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Received August 6, 2022 / Accepted January 9, 2023

ABSTRACT. There are different decision levels with distinct decision makers in a decentralized Supply
Chain, for example, shippers and carriers. Nevertheless, most studies are conducted considering only one
decision-making level. The carrier is the decision-making agent in Dynamic Vehicle Allocation (DVA)
problem and allocates vehicles to maximize its profit, usually delaying shipping. It is necessary to respect
the partnership principle. This paper presents the DVA problem using bi-level programming. The shipper’s
objective is to minimize shipping delays, while the carrier’s objective is to maximize profits. The exact
algorithm is used to solve the Bi-level DVA problem. The results show potential applications in logistics,
decreasing both transportation delays and costs when synchronizing carrier’s and shippers’ decisions.

Keywords: supply chain management, transportation, mixed integer linear programming, bi-level
optimization, dynamic vehicle allocation, multi-period.

1 INTRODUCTION

Supply Chain Management (SCM) has been widely used to globally integrate and optimize the
logistic functions, extending the management concept beyond the organization boundaries. There
is increasing literature on quantitative models that guide the SCM decision-making procedures.
Review of SCM models were presented in Mula et al. (2010), Arumugham & Parameswaran
(2017), and Liao & Widowati (2021).

Most of the presented models consider only one decision maker agent. In reality, each organiza-
tion makes decisions toward its objectives and these decisions impact the entire chain, influenc-
ing each other decisions. Multi-level programming is a suitable mathematical model to address
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this type of problem (Lachhwani & Dwivedi, 2018). The bi-level problem is a special case with
only two decision levels. It considers a hierarchical structure similar to the Stackelberg Prob-
lem, involving interactive agents at two distinct levels: leaders and followers (Colson, Marcotte
& Savard, 2005). Bi-level optimization provides a more realistic model of the distribution and
manufacturing processes of decentralized SC (Calvete, Galé and Iranzo, 2014). Besides these
processes, this approach has been addressed for modeling upstream and downstream elements of
SC, for example: raw material supplier and plant (Yue & You, 2017); manufacturer and retailer
(Ma, Wang and Zhu, 2014; Reisi & Fahimnia, 2018; Tantiwattanakul & Dumrongsiri, 2019);
suppliers and retailers (Hsueh, 2015); manufacturer and distributor (Yang et al., 2015; Amirta-
heri et al., 2017; Nourifar et al., 2017) and production and transportation (Guo et al., 2016; Jalil
et al., 2019).

Transport of raw materials, intermediate products, and finished goods are essential in SC. Im-
provement of transport networks could enhance the efficiency of supply chain networks (Ya-
mada et al., 2011). Transport allocation from their respective origins to their destinations is a
problem in logistic called Dynamic Vehicle Allocation (DVA). The classical DVA model has
been addressed with only one decision making level. In this case, the carrier is the decision-
making agent and allocates its vehicles to maximize profit. This type of approach opposes the
SCM principle of partnership between clients and suppliers since decision influences the overall
performance of the whole chain. In reality, there are two decision-making agents: carrier and
shipper, each having its objectives, and their decisions impact one another. This paper proposes
a new model to approach this type of problem by applying bi-level linear programming in DVA.
In this model, the shipper strives to minimize delays in shipment, while the carrier makes the
vehicle allocation decisions to maximize profits. It consists of a trade-off between shipping de-
lays and the shipping agent’s profits. The following text starts with a literature review in section
2. Its first part gives an overview of Dynamic Vehicle Allocation, showing the need for a new
mathematical approach with bi-level modeling. The second part takes a look into research con-
cerned with Bi-level Programming theory, algorithms, and applications. Section 3 shows the new
Bi-level DVA Model. Examples of applications are shown in Section 4. The section Conclusion
describes the contribution of this paper and gives suggestions for new works.

2 LITERATURE REVIEW

The literature review about Dynamic Vehicle Allocation and Bi-level Programming are presented
in these sections below.

2.1 Dynamic Vehicle Allocation

Since Dantzig and Ramser (1959) introduced Vehicle Routing Problem as a generalization of the
Traveling-Salesman Problem, mathematical modelling has been widely used in fleet planning.
These models approaching freight planning, fleet sizing, loaded vehicle positioning, fleet alloca-
tion, vehicle inventory management, fleet expansion, fleet replacement, empty vehicle reposition-
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ing, and vehicle routing, were reviewed in SteadieSeifi et al. (2014) and Baykasoğlu et al. (2019).
Empty vehicle repositioning is a frequent problem in long-haul freight. This problem has been
related to other problems like empty containers (Kuźmicz & Pesch, 2018; Khakbaz & Bhattachar-
jya, 2018); fleet sizing (Song & Earl, 2008; Dong & Song, 2009), and vehicle routing (Huth &
Mattfeld, 2009). Empty wagon allocation and train scheduling problems are combined into a sin-
gle mathematical formulation in Upadhyay and Bolia (2014). Vasco and Morabito (2016a) study
fleet management in freight transportation in Brazil. The authors use metaheuristic techniques to
solve the Brazilian freight carrier problem in realistic-size instances. Cruz et al. (2020) and Cruz
et al. (2022) propose an exact method, using Branch and Price techniques, to reach optimality in
reasonable running times for large-scale instances. The decision related to empty vehicle repo-
sitioning and vehicle inventory management is addressed by the Dynamic Vehicle Allocation
(DVA) Problem. Cargoes remaining unattended during a certain period are lost to the system,
which results in losses to the shipping company. Repositioning vehicles to address a forecast de-
mand may result in empty vehicles traveling between regions on time (network nodes). Another
factor that must be considered is the imbalance between origins and destinations in the regions
being served. This imbalance can in turn cause disequilibrium between the number of vehicles
in a region and its potential for cargoes. Therefore, it is necessary to recommend repositioning
the areas to avoid this issue.

