1v2z1z2 + 138.17v1v2z1z2(v1 − v2)

(13)

In this step of the methodology we will consider other models using the Base Model. For this,
additional terms are generated from the terms of the Base Model. Table 2 presents the terms
equivalent to the Base Model terms.

Table 2 – Equivalent Terms.

Base Model Terms Equivalent Terms

v2z1 (z1 − v1z1 − v3z1)

v3z2 (z2 − v1z2 − v2z2)

v1z1z2 (z1z2 − v2z1z2 − v3z1z2)

v2v3(v2 − v3)
(v2

2v3 − v2v2
3 );

(v2
2 − v3

2 − v1v2
2 − v2

3 + v3
3 + v1v2

3)

v1v2v3z1
(v2v3z1 − v2

2v3z1 − v2v2
3 z1);

(v1v3z1 − v2
1v3z1 − v1v2

3 z1);

(v1v2z1 − v2
1v2z1 − v1v2

2 z1)

v1v2z1z2
(v2z1z2 − v2

2z1z2 − v2v3z1z2);

(v1z1z2 − v3
1z1z2 − v2

1v3z1z2 − v2
2z1z2 + v3

2 z1z2 + v2
2v3z1z2)

Once all the candidate terms (Base Model terms and Equivalent Terms) for the MPE model are
known, we may then use the AICc criterion again. The model selected is shown in Eq. (14).

This model presents PRESS and MSE equal to 586.66 and 11.12, respectively.

ŷ = 40.53v1 + 66.44v2 + 49.15v3 + 11.82z1 − 16.16z2

+ 10.95v3z2 − 71.94v1v
2
3 − 3.57v1z1z2 + 174.81v1v2v3z1

− 46.32v1v2z1z2 + 139.72v1v2z1z2(v1 − v2)

(14)

This model presents higher MSE and PRESS than the model of Eq. (13). However, we will

analyze models considered non-different to the model of Eq. (14), as described at the start in
Section 5.1.1. The Model that presents the lowest PRESS (515.43) and MSE (10.13) was selected
and now, it should be Final Model 1. The Final Model 1 is shown in Eq. (15):

ŷ = 40.54v1 + 66.48v2 + 49.17v3 + 10.71z1 − 16.17z2 + 9.89v2z1

+ 10.95v3z2 − 71.95v1v
2
3 − 3.59v1z1z2 + 143.90v1v2v3z1

− 47.56v1v2z1z2 + 139.40v1v2z1z2(v1 − v2)

(15)

Pesquisa Operacional, Vol. 35(2), 2015
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Examining the model obtained by Myers & Montgomery (2002) and Final Model 1 obtained in

this article, we observe that the application of the methodology led to a decrease of 43.93% in
PRESS (from 903.20 to 515.43) and a decrease of 34.43% in the MSE (from 15.45 to 10.13) and
kept the number of parameters of the Final Model 1 (12 parameters).

Table 3 shows the t -Student test for the Final Model 1.

Table 3 – Final Model 1 Test.

Label Estimate Std. Error t value p-value

v1 40.54 1.35858 29.840 <0.0001

v2 66.48 5.21568 12.745 <0.0001

v3 49.17 2.72807 18.023 <0.0001

z1 10.71 0.927052 11.556 <0.0001

z2 –16.17 0.895175 –18.065 <0.0001

v2z1 9.89 5.49969 1.798 0.0859

v3z2 10.95 1.86759 5.861 <0.0001

v1v2
3 –71.95 17.8628 –4.028 0.0006

v1z1z2 –3.59 1.33296 –2.690 0.0134

v1v2v3z1 143.90 45.4498 3.167 0.0045

v1v2z1z2 –47.56 19.2829 –2.467 0.0219

v1v2z1z2(v1 − v2) 139.40 41.6826 3.345 0.0029

5.1.2 Response Optimization

In the Example 1, a response exceeding 40 pounds is desirable. Several formulations may result

in a future response prediction greater than 40 pounds. Consequently, a desirable objective is to
maximize the expected value for a future response.

