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ABSTRACT. The supply chains which bring biomass to biorefineries play a critical role in biofuel produc-

tion. Optimization models can help decision makers to design more efficient chains and minimize the cost

of biomass delivered to the refineries. This article based on a French national research project on biomass

logistics considers one refinery, able to process several crops and several parts of the same crop, over a

one-year horizon divided into days or weeks. A network model and a data model are first developed to let

the decision maker describe the supply chain structure and its data, without affecting the underlying math-

ematical model. The latter is a mixed integer linear program which combines for the first time various fea-

tures, either original or tackled separately in the literature. Knowing the refinery demands, it determines the

activity levels in the network (amounts harvested, baled, transported, stored, etc.) and the required equip-

ment, in order to minimize a total cost including harvesting costs, transport costs and storage costs.

Numerical evaluations based on real data show that the proposed model can optimize large supply chains

in reasonable running times.

Keywords: biomass, supply chain, modeling, optimization, mixed integer linear programming.

1 INTRODUCTION

The three last decades have seen a growing interest in the potential of biofuels as a means of
reducing dependence on fossil fuels and in the development of clean and renewable energy. In

this context, efficient logistic chains are essential to supply biorefineries regularly, reliably, and
with sufficient quantities of quality biomass at a reasonable price. This latter aspect is particularly
important since a significant percentage of biomass cost at the refinery gate lies in logistic costs.

Optimization models and algorithms constitute precious tools to design a biomass supply chain,

evaluate possible structures a priori, and quantify the resources required, the associated costs,
the energy consumptions and the environmental impacts. Beyond a simple simulation of a future
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2 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

reality, design choices can be rationalized and optimized. Moreover, a good model allows to

anticipate the impact of important investments and thus reduces the risk of wrong decisions.

However, such an optimization raises many theoretical and practical issues, such as the relevance
of the mathematical model and the need for reliable data. In particular, the supply chain must be
carefully analyzed to come to a model as close as possible to reality. Indeed, a biomass supply

chain is a complex network, controlled by a huge number of parameters and decision variables.
For instance, it is necessary to determine the types of biomass to mobilize, the production areas,
the locations of refineries and their capacities, the associated storage sites, the required harvesting

and transportation equipment, etc. This kind of chain often covers a vast territory and involves
a time horizon of several months, to take into account seasonal fluctuations in supply and de-
mand. Moreover, numerous constraints must be satisfied, such as harvesting windows, biomass

degradations, resource capacities, and refinery demands.

This article presents a mixed integer linear program (MILP), developed in the frame of a French
national project to optimize the biomass supply chain of one biorefinery with a typical supply
radius of 50 km. This multi-biomass and multi-period tactical planning model combines several

features, either original or considered separately in the literature. It determines for each period
the amount processed by each activity (harvesting, packing, transportation, preprocessing...), the
flows in the logistics network, the required equipment and the stock levels. The goal is to satisfy

the needs of the refinery while minimizing the total cost of the system. The modeling approach
is generic and flexible enough to be extended to most biomass-to-bioenergy supply chains at the
tactical decision level.

This remainder of the paper is organized in four sections. Section 2 briefly recalls the principles

of biomass supply chains (structures, activities), reviews the literature on tactical optimization
models for biomass supply, and position our problem vis-à-vis the existing works. Section 3
introduces the network model used to describe biomass supply chains. The data model is quickly

presented in Section 4. Its aim is not only to encode the network model, but also the other re-
quired information, such that refinery demands and equipment characteristics. The mathematical
model is defined in Section 5. Section 6 is devoted to case studies while concluding remarks are
brought in Section 7.

2 BIOMASS SUPPLY CHAINS

This section recalls the principles of biomass supply chains, and in particular in which respect
they differ from industrial supply chains, before presenting a literature review and situating our

problem.

2.1 Structure and activities

A biomass supply chain includes various activities, such as cultivation, harvesting, preprocessing,
transportation, handling, and storage. It usually stops at the gates of a conversion unit, in general

a biorefinery, producing biofuels and chemical intermediates, or a bioenergy conversion plant,

Pesquisa Operacional, Vol. 38(1), 2018
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generating electricity, heat, and/or cooling. The distribution stage from conversion facilities to

end-users is sometimes added but the actors involved in the upstream and downstream parts are
very different, which makes a global optimization extremely difficult (for instance, reliable data
are hard to find). Compared to industrial supply chains, several differences must be underlined:

• Biomass supply chains cover a vast collection territory, with many scattered cultivation

areas.

• Long planning horizons must be considered, because most crops have a one-year cultiva-
tion cycle.