Let us consider the following integer programming model shown by Powell and Carvalho (1998).
In this formulation, one assumes that the time is split into discrete sets t = (0, 1, ..., T) where T is
the planning horizon. It is considered that one vehicle can hold only one cargo.

Here σ is the set of regions i in the network, and τ ij is the travel time from region i to region j;

Network Variables:

N is the set of nodes (i,t), i ∈ σ , t ∈ T, in the dynamic network.

Λ is the set of cargoes l available in the planning horizon.

Λijt is the set of loads l ∈ Λ with origin i, destination j and feasible time t.

Rit is either the entry (Rit > 0) or exit (Rit < 0) flow of vehicles at point i and time t.

It is usually assumed that Rit = 0 for t >0.

max
x,y

F(x,y) =
T

∑
t=0

∑
i∈σ

∑
j∈σ

(
∑

l∈Λijt

rltxlt − cijyijt

)
(1)

s.t :

∑
t∈T

xlt + zl = 1 ∀l ∈ Λ (2)

∑
l∈Λijt

xlt + yijt −wijt = 0 ∀i, j ∈ σ , ∀t≤T (3)

∑
j∈σ

wijt − ∑
j∈σ

w j,i,t−τij = Rit ∀(i, t) ∈ N (4)
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yijt,wijt≥0 (5)

xlt = {0,1} (6)

Parameters:

rlt is the net revenue due to choosing time t to ship cargo load l.

cij is the cost of positioning a vehicle along arc (i, j, t).

Decision variables:

xlt = 1if cargo l is shipped at time t.

zl = 1 if cargo l was never shipped (within the planning horizon).

yijt is the number of positioned vehicles using arc (i, j, t). If i = j, yiit represents the number of
vehicles idling at region i from instant t to instant t+1.

wijt is the total vehicle flow in the arc (i,j,t).

In this model, the carrier tries to maximize the profit from transported cargo by maximizing rev-
enues and minimizing costs by reducing empty trip costs. The cost of not moving a vehicle is not
considered in this model. This situation is represented by objective function (1). The constraint
(2) represents the fact that only one vehicle is allocated to each cargo. In addition, constraint (2)
checks if the carrier actually ships the cargo during the planning horizon. Constraints (3) and (4)
represent the flow conservation conditions in each node.

Several DVA approaches are found in the literature. Crainic (2003) published a review of the
existing models. The main differences among them are the objective function formulation, the
decision variables, the applicability of each model, and the solution methods. All models con-
sider only one decision level, where the carrier decides the optimal vehicle allocation and the
shipping period. Since the objective function used in the DVA model does not include a penalty
for shipping delays, the carrier decides to pick up the load whenever it is most convenient to max-
imize revenues and reduce trip costs. Therefore, several delays that are undesirable to the shipper
may occur. In a just-in-time system, the delay may result in additional storage, and production
stoppage costs, setup costs, and administrative costs as well as production re-planning costs.

In SC, there are different decision levels with different decision makers such as shippers and
carriers. Shippers generate the freight transportation demand and Carriers perform the transport
for the shippers (Crainic, Perboli & Rosano, 2017). Nevertheless, the problems are mostly mod-
eled with only one decision making level, despite this old concern. LeBlanc and Boyce (1986)
addressed a bi-level model where carriers determine shipment rates and transit times while ship-
pers choose the best mode of shipment. In maritime freight network, the relationship between
shippers and carriers was investigated by Lu (2003) and Lee et al. (2013), being a bi-level model
developed by Boile, Lee and Theofanis (2013) considering hierarchical interactions, where the
carriers (leaders) in the upper level, and the shippers (followers) in lower level. In the highway
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freight network, the bi-level model was used in Apivatanagul and Regan (2010) considering in
the upper level, the transportation agency seeking to reduce the highway congestion and in the
lower level, the shipper selecting the transportation services, and the carrier model routes vehi-
cles based on this demand. In hazardous material distribution, Kheirkhah, Navidi and Bidgoli
(2016) proposed two meta-heuristics for the bi-level model with regulatory agency in the upper
level and distributor in the lower.

This kind of approach, bi-level programming presented in the next section, can be suitable for
DVA Problem in SC.

3 BI-LEVEL PROGRAMMING

The bi-level programming involves two hierarchical levels in the decision-making process. In
this hierarchy, the second level agent, termed follower, depends on the first level agent, termed
leader. This type of model is adequate for addressing problems with two decentralized decision
levels. Wen and Hsu (1991) define this type of problem as described below.

First, one assumes that there are two hierarchical levels in the decision-making process: upper
and lower. Let (x, y) ∈ ℜn be a vector of decision variables split between both decision makers.
The upper-level decision maker controls the vector x ∈ ℜn1 , while the lower level controls the
vector y ∈ ℜn2, where n1 + n2 = n. Next, assuming that F, f , ℜn1 x ℜn2 ⇒ ℜ1 are linear, the
bi-level linear problem can be put as:

P1: max x, y F(x, y) = aTx + bTy
where y is a solution of:
P2: max y f (x, y) = cTx + dTy,
subject to Ax+By ≤ r,
where: a, c,x ∈ ℜn1; b, d,y ∈ ℜn2; r ∈ ℜm; A is an m x n1 matrix; B is an m x n2 matrix.