The estimation vector for the coefficients is β̂ = (W ′W )−1W ′ y, the variance-covariance matrix
is var(β̂) = σ 2(W ′W)−1, where W is a matrix (n × p) whose elements are the mixture compo-

nents proportion (xi), the levels of the process variables (zi) and functions of xi and zi (such as
interactions), where p is the number of parameters and n the number of observations.

The general combined model with the inclusion of process variables is represented in a matrix
form as

y = Wβ + ε (16)

For n observations, y is the vector (n × 1) of observations, β is the vector (p × 1) of coefficients
and ε is the vector (n × 1) of random errors. In the classical linear model, ε is considered with
multivariate normal distribution, i.e. ε ∼ N(0, Iσ 2). The estimated mean response at point w

(w′ is a matrix line W ) is and its variance is

E[ ŷ(w)] = w′β̂ (17)

Pesquisa Operacional, Vol. 35(2), 2015
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and its variance is

var[ ŷ(w)] = σ 2w′(W ′W )−1w (18)

The problem may then be formulated as follows:

max E[ ŷ(w)] = w′β̂
subject to:

v1 + v2 + v3 = 1;
0 ≤ v1 ≤ 1;
0 ≤ v2 ≤ 0.25;
0 ≤ v3 ≤ 0.75;
− 1 ≤ z1 ≤ 1;
− 1 ≤ z2 ≤ 1.

Using a search routine in Matlab R©, the solution for the problem formulated above was found,
considering the model obtained by Myers & Montgomery (2002) and Final Model 1 obtained
in this article. Table 4 presents the optimal values for the components proportions, in L-pseudo

components (vi ) and in actual values (xi ) and the optimal values of the process variables, in
coded variables (zi ) and in actual values (◦F and RH, respectively).

Table 4 – Solution for the maximization problem of example 1.

Model
v1 v2 v3 z1 z2

(x1) (x2) (x3) (T(◦F)) (RH(%))

Myers and 0.7400 0.2600 0.000 1.0 –1.0

Montgomery (0.8480) (0.1020) (0.0500) (100.0) (15.0)

Final Model 1
0.4638 0.2600 0.2762 1.0 –1.0

(0.7928) (0.1020) (0.1052) (100.0) (15.0)

Table 5 compares the PRESS, MSE, AICc , the response prediction and the variance of a new
response for both models. Analyzing the Table 4, we observe that the model obtained in this
article presents lower value for PRESS, MSE and AICc , emphasizing that was obtained a higher

response prediction with a lower variance of a new response.

Table 5 – Comparison of two models.

Model P RESS M S E AICc var[ŷ(w)] E[ŷ(w)]
Myers & Montgomery 903.20 15.45 122.57 21.5172 80.1773

Final Model 1 515.43 10.13 108.13 16.0093 82.3177
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5.1.3 Model Adequacy

The use of studentized residuals to check the normality is recommended by Myers & Mont-
gomery (2002). The studentized residuals (ri ) are defined as follows:

ri = ei√
σ̂ 2(1 − hii )

(19)

where ei = yi − ŷi and hii are elements of the hat matrix diagonals H = W (W ′W )−1W ′.

Figure 1 and 2 present the diagnosis plots used to check the adequacy of the Final Model 1 (a)
and the model obtained by Myers & Montgomery (b).
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Figure 1 – Normal probability plot of the studentized residuals of Example 1.
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Figure 2 – Plot of studentized residuals versus fitted values of Example 1.

In the normal probability plots of the studentized residuals shown in Figure 1, we may observe
that there isn’t indication that the normality assumption should not be accepted, as there aren’t
points way off the alignment.
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In order to check the additivity of the models regarding the linear model, there are the plots of

studentized residuals versus fitted values, shown in Figure 2.

The residuals shown in the plot from Figure 2 are randomly distributed around zero. Therefore,
the adequacy of Final Model 1 (a) and the model obtained by Myers and Montgomery (b) were
checked.

The fitted values shown in the plot from Figure 3 are randomly distributed around actual values.