• Inputs (biomass productions) and outputs (conversion activities) are desynchronized.

• Because of degradations, the crops cannot wait and must be harvested quickly when ready.

Both industrial and biomass supply chains can be modeled as networks (graphs) where the nodes

correspond to the locations of interest while the arcs represent product flows. However, biomass
supply chains involve specific activities that require various resources:

• Harvesting activities are possible in a limited time window at the input nodes devoted to
biomass production (farms), when the crop is ready, and they compete for a limited fleet

of machines like combine harvesters.

• Storage is required in practice to synchronize the biomass production calendar with the
production plan of conversion plants. It can take place in the fields or forests as simple
stacks, in the farms, in centralized storage sites, or before the processes in conversion

facilities.

• Pre-processing is useful to improve preservation (drying) and handling (baling, pelleti-
zation) and to reduce transportation costs by increasing density. The simplest treatments

like baling can be done on the field. Stronger compressions and other transformations like
torrefaction are possible, but using heavier equipment and/or dedicated sites.

• Transport. Like in industrial logistics, several transport modes can be used, the fleet of

vehicles is often limited and the number of travels per period is restricted by vehicle range
and driving time regulations. Road transport is often the only solution for biomass produc-
tion areas with limited accessibility (forests), and truckload operations are systematic due
to the large amounts handled.

The designers of such chains need modeling tools to cope with this complexity. Before coming to

a total cost, they must understand the dynamics of the chain and determine many variables, like
the amounts harvested (which crop, where, when, in which amount), the network flows (quanti-
ties transported), the advisable stock levels, and the resources consumed (harvesting equipment,

vehicles, energy, manpower). Subtle tradeoffs must be found. For instance, densification can be
done on the field, using balers, or in a more efficient densification plant. The second option adds
a transport step to the plant, but then transport costs are reduced, due to higher density.

Pesquisa Operacional, Vol. 38(1), 2018
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4 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

2.2 Literature review

The literature on biomass supply chains is exploding but covers very different topics, such
as the design of new harvesting machines, densification techniques and biomass degradation

issues. The papers devoted to quantitative modeling represent only a subset and involve various
approaches which include simple cost calculations (spreadsheet-based), geographical informa-
tion systems (GIS), performance evaluation (e.g., simulation), and mathematical optimization.

As even a review restricted to optimization models would take too much space, we prefer to
recommend two recent and up-to-date surveys, and then cite only a few representative exam-
ples of research works which address, like ours, tactical planning problems. The reader will find

in the two surveys other examples of optimization models dealing with strategic or operational
decisions.

The first recommended review (De Meyer et al., 2014) addresses deterministic optimization mod-
els and solution methods for biomass supply chains. 99 publications from 1997 to 2012 are an-

alyzed and classified according to the decision level at hand, the objective to optimize, and the
kind of mathematical model used. A general description of biomass supply chains for bioenergy
is presented, with the decisions related to their design and management. The authors underline

the fact that most publications optimize an economic objective and use a commercial solver to
solve the models. Very few dedicated algorithms like metaheuristics (e.g., genetic algorithms)
are developed up to now.

We recently published in Renewable Energy a complementary survey (Ba et al., 2016) which

comments 124 references, including 72 after 2010. In addition to the deterministic optimization
models of the previous review, it covers simple cost calculation models, GIS-based techniques,
simulation models, stochastic optimization, and multi-objective approaches.

Tactical models involve medium-term decisions, typically over a one-year horizon divided into

elementary periods (days, weeks or months). In biomass supply chains, the decisions in each
period concern for instance the amount of each type of biomass to harvest, the stock levels, the
product flows in the network and the required number of harvesting machines and transportation

vehicles. The published models are designed to supply biorefineries, but also heating and power
plants. Some of them include strategic decisions, like the optimal location of refineries, but the
exact schedule of activities in each period is never addressed since it concerns the operational
decision level.

Cundiff et al. (1997) introduced the first remarkable tactical model of biomass supply chain.
The goal is to supply one biorefinery with switchgrass (an herbaceous plant) over a 12-month
horizon. The model is a pure linear program (LP), i.e., without integer variables. It is tested
on 20 producers, having 3 to 10 fields each, and 4 to 7 storage sites (open air or covered). It

determines the optimal amounts harvested, stored and transported each month and the capacity
of each storage. An extension with meteorological scenarios weighted by different probabilities
is also described.