Let S = {(x, y) / Ax + By ≤ r } be the set of feasible solutions of the problem.

For any given x, let Y(x) be the set of the optimal solutions of problem P2.

Ben-Ayed and Blair (1990) demonstrated that bi-level programming is NP-hard, even in prob-
lems involving linear functions. There are problems with decision variables continues, integer or
mixed-integer in leader, follower or both levels. The bi-level problem is non convex, even when
leader’s and follower’s objective functions are convex as in the linear case (Ben-Ayed, 1993).
The bi-level programming theory and solution algorithms are presented by Kalashnikov et al.
(2015).

Different approaches have been proposed to solve bi-level programming problems. Two streams
of research have been taken: exact algorithms and heuristic methods. The first of them can use
different methods: Extreme point algorithms (Candler and Townsley 1982; Bialas and Karwan,
1984; Chen, Hansen and Jaumard, 1991); Complementarity pivot algorithms (Bard and Falk,
1982); Branch and bound (Bard and Moore, 1992; Hansen, Jaumard and Savard, 1992; Xu and
Wang, 2014); Descent methods (Judice and Faustino, 1992; Vicente, Savard and Júdice, 1994)
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and Branch and Cut (Audet, Savard and Zegal, 2007; DeNegre and Ralphs, 2009; Fischetti et
al., 2017; Dempe and Kue, 2017). Yue et al. (2019) propose an algorithm for global optimiza-
tion using the reformulation and decomposition method. The second stream uses metaheuristics
like Genetic Algorithms (Marinakis, Migdalas and Pardalos, 2007; Deb and Sinha, 2009); Ant
colony (Calvete, Galé and Oliveros, 2011) and Tabu Search (Rajesh et al., 2003; Balakrishnan et
al., 2013). Talbi (2013) provides background on metaheuristics to solve bi-level problems. Said et
al. (2021) present a co-evolutionary algorithm solving combinatorial bi-level optimization. An-
other kind of approach is using supervised learning techniques. Bagloee et al., 2018 apply a
hybrid method of machine learning and optimization to solve real-life applications of bi-level
problems.

Bi-level programming has been addressed to model several practical problems in different areas,
such as Economics; Engineering; Management; Pricing; Energy; Telecommunication; Gas, etc.
A list of applications and a taxonomy literature review on bi-level programming were presented
in Lachhwani and Dwivedi (2018). In transport, LeBlanc and Boyce (1986) proposed a bi-level
model for the network design problem, concluding that the approach can be readily extended to
a large class of transportation planning problems. Since then, the bi-level formulation has been
addressed by other authors in different modal of transportation problems. In urban passenger
transportation, operational decisions on the competitive environment are made considering the
upper-level management authority and lower-level described the three operators: bus, taxi, and
subway (Hu, Wang, and Sun, 2012). In airlines, operative decisions on fares and frequencies
of services have been addressed (Zito, Salvo and La Franca, 2011). In railways, operational
decisions of running trains to optimal fare prices have been taken (Kumar, Gupta, and Mehra,
2018). On the highway, the network pricing problem has been addressed (Labbé, Marcotte and
Savard, 1998; Brotcorne and Mont Houy, 2001) and transportation network (Alizadeh, Marcotte
and Savard, 2013). In the next section, a bi-level model to approach Dynamic Vehicle Allocation
Problem was developed.

4 BI-LEVEL DVA MODEL

Given the increase in transportation costs and logistics delays, it is necessary to use plan-
ning models that consider all organizations involved in the SCM. Logistics require a sys-
temic approach with synchronization between carrier and shipper decisions. In reality, there are
two decision-making agents: carrier and shipper, each one with different objectives and their
decisions impact each other. The bi-level programming is suitable for this kind of problem.

In the classic DVA model, cargoes unattended in their due period are lost to the system, resulting
in a loss to the shipping company. In SC, shippers and carrier partnerships, unmet cargoes in time
are postponed to another period causing shipment delays. To account for the number of shipment
delays, constraint (7) was added as follows:
zlt = 1 if cargo l is not shipped in time t.

xlt + zlt = 1+zlt−1, ∀l∈Λ, t = 1,2, ...,T (7)
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As such, every time the carrier does not ship a cargo within period t,zlt−1 is equal to 1. During the
next period, the carrier will have to pick up the load left behind in addition to the new load. This
does not change the problem results; it only emphasizes the number of delays during the planning
horizon. The travel time between terminals was considered even 1. In addition, constraint (8) was
added to guarantee trips do not over fleet capacity.

∑
i∈σ

∑
j∈σ

wijt≤F ∀i, j∈σ , t = 0 (8)

The bi-level DVA model proposed in this paper considers that the shipper is the leader (first
level), and the carrier is the follower (second level). In this case, the shipper controls shipping
periods, these become the leader’s decision variables. The carrier controls vehicle allocations;
these become the follower decision variables.

The analytical formulation of this problem according to a bi-level programming model is:

min
z

f (z) =
T

∑
t=0

∑
i∈σ

∑
j∈σ

∑
l∈Λijt

zlt (9)

max
x,y

F(x,y) =
T

∑
t=0

∑
i∈σ

∑
j∈σ

(
∑

l∈Λijt

rltxlt − cijyijt

)
(10)

s.t :

∑
t∈T

xlt + zl = 1 ∀l∈Λ (11)

xlt + zlt = 1+ zlt−1, ∀l∈Λ, t = 1,2, ...,T (12)

∑
l∈Λijt

xlt + yijt −wijt = 0 ∀i, j∈σ , ∀t≤T (13)

∑
j∈σ

wijt − ∑
j∈σ

w j,i,t−τij = Rit ∀(i, t)∈N (14)

∑
i∈σ

∑
j∈σ

wijt≤F ∀i, j∈σ , t = 0 (15)

yijt,wijt≥0 (16)

xlt ,zlt = {0,1} (17)

The mixed integer bi-level linear model above was implemented in Mathematica (http://www.
wri.com), using the branch and bound method proposed by Xu and Wang (2014) to a global
optimal solution: (x*, y* , ζ * ).
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Algorithm 1.