Therefore, the adequacy of Final Model 1 (a) and the model obtained by Myers & Montgomery
(b) were checked.
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Figure 3 – Plot of fitted values versus actual values of Example 1.
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5.2 Example 2

The problem of Example 2 was presented by Cornell (2000) and Myers & Montgomery (2002).
Lauryl sulfate (A), cocamide (B), and lauramide (C) were ingredients in a shampoo whose pro-

portionate values were varied in an experiment that was designed to study how shampoo foam
height was functionally related to composition. The three ingredients made up 50% of the sham-
poo, while the other constituents, which were held fixed in all blends, were water, perfume, and

coloring agents.

Upper and lower bound constraints were placed on the ingredient or component proportions in
the form 0.20 ≤ A ≤ 0.30, 0.07 ≤ B ≤ 0.10, and 0.13 ≤ C ≤ 0.20, where A + B + C = 0.5.
The lower and upper bound constraints, when converted to the mixture components constraints

in Eq. (1), are rescaled as 0.40 ≤ xi ≤ 0.60, 0.14 ≤ x2 ≤ 0.20, and 0.26 ≤ x3 ≤ 0.40. The
experimenter’s objective was to formulate a product with foam height in excess of 170 mm. The
authors use L-pseudocomponents and Table 6 presents the experiment.

Table 6 – The experiment of Example 2 with L-pseudocomponents for mixture components.

Std Run v1 v2 v3 Height (mm) ŷ1 ŷ2

1 11 1.000 0.000 0.000 152.0 146.740 146.670
2 12 1.000 0.000 0.000 140.0 146.740 146.670

3 3 0.700 0.300 0.000 150.0 148.162 147.140
4 6 0.700 0.300 0.000 145.0 148.162 147.140

5 5 0.000 0.300 0.700 141.0 139.428 138.600
6 2 0.000 0.300 0.700 138.0 139.428 138.600

7 10 0.300 0.000 0.700 153.0 148.926 149.484
8 4 0.300 0.000 0.700 147.0 148.926 149.484

9 8 0.850 0.150 0.000 165.0 164.223 164.107
10 7 0.650 0.000 0.350 170.0 170.276 169.052

11 1 0.350 0.300 0.350 148.0 146.945 150.597

12 13 0.750 0.075 0.175 175.0 171.203 173.145
13 9 0.400 0.075 0.525 163.0 167.831 166.273

The models selected by Cornell (2000) and Myers & Montgomery (2002) both presented PRESS,
MSE and AICc equal to 657.08, 25.14 and 83.87, respectively, and the model by Cornell (2000)
is shown in Eq. (20), while that by Myers & Montgomery (2002) is shown in Eq. (21).

ŷ = 94.90 + 235.05v1 + 411.42v2 − 839.41v1v2

− 183.21v2
1 − 876.64v2

2 + 524.99v1v2(v1 + v2)
(20)

ŷ = 146.74v1 + 370.32v2 + 94.90v3 + 745.43v1v2

+ 183.21v1v3 + 876.64v2v3 − 524.99v1v2v3
(21)

Where
ŷ1: Response obtained by Cornell (2000) and Myers & Montgomery (2002) models.
ŷ2: Response obtained by Final Model 2 in this article.
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5.2.1 Model Selection

All the candidate terms for the ME are the terms in Eq. (3). The model selected according to the
AICc criterion was the following:

ŷ = 145.89v1 + 53.69v2 + 175.89v3 + 485.98v1v2v3

+ 353.65v1v2(v1 − v2) + 190.38v1v3(v1 − v3)
(22)

Then, four models are considered non-different. The Model that presents the lowest PRESS

(413.22) and MSE (17.09) was selected and named as the Base Model. The Base Model is shown
in Eq. (22).

In this step of the methodology we will consider other models using the Base Model. For this,
additional terms are generated from the terms of the Base Model. Table 7 presents the equivalent

terms to the Base Model terms.

Table 7 – Equivalent Terms.