Pesquisa Operacional, Vol. 38(1), 2018
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Van Dyken et al. (2010) model as a MILP a forest supply chain for one heating plant. The changes

in density, humidity and heating power of each product after each operation are tracked along
the chain. These changes depend on the drying mode and vary nonlinearly with drying time but
they can be linearized. The model is appraised on a simple case with 3 products, 1 dryer, 1

chipper, 1 pelletizer, 2 storages and 2 demand points, over 12 weeks. It extends an earlier model,
eTransport, designed for the planning of energy systems (Bakken et al., 2007).

Haque & Epplin (2012) consider one year with a monthly time-step, 6 possible sites for several
biorefineries processing switchgrass, and 57 counties in Oklahoma. They develop a MILP in

which binary variables specify the locations and capacities of refineries and storage centers, while
integer variables are defined to select the number of equipment for harvesting and handling.

Ekşioğlu et al. (2009) propose one of the rare models including the distribution phase beyond
the refinery. The chain collects agricultural and woody biomass to produce ethanol. The MILP

model prescribes strategic decisions such as the location, number and size of refineries and col-
lection sites, and tactical decisions like material flows. However, the different harvesting activ-
ities and their resources are not handled. The objective is to minimize over one year a sum of

costs concerning biomass (harvest, storage, transport, conversion) and the distribution of ethanol.
Ekşioğlu et al. (2010) extend the previous study to different transport modes. The objective is to
identify locations for refineries, transport modes to use, transport planning and biofuel production

scheduling, to minimize the total cost for delivering the fuels to end-customers.

Shabani & Sowlati (2013) focus on the supply of a power plant with forest residues (bark, saw-
dust, pruning products), purchased from different producers. They propose a mixed integer non-
linear program, in which nonlinearities are induced by two complex constraints that bind the

types of biomass consumed, their quantities, their moisture content and the amount of electric-
ity that can be obtained. For 6 suppliers over 12 months, the model has 260 variables and 333
constraints and can be solved using the Outer Approximation (OA) algorithm.

2.3 Position of our problem and closest works

Our mathematical model, a MILP, is described in Section 5 but we can already underline its
features:

• The chain supplies a single refinery, already located and whose biomass demands are

given.

• It ranges from the fields to refinery gates but ignores cultivation systems and refinery
processes.

• The activities in the chain are planned over one year divided into periods of one day.

• The biomass producers can be selected in a given set of farms.

• The model can switch to larger periods (e.g., weeks) and larger production areas (e.g.,
counties).

Pesquisa Operacional, Vol. 38(1), 2018
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6 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

• Many oil and lignocellulosic crops can be used, e.g., rape, camelina, miscanthus (a kind of

cane)...

• Several parts of the same crops can be employed, e.g., seeds, straw and chaff for rape.

• Several harvesting chains are possible for the same crop and the equipment can be selected
for each task of these chains (for instance, one tractor among several commercial models).

• Shared stocks (containing several products) and storages with opening periods can be
dealt with.

• A network model and a data model make the MILP independent from the supply chain

structure.

No published model includes all these features simultaneously but we comment below the three

closest papers, which share several characteristics with our contribution: Shastri et al. (2011a),
Dunnett et al. (2007) and Samsatli et al. (2015). Like in our study, the first work details several
steps in the harvesting process. The two others are based on the same network model as ours,

called state-task network (STN) and detailed in Section 3.

Shastri et al. (2011a) built a sophisticated MILP to supply one biorefinery producing bioethanol
with one herbaceous plant (e.g., switchgrass or miscanthus) over one year divided into days.
The refinery is already placed but several locations are possible for a centralized storage. A

strong point is to detail farm activities (harvesting, raking and baling) and to determine the as-
sociated equipment. Integer variables are used to select and dimension storage areas, harvesting
equipment, vehicle fleet size, and the number of vehicle rotations in each day. The model called

BioFeed comes in two versions: either in pull mode (the capacity of the refinery and its demands
per period are given, and these needs must be satisfied) or in push mode (the available biomass is
completely collected, then the refinery is dimensioned accordingly). An online supplement lists

the symbols used for data and variables, but the equations for the constraints and the objective
function are not provided.

BioFeed underwent two evolutions. Lin et al. (2014) combine this tactical model with a strategic
one developed by Lin et al. (2013). Shastri et al. (2011b) propose a Decomposition and Dis-

tributed Computing (DDC) approach for large supply chains. The BioFeed model is split into two
separate optimization sub-problems: a biomass production problem, focusing on on-farm activ-
ities, and a provisioning problem, dealing with post-production activities such as transportation

logistics.

Dunnett et al. (2007) applied the state-task networks to model a supply chain delivering mis-
canthus to one heating plant, over a 12-month horizon. The example treated considers one farm
where miscanthus is baled or chipped, and then stored in a local storage with passive drying.