Let N integer variable to record the number of active nodes in the branch-and-bound tree and h binary
variable to indicate whether (h=1) or not (h=0) the MILP (39)–(44) has been solved.

Step 0 (Initialization): Create the root node, Initialize x* = /0, y* = /0, ζ * = −∞, N = 1. Here, N is the number
of remaining nodes.

Step 1 (Node management): For all j ∈ {1, ..., N} such that zk ≤ ζ * or l j
k >uj

k, ∋j, remove node j. Update
N as the number of remaining nodes optimal.

If N=0 then: if x ̸= /0 return optimal solution; else ζ * = −∞, return infeasible, ζ * = −∞, return
unbounded.

If N ̸=0 select a node k from [1, . . . N]; set ( l̂ = lk , û = uk , ŵ = wk), remove node k; reorder the
remaining nodes from 1 to N – 1, reduce N by 1; and go to Step 2.

Step 2 (Relaxation): Solve the high point problem: H(l̂, û, ŵ):

If infeasible go to Step 1. If unbounded, go to Step 3. 1,

else, let (xH , yH ) denote an optimal solution to H(l̂, û, ŵ), if C T xH + d1 T yH ≤ ζ * go to Step 2,
else go to Step 3.

Step 3 (Lower level): Solve L (xH)

If is unbounded go to Step 4, then return: BMILP is infeasible, else, let yL denote an optimal
solution to L (xH): if d2

T yH = d2
T yL then 3 update (x∗ = xH , y∗ = yH , ζ ∗ = cT xH + d1

T yH ) ;
if H(l̂, û, ŵ) is unbounded go to Step 4: else go to Step 1.

If A1xH + B1yL ≤ b1 and cT xH + d1
T yL > ζ ∗ then

update (x∗ = xH , y∗ = yL , ζ ∗ = cT xH + d1
T yL) go to Step 4.

Step 4: Create (m2 + 1) new nodes, increase N by (m2 + 1), and go to Step 1. For k = 1; . . . ; m2, node (N+k)

is characterized by (lN+K , uN+K , wN+K , zN+K), which is defined in Xu and Wang (2014).

5 EXAMPLES

Let us consider 4 different shipping locations, 1, 2, 3 and 4, a planning horizon consisting of 6
periods, the travel time between locations, and a time span. Let us consider an example of cargo
shipment per period: three cargoes from region 3 to 4, time 0; three cargoes from region 3 to
2, time 2; three cargoes from region 2 to l, time 3; and three cargoes from region 2 to 3, time
4; three-vehicle fleet, the trip cost equal to 1, and the net revenue per load shipment equal to 2.
Figure 1 and Figure 2 present the results of the Classic DVA model and the new Bi-level DVA
Model.
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Figure 1 – Allocation by Classic DVA Model.

Figure 2 – Allocation by Bi-level DVA Model.

Figure 1, Classic DVA model, shows that the carrier tries to maximize its profit, equal 9, avoiding
all empty trips and delaying 24 shipments, and lost 3 shipments. Figure 2, Bi-level DVA Model,
shows that the shipper makes 6 empty trips, decreases its profit to 6, but all loads are shipped and
there were just 3 delays.
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The goal of this example is to demonstrate the difference between the Classic DVA and the
Bi-level DVA solutions. It can be observed that with a small reduction in carrier’s profits, a sig-
nificant decrease in delays is obtained. Other eight hypothetical examples, Table 1, with random
data, were analyzed.

Table 1 – Examples.

Cargoes (Period)
Ex. Region 1 2 3 4

2

1 0 3(3), 3(4),1(5),1(6) 2(2), 2(3),3(4), 3(5) 2(3),2(5)
2 3(1),1(4),2(5) 0 3(1), 2(2), 3(5) 3(2),2(4),1(5),2(6)
3 1(2),2(4),1(5),2(6) 2 (1),3(2),3(3), 2(5) 0 1(3), 2 (4), 3(6)
4 2(2), 2(3),3(6) 1(3), 3(4),2(6) 3(1), 2(2), 1 (4) 0

3

1 0 3(2),2(3),1(4),2(5) 2(2), 2(3),3(4),1(6) 3(5),2(6)
2 3(1),2(3),3(5) 0 2(1),2(2) 1(4),1(6)
3 2(1),2(2),1(3),2(6) 1(2),3(3), 1(5),2(6) 0 1(3),1(4),2(5)
4 1(3),1(5),2(6) 1(3),1(5),2(6) 1(2),3(3), 1(5),2(6) 0

4

1 0 1(3),3(5) 3(1), 2(5),1(6) 1(2),2(3),3(4),1(5)
2 1(3),3(4),1(5) 0 0 2(1),2(4)
3 1 (2),1(3), 1(5),2(6) 2(2),1(3),3(4),1(5) 3(4),1(5) 1(3), 1(5),2(6)
4 1(1),2(3), 1(6) 3(1),1(3),1(6) 3(1),3(2),2(3),3(5) 0