Base Model Terms Equivalent Terms

v1v2v3

(v2v3 − v2
2v3 − v2v2

3 );

(v1v3 − v2
2v3 − v1v2

3 );

(v1v2 − v2
1v2 − v1v2

2 )

v1v2(v1 − v2)
(v2

1v2 − v1v2
2 );

(v2
1 − v3

1 − v2
1v3 − v2

2 + v3
2 + v2

2v3)

v1v3
(v2

1v3 − v1v2
3 );

(v2
1v3

1 − v2
1v2 − v2

3 + v3
3 + v2v2

3)

Once all the candidate terms (Base Model terms and Equivalent Terms) for the ME model are
known, we may then use the AICc criterion again. The model selected is shown in Eq. (23).

This model presents PRESS and MSE equal to 348.73 and 16.61, respectively.

ŷ = 146.67v1 + 301.14v2 + 134.47v3 + 180.23v2
1v3 − 1698.94v3

2 (23)

We will analyze models considered not different to the model of Eq. (23), as described at the
start in Section 5.1.1. The Model that presents the lowest PRESS (348.73) and MSE (16.61) was

selected and now, it should be Final Model 2.

Table 8 shows the t -Student test for the Final Model 2.

Comparing the models obtained by Cornell (2000) and Myers & Montgomery (2002) and Final
Model 2 obtained in this article, we observed that the application of the methodology led to a
decrease of 46.93% in PRESS (from 657.08 to 348.73) and decrease of 33.93% in the MSE (from

25.14 to 16.61). It should be emphasized that Final Model 2 has five parameters and the models
presented by Cornell (2000) and Myers & Montgomery (2002) have seven parameters.
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Table 8 – Final Model 2 Test.

Label Estimate Std. Error t value p-value

v1 146.67 2.61705 56.046 <0.0001
v2 301.14 32.6991 9.209 <0.0001

v3 134.47 4.15726 32.346 <0.0001
v2

1v3 180.23 30.1357 5.981 0.0003

v3
2 –1698.94 359.383 –4.727 0.0015

5.2.2 Response Optimization

In the Example 2, a response of exceeding 170 mm is desirable. Several formulations may result

in future a response prediction greater than 170 mm. Consequently, a desirable objective is to
maximize the expected value for a future response.

The problem may then be formulated as follows:

max E[ ŷ(w)] = w′β̂
subject to:

v1 + v2 + v3 = 1;
0 ≤ v1 ≤ 1;
0 ≤ v2 ≤ 0.3;
0 ≤ v3 ≤ 0.7.

Table 9 presents the optimal values for the components proportions, in L-pseudocomponents
(vi ) and in actual values (A, B and C). Table 10 compares the PRESS, MSE, AICc , the re-
sponse prediction and the variance of a new response for three models. Analyzing the Table 9,

we observe that the model obtained in this article presents lower value for PRESS, MSE and
AICc , emphasizing that was obtained a higher response prediction with a lower variance of a
new response.

Table 9 – Solution for the maximization problem of Example 2.

Model
v1 v2 v3

(A) (B) (C)

Cornell, 0.6040 0.0855 0.3105

Myers & Montgomery (0.2604) (0.0786) (0.1611)

Final Model 2
0.6103 0.1397 0.2500

(0.2610) (0.0840) (0.1550)

5.2.3 Model Adequacy

Figures 4 and 5 present the diagnosis plots used to check the adequacy of the Final Model 2 (a)
and the models obtained by Cornell and, Myers & Montgomery (b).
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Table 10 – Comparison of three models.

Model P RESS M S E AICc var[ŷ(w)] E[ŷ(w)]
Cornell,

657.08 25.14 83.87 37.7445 174.1457
Myers & Montgomery

Final Model 2 348.73 16.61 56.22 27.8203 177.3530
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Figure 4 – Normal probability plot of the studentized residuals of Example 2.
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In the normal probability plot of the studentized residuals shown in Figure 4, we may observe

that there isn’t indication that the normality assumption should not be accepted, as there aren’t
points way off the alignment.

In order to check the additivity of the model regarding the linear model, there is the plot of
studentized residuals versus fitted values, shown in Figure 5.
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Figure 5 – Plot of studentized residuals versus fitted values of Example 2.
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The residuals shown in the plot from Figure 5 are randomly distributed around zero. Therefore,

the adequacy of Final Model 2 (a) and the models obtained by Cornell and, Myers & Montgomery
(b) were checked.