Both forms are trucked to the heating plant where the bales are also chipped. A forced drying is
applied to achieve a minimum moisture level, then the resulting product is incinerated to produce
heat. Storage capacities are virtually unlimited in this case study but all tasks have a maximum

Pesquisa Operacional, Vol. 38(1), 2018
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throughput. A MILP model is derived from the STN. It minimizes system costs by using contin-

uous variables (quantity processed by each task, in each period), integer variables (numbers of
harvesting and transportation resources to purchase) and binary variables (to indicate whether a
resource is used or not in a given period, and to allocate resources to tasks).

More recently, Samsatli et al. (2015) proposed the BVCM (Biomass Value Chain Model) for a
large number of bioenergy system pathways. This is in fact a strategic model, but we cite it as it
relies, like our model, on a multi-biomass and multi-period MILP derived from an STN. More
precisely, the network model called Resource-Technology Network (RTN) is an extension of
the STN in which different resource modes can be selected for each technology. The BVCM is
provided with a database and a user interface, allowing decision makers to configure a scenario,
run the optimization and visualize results. It is illustrated by a case study over a 50-year horizon
divided into 5 decades and one large territory (Great Britain) discretized in squares of 50 km.

Contrary to our work, Shastri et al. (2011a) and Dunnett et al. (2007) do not tackle multiple
crops, multiple harvesting chains, different parts for each plant, shared storages and a restricted
opening period for each storage. Moreover, Dunnett et al. (2007) consider one farm only and
use a longer time slot (one month). Samsatli et al. (2015) can cope with various biomass types
but their model with much coarser time and space granularities is not really applicable to tactical
planning. In particular, it does not detail farm activities and transportation resources are not taken
into account.

3 NETWORK MODEL

The network model is a graphical description of the supply chain, from which the equations of
the mathematical model can be automatically generated. Its aim is to enable the user to describe
a wide range of supply chains, without having to modify the underlying mathematical model.
We selected as a basis a modeling framework called state-task network, which is more precise
than a classical graph.

3.1 State-task networks

State-task networks (STN) were introduced by Kondili et al. (1993) and Shah et al. (1993) to
model petrochemical processes over a time horizon divided into discrete periods. They use only
three entities: two types of nodes (states and tasks), and arcs.

A state represents a feed, an intermediate, or a final product. Symbolized by a circle, it can
correspond to a true storage, a work in process (WIP) or even a product in rapid transit between
two manufacturing units. A task, represented by a rectangle, is a processing operation which
transforms one or more input states, in fixed proportions, into one or more output states, also
in fixed proportions. An arc corresponds to a flow of a single product, always from a state to a
task or vice versa. A state can be produced and consumed by one or more tasks. In each period,
each task pulls simultaneously the required materials from its input states and sends the resulting
products to its output states. A processing time in number of periods can be specified on each
outgoing arc.

Pesquisa Operacional, Vol. 38(1), 2018
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8 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

Figure 1, adapted from Kondili et al. (1993), illustrates the flexibility of STN on a petrochemical

process with 9 states, 5 tasks and 1-hour discrete time slots. A storage capacity, sometimes
unlimited, is indicated in each state. The percentages before a task define the proportions of
the recipe, while the ones after a task specify the output yields. These percentages are implicitly

equal to 100% when omitted, for instance for the tasks with a single input state.

Figure 1 – Example of state-task network (adapted from Kondili et al., 1993).

We can notice that the STN can model tasks with multiple inputs and outputs (Reaction 1), loops

(Reaction 3 → Intermediate Y → Separation → Intermediate Z → Reaction 3), and processing
times. For instance, the input products consumed by Reaction 2 in period t yield a new product
available on output in period t + 2. Note that changing a single characteristic of a product (state)

makes it another product, e.g., “Feed A” becomes “Hot A” after heating.

Moreover, limited resources can be added. E.g., Kondili et al. (1993) mention for Figure 1 one
heater (capacity 100 kg) for the “Heating” task, two reactors (80 and 50 kg), usable for the
three tasks “Reaction 1”, “Reaction 2” and “Reaction 3”, and one distillation column for the

“Separation” task.

Last but not least, the same authors show that a MILP can be generated from the STN, to deter-
mine the timing of operations for each resource and the product flows through the network, so
as to optimize a given objective function. All these features make the STN a powerful modeling

tool for multi-period planning problems over discretized time horizons. Only simulation models
can be more precise, but it is difficult to use them for optimization purposes.

3.2 Application to biomass supply chains and example

As mentioned in subsection 2.3, the STN has been already applied to biomass supply chains in

two works, Dunnett et al. (2007) and Samsatli et al. (2015). The first one brought the following
extensions to the original STN, designed by Kondili et al. (1993) for process industries:

Pesquisa Operacional, Vol. 38(1), 2018
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• Transportation tasks are added, the product before and after such tasks giving two distinct

states.