5

1 0 2(2), 3(4) 3(1),2(6) 3(1),1(3)
2 3(3),3(4),1(5) 0 1(4),1(5) 1(2),2(4),1(5),2(6)
3 1 (2),1(3), 1(6) 1(3), 3(5),3(6) 0 1(1), 3(4)
4 3(1),1(3),2(4),2(6) 1(2),3(3),1(4),1(5) 3(1),3(3),2(4),3(6) 0

6

1 0 3(1), 2(2), 2(3),2(6) 3(1),3(2),1(4),3(5) 2(1),2(6)
2 3(1), 2(2), 3(5),3(6) 0 1(1),1(2), 1(4),2(5) 2(1),3(4)
3 1 (2),3(3),3(5),1(6) 2(1), 1(3),3(4),2(6) 0 1(2),2(4), 1(5),2(6)
4 2(1), 2(3),3(4),1(5) 3(1),1(3),2(4),1(5),3(6) 3(1),1(4),2(5),2(6) 0

7

1 0 1(3),3(4), 2(6) 1(3),3(4),1(5) 1(1),1(2),3(5)
2 3(2),1(3),3(5),1(6) 0 1(1), 1(4), 1(6) 3(2),1(3),2(5),2(6)
3 1(1),1(2),1(3) 1(1),1(2),1(3),3(4),1(5) 0 1 (2),1(3), 3(4)
4 1(2),2(4),3(5),2(6) 1(2),2(5),3(6) 1(3),3(5),1(6) 0

8

1 0 l (1),3(2),3(5) 3(1),3(2),3(3),2(5) 2(1),3(2),2(3),2(6)
2 3(3), 3(4),1(5),1(6) 0 l (2),3(4),3(5) 3(1),2(3),3(4),3(6)
3 1(1),2(4),1(5) 2(1),1(3),1(4),1(6) 0 2 (2),l (4), 2 (5)
4 2(2),3(3),l(4) 1(2),2(3),2(5),3(6) 3(2),1(3),3(4),2(6) 0

9

1 0 1(1),2(3),1(4),1(5),1(6) 3(1),3(2),3(3),2(5) 2(1),1(2),2(3),3(4),1(6)
2 3(1),3(2),2(3),3(6) 0 1(2),1(3),3(4),1(5), 2(6) 3(2), 2(6)
3 1 (2),1(3),3(4),1(5) 3 (2),l (4), 2 (6) 0 2 (3),l (4), 3 (5)
4 3(1), 2(2), 3(4),3(5) 2(1),3(2),1(3),1(5) 3(2),1(3),3(4),2(6) 0

Costs: 10 for region 1 to 2, 2 to 3 and 3 to 4; 20 for region 1 to 3, and 2 to 4; 30 for region 1 to 4.
Net Revenue: 20 for region 1 to 2, 2 to 3 and 3 to 4; 40 for region 1 to 3 and 2 to 4; 60 for region
1 to 4.

Shipments between locations were randomly obtained as follows: loads follow a discrete
distribution with the following probabilities: no cargo =1/2; one, two and three cargoes =1/6.

Pesquisa Operacional, Vol. 43, 2023: e266695
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Costs: 10 for region 1 to 2, 2 to 3 and 3 to 4; 20 for region 1 to 3 and 2 to 4; 30 for region 1 to 4.
Net Revenue: 20 for region 1 to 2, 2 to 3 and 3 to 4; 40 for region 1 to 3 and 2 to 4; 60 for region
1 to 4.

Shipments between locations were randomly obtained as follows: loads follow a discrete
distribution with the following probabilities: no cargo =1/2; one, two and three cargoes =1/6.

Fleet sizes varying between 10 and 15 vehicles were analyzed in each example with both the
DVA model and the Bi-level DVA model.

Table 2 shows the profits, delays, and lost shipments for the examples. The columns with profit,
delay and lost shipments show changes between the DVA and the Bi-level DVA models. The Bi-
level DVA succeeded in allocating vehicles such that, with a small reduction in carrier’s profits,
a significant decrease in delays and, in some examples, a decrease in lost shipments too.

Another DVA example has been present in Ghiani (2004) and in Vasco and Morabito (-a Murty is
a motor carrier operating in the Andhraachuki region (India). On July 11, four TL transportation
requests were made: from Chittoor to Khammam on July 11, from Srikakulam to Ichapur on July
11, from Ananthapur to Chittoor on July 13 (two loads). On July 11, one vehicle was available
in Chittoor and one in Khammam. A further vehicle was currently transporting a previously
scheduled shipment and would be available in Chittoor on July 12. Transportation times between
terminals, cost and revenue are shown in Table 3.

Let T = {11 July, 12 July, 13 July} = {1,2,3} and N = {Ananthapur, Chittoor, Ichapur, Khammam,
Srikakulam} = {1, 2, 3, 4. 5}. The optimal ADV solution (Fig. 3): X*

241 =1, X*
123 =1, Y*

441 =
Y*

442 =1, Y*
443 =2 and Y*

212 =1, while the remaining variables are zero. Z*= p24 + p12 – c21

= 3.6+1.8-1=4.4. It is worth noting that the requests from Srikakulam to Ichapur on July 11 and
from Ananthapur to Chittoor on July 13 are not satisfied.

Figure 3 – Murty problem: allocation by DVA Model.
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Table 2 – Results.