The fitted values shown in the plot from Figure 6 are randomly distributed around actual values.
Therefore, the adequacy of Final Model 2 (a) and the model obtained by Cornell and, Myers &

Montgomery (b) were checked.
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Figure 6 – Plot of fitted values versus actual values of Example 2.
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Below we present the steps of the methodology proposed in this article:

Step 1: Choose a full model based on Scheffé’s canonical polynomials for cases of ME, shown

in Eq. (3), or choose a full combined model for cases of MPE, shown in Eq. (5), to obtain all the
candidate terms.

Step 2: Use the AICc criterion and select the model that provides the lowest AICc , according
to the number of parameters.

Step 3: Calculate the AICc differences between the candidate models and the model that
provides the lowest AICc and select the non-different models.

Step 4: Analyze the non-different models, and choose the model that provides the lowest MSE
and PRESS. This model is now named as the Base Model.

Step 5: Determine all terms that are equivalent to the Base Model terms, and create all the

candidate terms.

Step 6: Use the AICc criterion again, and select the model that provides the lowest AICc

according to the number of parameters.

Step 7: Calculate the AICc differences between the candidate models and the model that pro-
vides the lowest AICc and select the non-different models again.

Step 8: Analyze the non-different models, and choose the Final Model that provides the lowest
MSE and PRESS.

6 SIMULATION STUDY

A small simulation study is now presented once we know the true model leading to the responses.
Considering the experiment of the Table 11 and the true model shown in Eq. (24), we developed a
routine in Matlab R© to generate the normal responses for this experiment and to select the model

using the proposed methodology.

y = 150v1 + 300v2 + 150v3 + 50v1v2 − 50v1v3 + 250v2
1v3 − 650v2

2 + ε (24)

where ε is the random errors with normal distribution, i.e. ε ∼ N(0, σ 2).

In the simulation study we generated 1,000 experiments with the model shown in Eq. (24), con-
sidering σ equal to 0.5 up to 1.5. Using the proposed methodology, the Table 12 shows the
identified models with the same terms of the model shown in Eq. (24).

7 CONCLUSIONS

In this article, the statistical techniques necessary for the planning and analysis of mixture

experiments with or without process variables were gathered and a methodology for selecting
models in MPE and ME was presented with two examples.

The use of Information Theory constituted an evolution in ME and MPE. Multicollinearity may
cause the estimators of model coefficients to be instable and very inflated. Therefore, certain
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Table 11 – The experiment of the Simulation Study.

Std v1 v2 v3

1 1.000 0.000 0.000

2 1.000 0.000 0.000
3 0.700 0.300 0.000

4 0.700 0.300 0.000

5 0.000 0.300 0.700
6 0.000 0.300 0.700

7 0.300 0.000 0.700
8 0.300 0.000 0.700

9 0.850 0.150 0.000
10 0.650 0.000 0.350

11 0.350 0.300 0.350
12 0.750 0.075 0.175

13 0.400 0.075 0.525

Table 12 – σ versus Identified Models.

σ Identified Models

0.5 1,000
0.6 1,000

0.7 1,000
0.8 1,000

0.9 998

1.0 994
1.1 980

1.2 962
1.3 952

1.4 932
1.5 926

terms of the model may be significant in the presence of some terms and not significant in the

presence of other terms. In this context, stepwise forward and backward selection may result in
arbitrary selection of variables that belong to the model (Harrell, 2001). An alternative technique
was to consider all possible combinations of terms in the full model and the number of parameters

and to use selection criteria for models based on Information Theory. From the results obtained
in this article, we concluded that the use of the AICc information criterion may result in lower
PRESS and MSE.

Finally, a model selection methodology in ME and MPE was presented. In the first stage of the

methodology, a Base Model was fitted using the AICc criterion. In the following stage, a better
model was obtained, taking into account, besides the Base Model terms, all the Equivalent Terms
of the Base Model, also using the AICc criterion for the selection of the proposed model terms.
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We may then conclude that the second stage of the methodology provided models that were better

than the Base Model and also better than the models obtained previously.
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