• The final product (heat) is also considered as a state.

• Humidity is an additional attribute associated with the states.

• Tasks can be period-specific, e.g., the ambient drying rate is higher in August than in

January.

• Utilities (manpower, gasoil, etc.) are defined for each processing unit to deduce CO2

emissions.

Samsatli et al. (2015) added another feature in their Resource-Technology Network (RTN). The

RTN is in fact similar to the STN (the resources correspond to the STN states and the technologies
to the STN tasks) but it becomes possible to select different modes for each technology.

Figure 2 shows how a more complex supply chain like the one considered in our study can be
represented as an STN. We add to the basic STN an upper level, the geographical locations, to

model the set of states and tasks of each important site (gray rectangles). Three locations are
considered: one farm producing rape (colza), one centralized storage with one silo for seeds plus
one platform for bales, and one refinery with buffer stocks. The sites are composed of states Se

(stocks in a broad sense, including the rape field S1) and tasks Ti . Each state contains a single
product Pk and is either a cultivated field, a work in process (like the straw on swath) or a true
stock (silo for instance).

Only one crop is considered to keep the figure readable, but it is easy to add other crops. The

whole rape (product P1) is cut by a combine harvester (task T1) which yields three products:
seeds (product P2), chaff (small particles, P3) and straw (stalks, P5). Each product is defined by
a crop of origin (here, rape only), a crop part (seeds, chaff, straw), a presentation (bulk or square

bales) and a moisture content.

The seeds are discharged in a trailer drawn by a tractor and brought immediately to the silo. The
straw, available after 3 days of drying on swath, is packed in square bales using a tractor pulling
a baler. These bales temporarily placed on the ground are either kept in a shed on the farm or

sent to the refinery by a semi-trailer truck. The chaff is collected by the harvester in a special
compartment which is emptied on the ground, giving a loaf which is then taken over by a square
baler equipped with a special feeder. Chaff bales are carried by a tractor with a flatbed trailer, to

be stored with the straw in the same shed. Then the same transport mode transfers the straw and
chaff bales to the platform of the storage site. Finally, semi-trailers transport the products from
the on-farm shed and the centralized storage to the buffer stocks of the refinery.

The STN indicates the storage capacity in each state, the distances (often negligible inside the

farm) for each transport task, and the required resources (over each task). The only separation
process is here the harvesting task, while the only blending process is the refine-task. Percentages
are only indicated on the outgoing arcs of the harvesting task. They are implicitly equal to 100%

Pesquisa Operacional, Vol. 38(1), 2018
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on the other arcs. The refine-task is particular because its inflows (biomass demands) are given

period per period: the percentages are not mentioned since they depend on the period.

The only notable wait is the passive drying of the straw on the ground (3 days) on exit from the
harvesting task. This drying could also be modeled by a dedicated task. For the other tasks, there
is no waiting time, which means that the inputs consumed in period t are transformed into output

products which can be used in the same period.

This example shows that the STN describes well the structure of the supply chain and its different
activities. However, this graphical representation cannot be directly interpreted by a computer
and many auxiliary data must be added, for instance the number of periods of the planning

horizon, the length of a period in days, the costs and throughputs of equipment, the density of
the different products to compute their transported volumes, etc. The role of the data model
presented briefly in the next section is to encode the STN and all other required data as database

tables.

4 DATA MODEL

The purpose of this section is to explain, without entering into details, how the STN and all aux-
iliary data can be structured efficiently as a set of database tables. Indeed, the data management

layer is a critical component in optimization software, although it is often under-estimated in OR
papers. We first present the list of tables used, the special way in which resources (equipment)
are handled, and the list of data symbols from which the mathematical model of Section 5 is

automatically generated.

4.1 Tables used

We selected the entity-relationship approach to analyze data. An entity is a set of things or

persons sharing common properties, called attributes or fields. A relationship describes the way
the entities are linked. For instance, states and tasks represent two entities while state-to-task
arcs constitute a relationship, more precisely a subset of the cross product of states and arcs. A
relationship may have its own attributes, for instance an arc may have a length and a transported

product.

Entities and relationships can be implemented as a set of tables stored in a database. We selected
Excel, which is simpler and lighter than a true database management system. Each entity gives
one Excel worksheet with one column per attribute and one row for each member (record) of the

entity. The identifier (ID) or key is a mandatory attribute to identify each member of an entity
unambiguously. All tables for one run of the model are stored in one Excel workbook. The user
can evaluate different scenarios by modifying existing workbook or creating new ones.