Example Profit Delay Lost
Fleet ADV Bi-level % ADV Bi-level % ADV Bi-level %

2 15 1360 1340 -1% 32 25 -22% 6 3 -50%
14 1340 1330 -1% 34 31 -9% 5 5 0
13 1300 1290 -1% 41 38 -7% 9 9 0
12 1270 1270 0 48 47 -2% 12 12 0
11 1220 1220 0 63 63 0 17 17 0
10 1150 1150 0 84 84 0 23 23 0

3 15 960 920 -4% 23 4 -83% 1 1 0
14 950 920 -3% 26 7 -73% 2 2 0
13 940 910 -3% 24 10 -58% 3 3 0
12 930 900 -3% 25 14 -44% 4 4 0
11 910 840 -8% 26 14 -46% 6 6 0
10 870 850 -2% 37 24 -35% 10 9 -10%

4 15 990 940 -5% 24 4 -83% 0 0 0
14 990 930 -6% 23 4 -83% 0 0 0
13 990 910 -8% 22 5 -77% 0 0 0
12 980 860 -12% 23 8 -65% 0 0 0
11 970 940 -3% 27 16 -41% 2 1 -50%
10 940 940 0 39 29 -26% 5 4 -20%

5 15 1070 990 -7% 28 8 -71% 0 1 0
14 1060 1050 -1% 28 17 -39% 1 2 100%
13 1050 980 -7% 29 13 -55% 2 3 50%
12 1040 1020 -2% 27 20 -26% 3 3 0
11 1010 1010 0 26 24 -8% 5 5 0
10 980 960 -2% 35 29 -17% 9 8 -11%

6 15 1070 1060 -1% 35 18 -49% 8 6 -25%
14 1040 1010 -3% 41 20 -51% 11 8 -27%
13 1010 980 -3% 42 22 -48% 12 9 -25%
12 980 950 -3% 45 28 -38% 15 12 -20%
11 950 920 -3% 54 34 -37% 18 15 -17%
10 900 870 -3% 51 42 -18% 20 19 -5%

7 15 1070 1060 -1% 35 18 -49% 8 6 -25%
14 1040 1010 -3% 41 20 -51% 11 8 -27%
13 1010 980 -3% 42 22 -48% 13 9 -31%
12 980 950 -3% 45 28 -38% 15 12 -20%
11 950 920 -3% 54 34 -37% 18 15 -17%
10 900 880 -2% 51 42 -18% 20 19 -5%

8 15 1230 1150 -7% 47 25 -47% 6 5 -17%
14 1220 1160 -5% 51 33 -35% 8 7 -13%
13 1200 1150 -4% 51 40 -22% 10 10 0
12 1160 1130 -3% 59 47 -20% 14 13 -7%
11 1110 1100 -1% 65 55 -15% 18 16 -11%
10 1060 1060 0 77 70 -9% 22 21 -5%

9 15 1490 1480 -1% 36 29 -19% 4 4 0
14 1470 1470 0 40 39 -3% 7 7 0
13 1420 1420 0 55 54 -2% 12 12 0
12 1370 1370 0 70 70 0% 17 17 0
11 1310 1310 0 91 91 0% 23 23 0
10 1250 1250 0 112 112 0% 29 29 0
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Table 3 – Murty problem: Cost - Revenue (Travel times in days between terminals are same to costs).

Ananthapur Chittoor Ichapur Khammam Srikakulam
Ananthapur 0 1 – 1.8 2 – 3.6 2 – 3.6 2 – 3.6

Chittoor 1 – 1.8 0 2 – 3.6 2 – 3.6 2 – 3.6
Ichapur 2 – 3.6 2 – 3.6 0 2 1 – 1.8

Khammam 2 – 3.6 2 – 3.6 2 – 3.6 0 2 – 3.6
Srikakulam 2 – 3.6 2 – 3.6 1 – 1.8 2 – 3.6 0

The optimal Bi-level DVA solution (Fig. 4): X*
241 =1, X*

123 =2, Y*
411 =1, Y*

443 =1 and Y*
212

=1, while the remaining variables are zero. Z*= p24 + 2p12 – c21 –c41= 3.6+2x1.8- 1- 2 = 4.2,
while the remaining variables are zero. One request from Srikakulam to Ichapur on July 11 is not
satisfied. Another optimal solution: X*

241 =1, X*
123 =1, X*

533 =1, Y*
451 =1, Y*

443 =1 and Y*
212

=1, while the remaining variables are zero. Z*= p24 + p12 + p53 – c21 –c45= 3.6+1.8 +1.8 - 1- 2
= 4.2, One request from Ananthapur to Chittoor on July 13 is not satisfied.

Figure 4 – Murty problem: allocation by Bi-level DVA Model.

The Bi-level DVA model showed a slightly lower profit, but a higher load was achieved. In the
ADV model, the vehicle remained in inventory in Khammam, as the transport cost would be 2
and the value to be received would be 1.8, which would result in loss to the carrier. In the DVA Bi-
level model the vehicle was to meet the load, even causing a loss, because the model considers
the partnership in the logistics chain and searches the objectives of both players. In this case,
the financial loss is justified, because the cargo that was waiting to be transported could not be
delayed. In several situations it is common the existence of an urgency and serious implications
for the customer, such as, for example, a production stop, which would certainly harm the chain
as a whole. From the carrier’s point of view, it may not be reasonable, on the other hand, from
the shipper’s perspective, it would be.
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Other five examples are shown with the same Murty problem’s parameters to travel time, cost,
revenue. Loads were generated randomly. Fleet sizes varying between 15 and 20 vehicles were
analyzed in each example, with both the DVA and the Bi-level DVA models (Table 4).

Table 4 – Examples.