The proposed worksheets are listed in Table 1. They include those describing the state-task graph:
STATES, TASKS, ST ARCS (state-task arcs) and TS ARCS (task-state arcs). The biomass is
described by three worksheets: CROPS, CROP PARTS and PRODUCTS. What we call a product

Pesquisa Operacional, Vol. 38(1), 2018
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is defined by one plant of origin, one part of this plant, and one form (e.g., bulk, bales, or pellets).

The other worksheets describe the resource management system, described in Section 4.2. Such
a data model is very flexible and new attributes can be easily added in each entity.

Table 1 – List of worksheets (type E: implementing one entity, type R: one relationship).

Table Type
Field

Role
prefix

PARAMETERS E None General parameters: number of periods...

LOCATIONS E L Geographic sites of the chain: farms, storages, refinery...

CROPS E C Crops cultivated: colza (rape), camelina, miscanthus...

CROP PARTS E CP Crop parts used per crop: seeds, straw & chaff for rape...

PRODUCTS E P Crop parts with a conditioning: rape straw bales...

STATES E S States: crop field, swath, shed, silo, platform...

TASKS E T Tasks: harvesting, baling, transport ...

ST ARCS R ST State-task arcs

TS ARCS R TS Task-state arcs

DEMANDS R D Refinery demands per crop part and per period

RESOURCES E R Equipment, e.g., combine harvester 200 hp width 5m...

FAMILIES E F Resource families: harvesters, tractors, trucks, trailers ...

COMBINATIONS E RC Resource combinations: tractor 200 hp + rake 5m...

GROUPS E CG Resource combination groups: tractor + trailer...

LOCA FAM R LF Maximum number of resources per site and family

4.2 Resource management system

Our resource management system deserves some explanations. We call resources the motorized
equipment (harvesters, tractors, trucks...) and their accessories (rakes, balers, trailers...) used by
the tasks. The table RESOURCES contains various commercial models with their characteristics,

e.g., the productivity in hectares per hour (for a harvester), or the average speed (for a truck).

The resource families (FAMILIES worksheet) are categories of equipment with similar func-
tions but which do not refer to specific models. Examples of families are mowers, combine
harvesters, balers, trucks, farm trailers (drawn by a tractor), truck trailers, etc. Families serve in

the LOCA FAM worksheet to limit the number of equipment which can be employed on each
site, for example no more than two tractors on a farm. Each tractor can be any commercial model
defined in RESOURCES.

A resource combination (worksheet COMBINATIONS) is a collection of resources working

together for a task. For instance, the transport task T3 in the state-task network of Figure 2
involves one tractor and one flatbed trailer. Combinations are necessary to properly calculate
resource working times, because the productivity of a resource depends on the combination that

uses it. In France for instance, the maximum speed allowed for a tractor on the road depends on
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the size of its trailer. The combinations have the same attributes as the resources but, because

of special cases like our tractor example, only an expert in agricultural machinery can specify
which combinations are possible and compute their attribute values, in order to fill the worksheet
COMBINATIONS.

Finally, the combination groups or generic combinations (worksheet GROUPS) play for the

combinations the same role as the families for the resources: the exact characteristics are not
specified. For example, a 200 hp tractor with a 15-ton flatbed trailer is a resource combination
belonging to the combination group “tractor + trailer”.

In fact, the state-task graph specifies one group for each task, so the optimization module is free

to choose any combination of real equipment in COMBINATIONS. The resource level is mainly
used to cumulate the working hours of each selected equipment (since the same machine can be
used by several tasks and in several combinations) and estimate fleet size.

4.3 Data and variables used by the mathematical model

The data contained in the Excel workbook are listed below. The database contains other fields not
described here, e.g., to format the results (full site names) or prepare the distance matrix (GPS co-
ordinates). The general parameters listed in Table 2, like the number of periods, are loaded from

worksheet PARAMETERS. As refinery demands are often specified per week or half-month, we
introduce a longer period Re f Per for the refinery. Its use is explained in subsection 5.3.

Table 2 – Data from worksheet PARAMETERS.