Cargoes (Period)
Ex. Region 1 2 3 4 5

11

1 0 1(2), 2(3), 3(4),1(5) 2(1),1(2),2(3),2(4),3(5) 2(4) 3(2), 1(3), 1(4), 3(5)
2 2(1), 1(2), 1(3), 1(4) 0 (1) 2(1) 1(2), 2(5)
3 0 2(5) 1(1), 1(3),
4 2(1), 2(2), 1(3), 1(1), 3(3), 0 1(1), 2(2), 1(3), 1(5)
5 1(1), 2(3), 3(4) 1(1), 1(2), 1(4), 2(5) 1(1), 1(2), 1(4), 1(5) 2(3) 0

12

1 0 3(1) 1(1), 2(2), 2(4) 3(1), 3(2), 3(3) 3(1), 3(3)
2 2(3), 2(4) 0 2(4) 1(1), 3(3), 2(4), 2(5) 1(1), 3(3), 1(5)
3 3(5) 1(3) 0 3(2) 3(2), 3(2), 3(5)
4 2(5) 1(1), 1(2), 2(4) 3(1), 1(3), 3(4) 0 3(1), 1(5)
5 1(1), 3(3), 2(4), 2(5) 3(2), 3(4), 3(5) 3(4) 1(3) 0

13

1 0 3(1), 3(2), 1(4) 3(2), 2(3) 1(1), 2(2), 1(4) 3(2), 3(3), 3(5)
2 3(2) 0 3(4), 3(5) 1(1), 2(3) 3(2), 2(4), 2(4), 2(5)
3 2(1), 1(3), 2(4), 1(5) 2(1), 3(3), 2(4), 1(5) 0 3(3) 2(2)
4 3(3), 2(4), 2(5) 2(1), 1(3), 1(4), 2(5) 2(5) 0 1(1), 2(2), 2(4)
5 3(2), 3(5) 1(2), 1(4) 2(3), 2(5) 2(1), 3(2), 1(4), 2(5) 0

14

1 0 2(2), 3(3), 1(5) 3(2), 1(5) 3(1), 3(4), 3(5) 1(2), 1(3), 1(4)
2 1(2), 3(3), 3(5) 0 2(1), 3(4), 2(5) 2(3), 3(5) 1(2), 1(3), 1(5)
3 1(3), 1(4) 1(2), 2(3), 2(4) 0 3(4), 1(5) 2(2), 3(5)
4 2(1),3(2),2(3),3(4),3(5) 3(2), 3(3), 1(4) 2(1) 0 1(1), 1(4), 3(5)
5 2(1), 3(2), 1(5) 3(2), 3(4) 2(2), 1(3), 2(5) 1(1), 2(1), 1(4), 3(5) 0

15

1 0 3(1), 3(2), 1(4) 3(2), 2(3) 1(1), 2(2), 1(4) 3(2), 3(3), 3(5)
2 3(2), 1(3) 3(4), 3(5) 1(1), 2(3) 3(2), 2(4), 2(5)
3 2(1), 1(3), 2(4), 1(5) 2(1), 3(3), 2(4), 1(5) 0 3(3) 2(2)
4 3(3), 2(5) 2(1), 1(4), 2(5) 2(5) 0 1(1), 2(2), 2(4)
5 3(2), 3(5) 1(2), 2(3), 1(4) 2(5) 2(1), 3(2), 1(4), 2(5) 0

The DVA model has one decision level and assumes that the carrier has flexible shipping dates.
This situation is the most favorable for the carrier since s/he controls two decisions: shipping
period and vehicle programming. Because this model does not assign penalties for shipping
delays, it will maximize the carrier’s profit by ignoring shipping delay problems. In the Bi-
level DVA model, the shipping date is also flexible, but this decision is made by the shipper.
This model assumes that on the first decision level, the shipper strives to minimize shipping
delays, and the carrier, on the second level, maximizes the transportation profit by controlling the
vehicles programming. The Bi-level DVA model analyzes from the perspective of both players.
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Table 5 – Results.

Example Profit Delay Lost
Fleet ADV ADVBL % ADV ADVBL % ADV ADVBL %

11

20 195.6 180.4 -7.77% 68 41 -39.71% 17 15 -11.76%
19 189.4 176.8 -6.65% 74 46 -37.84% 19 16 -15.79%
18 182.8 173.2 -5.25% 71 51 -28.17% 20 17 -15.00%
17 176 167.8 -4.66% 72 57 -20.83% 20 19 -5.00%
16 168.6 161.2 -4.39% 76 63 -17.11% 21 20 -4.76%
15 160 153.4 -4.13% 79 69 -12.66% 24 23 -4.17%

12

20 233.4 230.2 -1.37% 136 115 -15.44% 36 31 -13.89%
19 224.2 219.4 -2.14% 140 123 -12.14% 38 34 -10.53%
18 220.8 214.8 -2.72% 143 132 -7.69% 37 35 -5.41%
17 210.4 205.8 -2.19% 149 141 -5.37% 40 38 -5.00%
16 202 195 -3.47% 155 150 -3.23% 41 41 0.00%
15 191.2 184.2 -3.66% 168 159 -5.36% 45 44 -2.22%

13

20 240 232.2 -3.25% 109 100 -8.26% 27 29 7.41%
19 230.8 222.4 -3.64% 113 107 -5.31% 29 32 10.34%
18 221.2 211.6 -4.34% 118 114 -3.39% 32 35 9.38%
17 211.6 200.8 -5.10% 125 121 -3.20% 36 38 5.56%
16 200.8 188.4 -6.18% 134 129 -3.73% 39 42 7.69%
15 190 177.6 -6.53% 146 138 -5.48% 43 45 4.65%