Per Dur Duration of one period in days, e.g., 1 or 7

N Per Number of periods of the planning horizon, e.g., 365 for one year if PerDur = 1

Re f Per Duration of one refinery-period in periods, e.g., 7 if demands given per week

N A Character string used to initialize empty fields (“not available”)

H uge Large positive constant to initialize some fields to infinity

K gCO2 Kg of CO2 per liter of gasoil, to compute CO2 emissions

Table 3 gives the indexing sets. MILP solvers can read Excel files with one row per record and
one column per attribute, including one for the identifier (key) of each record. These keys which
may be integers or character strings are gathered in a set used to allocate dynamic arrays. We

used character strings to improve model readability. For instance, if the solver finds 8 products
in worksheet PRODUCTS, it stores their keys in a set P I D and creates arrays of 8 elements,
indexed over P I D, for product attributes like density. A model generated in this way is said

data-driven: data and model equations are completely separated, and even set cardinalities are
discovered by the solver when loading the worksheets. Figure 2 contains examples of location,
product, state and task identifiers.
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14 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

Table 3 – Indexing sets.

H Set of periods of planning horizon H = {1, 2, . . . , N Per}
H R Set of refinery-periods for the demands of the refinery H R =

{1, 2, . . . , N Per/Ref Per}
L I D Set of location (geographical sites) identifiers L1, L2, ... (key-set of worksheet LO-

CATIONS)

C I D Set of crop identifiers C1, C2, ... (key-set of worksheet CROPS)

C P I D Set of crop part identifiers CP1, CP2, ... (key-set of worksheet CROP PARTS)

P I D Set of product identifiers P1, P2, ... (key-set of worksheet PRODUCTS)

S I D Set of state identifiers S1, S2, ... (keys-set of worksheet STATES)

T I D Set of task identifiers T1, T2, ... (key-set of worksheet TASKS)

RI D Set of resource identifiers R1, R2, ... (key-set of worksheet RESOURCES)

RF I D Set of resource family identifiers RF1, RF2, ... (key-set of worksheet FAMILIES)

RC I D Set of resource combination identifiers RC1, RC2, ... (key-set of COMBINATIONS)

CG I D Set of combination group identifiers (key-set of worksheet GROUPS)

T S A Set of task-state arcs (i, e), T S A ⊆ T I D × S I D (key-set of worksheet TS ARCS)

ST A Set of state-task arcs (e, i), ST A ⊆ S I D × T I D (key-set of worksheet ST ARCS)

DPairs Set of pairs (refinery period, product) ⊆ H R × C P I D (key-set of worksheet DE-

MANDS)

L F Pairs Set of pairs (location, resource family) ⊆ L I D × RF I D (key-set of worksheet

LOCA FAM)

RC RPairs Set of pairs (resource combination, resource) ⊆ RC I D × RI D

Z Set of current task types {H arvest, Dry, Rake, Bale,

Pretreat, Transport, Re f ine}
Z H R Subset {H arvest, Rake} of Z

Z H RB Subset {H arvest, Rake, Bale} of Z

Note that a few indexing sets do not correspond to worksheets listed in Table 1. RC R Pairs is
required to define the different resources involved in each resource combination, while the last

sets as from Z are introduced to improve model readability.

5 MATHEMATICAL MODEL

This section introduces the equations of our mixed integer linear program in this order: decla-

rations of variables, inventory and flow constraints, satisfaction of refinery demands, resource
constraints, objective function, computation of energy consumptions and CO2 emissions.

Pesquisa Operacional, Vol. 38(1), 2018
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Table 4 – Data arrays indexed over the sets of Table 3.

For each location l ∈ L I D read from worksheet LOCATIONS
LT ypel Type of site, current allowed values in {Farm, Storage, Pretreatment, Refinery}
L Hoursl Number of working hours per period

For each product p ∈ P I D read from worksheet PRODUCTS
P Part p ID of crop part used (also used to retrieve the crop)

P Dens p Density in metric tons per cubic meter

P Dry p Fraction of dry matter, e.g., 0.9 for 10% humidity

For each state e ∈ S I D read from table worksheet STATES
ST ypee Type of state, current possible values in {Field, WIP (work in progress), Stock}
S Locae ID of the site where the state is located

S Prode ID of product associated with the state

S Bege First period of utilization window

S Ende Last period of utilization window

SCapae Storage capacity in metric tons (not used for the Field type)

S Q Bege Initial inventory in metric tons (≤ SCapa)

S QEnd Mine Minimum required final inventory in metric tons (≤ SCapa)

S QEnd Maxe Maximum required final inventory in metric tons (≥ S QEnd Min, ≤ SCapa)

S InvCost e Inventory cost in euros per metric ton and per period

S InpCost e Input cost (handling cost) in euros per metric ton and per period

S OutCost e Output cost (handling cost) in euros per metric ton and per period

SThrue Maximum throughput in metric tons per hour

S Dege Product degradation (storage loss) per period, e.g., 0.99 if 1% is lost

S Repe For the Stock state type, ID of the representative in case of shared stock (see 5.2)