14

20 222 215.4 -2.97% 133 116 -12.78% 42 42 0.00%
19 212.8 195.2 -8.27% 139 122 -12.23% 45 49 8.89%
18 203.6 194.2 -4.62% 141 129 -8.51% 46 49 6.52%
17 194.4 186 -4.32% 145 136 -6.21% 48 51 6.25%
16 185.2 176.2 -4.86% 153 143 -6.54% 51 54 5.88%
15 175.6 166.4 -5.24% 161 150 -6.83% 56 57 1.79%

15

20 240 232.2 -3.25% 109 100 -8.26% 27 29 7.41%
19 230.8 222.4 -3.64% 113 107 -5.31% 29 32 10.34%
18 221.2 211.6 -4.34% 118 114 -3.39% 32 35 9.38%
17 211.6 200.8 -5.10% 125 121 -3.20% 36 38 5.56%
16 200.8 188.4 -6.18% 134 129 -3.73% 39 42 7.69%
15 190 177.6 -6.53% 146 138 -5.48% 43 45 4.65%

6 CONCLUSION AND FUTURE RESEARCH

The challenge of providing a high level of service at low cost in logistics has been much stud-
ied. Many models have been developed considering only one level of decision, for example, the
carrier. However, there are several decision-making agents involved in supply chain. In the case
of this work, the carrier and the shipper have been considered. The carrier aims to maximize
the profit of the transported cargo and the shipper seeks to minimize cargo dispatch delays. An
optimal solution to this problem should consider both points of view. This involves a negotia-
tion between these two players that can be solved using the bi-level approach presented in this
work. The two-level DVA model proposed in this work synchronizes the decisions of carriers and
shippers. This model can help decide vehicle allocations in a shipper/transporter partnership in
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the supply chain, making a compensatory analysis between maximizing profits and minimizing
delays.

This paper uses an exact solution algorithm. The objective is to be able to compare the results of
the classic DVA with the new Bi-level DVA model using a global optimum solution. The study
uses a small instance because bi-level problems are known to be NP-hard. For future work, we
suggest including several computational instances and computing time.

The real-world problems may involve large data; therefore, a global optimization algorithm may
not be adequate.

Thus, for future studies we propose the use of metaheuristics or approximate dynamic
programming for large-scale problems.

The Bi-level DVA problem studied in this paper assumes that the demands are distributed through
time and can be forecast with some certainty in a given time horizon. For future research, we
suggest to extend the proposed approach to scope uncertainties in the problem parameters, for
example, uncertain demands.
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BAGLOEE SA, ASADI M, SARVI M & PATRIKSSON M. 2018. A hybrid machine-learning and
optimization method to solve bi-level problems. Expert Systems with Applications, 95, 142–152.
doi:10.1016/j.eswa.2017.11.039

BALAKRISHNAN A, BANCIU M, GLOWACKA K & MIRCHANDANI P. 2013. Hierarchical
approach for survivable network design. European Journal of Operational Research. doi:
10.1016/j.ejor.2012.09.045.

BARD JF & FALK JE. 1982. An explicit solution to the multi-level programming problem.
Computers and Operations Research. doi: 10.1016/0305-0548(82)90007-7.

BARD JF & MOORE JT. 1992. An algorithm for the discrete bi-level programming
problem. Naval Research Logistics (NRL). doi: 10.1002/1520-6750(199204)39:3<419::AID-
NAV3220390310>3.0.CO;2-CAND.
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LABBÉ M, MARCOTTE P & SAVARD G. 1998. A Bi-level Model of Taxation and Its Application
to Optimal Highway Pricing. Management Science. doi: 10.1287/mnsc.44.12.1608.

LACHHWANI K & DWIVEDI A. 2018. Bi-level and Multi-Level Programming Problems: Tax-
onomy of Literature Review and Research Issues. Archives of Computational Methods in
Engineering. doi: 10.1007/s11831-017-9216-5.

Pesquisa Operacional, Vol. 43, 2023: e266695



20 BI-LEVEL MODEL: NEW APPROACH TO DYNAMIC VEHICLE ALLOCATION IN SUPPLY CHAIN

LEBLANC L & BOYCE D. 1986. A Bi-level programming algorithm for the exact solution of
the network design problem with user-optimal traffic flows. Transportation Research Part B:
Methodological, 20: 259–265. doi: 10.1016/0191-2615(86)90021-4.

LEE H, SONG Y, CHOO S, CHUNG K & LEE K. 2013. Bi-level optimization programming for
the shipper-carrier network problem. Cluster Computing, 17. doi: 10.1007/s10586-013-0311-6.

LIAO S, AND WIDOWATI R. 2021. A Supply Chain Management Study: A Review of Theoret-
ical Models from 2014 to 2019. Operations and Supply Chain Management: An International
Journal, 14(2), 173-188.

LU CS. 2003. The impact of carrier service attributes on shipper-carrier partnering relationships:
A shipper’s perspective. Transportation Research Part E: Logistics and Transportation Review,
39: 399–415. doi: 10.1016/S1366-5545(03)00015-2.

MA W, WANG M & ZHU X. 2014. Improved particle swarm optimization based approach for
bi-level programming problem-an application on supply chain model. International Journal of
Machine Learning and Cybernetics, 5(2): 281–292. doi: 10.1007/s13042-013-0167-3.

MARINAKIS Y, MIGDALAS A & PARDALOS PM. 2007. A new bi-level formulation for the
vehicle routing problem and a solution method using a genetic algorithm. in Journal of Global
Optimization. doi: 10.1007/s10898-006-9094-0.
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