For each task i ∈ T I D read from table TASKS
T T ypei Type of task, allowed values in {Harvest, Dry, Rake, Bale, Pretreat, Transport, Refine}
T Locai ID of geographical site (for transport tasks, this is the depot of vehicles)

T Dist i Precomputed road distance (transport tasks only)

T Groupi ID of resource combination group required to execute the task

For each state-task arc (e, i ) ∈ ST A read from worksheet ST ARCS
ST Frace,i Ratio between the flow on the arc and the total flow consumed by the task

STY ield e,i Yield in metric tons per hectare (used only for the outgoing arcs of Field states)

For each task-state arc (i, e) ∈ T S A read from worksheet TS ARCS
T S Fraci,e Ratio between the flow on the arc and the total flow consumed by the task

T S Durai,e Processing time in periods for the output to state e

For each resource r ∈ RI D read from worksheet RESOURCES
RF amr ID of resource family to which the resource belongs

RCCost r Fixed cost (capital cost) in euros over the planning horizon

RW T imer Maximum working time per period, in hours

For each resource combination c ∈ RC I D read from worksheet COMBINATIONS
RCGroup c ID of combination group to which combination c belongs

RCOCost c Operating cost in euros per hour

RCT hruc Productivity in ha/h if c treats a Harvest or Rake task, in bales/h if c treats a Bale task

RCSpeedc Average speed in km/h

RCW eightc Maximum weight of payload in metric tons

RCV olumec Maximum volume of payload in cubic meters

RC Power Power in kilowatts

RCF uel Gasoil consumption in liters per hour
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16 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

Table 4 – (Continuation).

For each pair (w, k) ∈ D Pai r s read from worksheet DEMANDS
DNeedw,k Demand for crop part k in refinery-period w, in dry metric tons

For each pair (l, f ) ∈ L F Pai r s read from worksheet LOCA FAM
L F N Maxl, f Maximum number of resources from family f that can be employed on site l

Table 5 – List of variables.

Non-negative real variables
Xe,i,t Product flow in metric tons on state-task arc (e, i) in period t

Yi,e,t Product flow in metric tons on task-state arc (i, e) in period t

Se,t Inventory level of state e at the end of period t in metric tons

Ampi,c,t Total amount processed by task i with resource combination c in period t , in metric tons

T C H RBi,c,t Total working time of resource combination c in period t for a task i ∈ Z H RB, in hours

T CT i,c,t Total working time of resource combination c in period t for a transport task i, in hours

T Rl,r,t Total working time of resource r on site l in period t , in hours

Integer variables
RT i,c,t Number of rotations done by combination c for a transport task i in period t

F Sl,r Number of units of resource r (fleet size) required on site l

5.1 Declaration of variables

A general principle is to restrict the indexing of variables listed in Table 5, to reduce model size.

Inventory levels (Se,t ), flows on state-task arcs (Xe,i,t ), and task-state arcs (Yi,e,t ) are defined
only in the time windows when state e is open, see constraints (1)-(3).

∀ (e, i) ∈ ST A, ∀ t ∈ [S Bege, S Ende] : Xe,i,t ≥ 0 (1)

∀ (i, e) ∈ T S A, ∀ t ∈ [S Bege, S Ende] : Yi,e,t ≥ 0 (2)

∀ e ∈ S I D, ∀ t ∈ [S Bege, S Ende] : Se,t ≥ 0 (3)

For each task i and each period t , the variables Amp (amount processed) are defined only for the
resource combinations c which may be used by the task, see constraints (4). The Re f ine task of
the refinery is not concerned since its amounts processed are fixed and equal to the demands.

∀ i ∈ T I D | T T ypei �= “Re f ine′′,
∀ c ∈ RC I D | RCGroupc = T Groupi ,

∀ t ∈ H : Ampi,c,t ≥ 0

(4)

In constraints (5), the integer variables for the number of vehicle rotations are generated only for

transport tasks and resource combinations usable by each task.

∀ i ∈ T I D | T T ypei = “Transport ′′,
∀ c ∈ RC I D | RCGroupc = T Groupi ,

∀ t ∈ H : RTi,c,t ∈ N
(5)
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Finally, the integer number of units of resource r to purchase for geographical site (location) l is

defined only for the resource families allowed on the site.

∀ l ∈ L I D, ∀ r ∈ RI D | (l, RFamr ) ∈ L F Pairs : FSl,r ∈ N (6)

5.2 Inventory and flow constraints

Storage capacity. We added an attribute S Repe to model a group of states as one shared storage,

for instance a platform storing bales of different products. In the data, one representative r is
defined for the group and all members e of the group (even r) are such that S Repe = r. A non-
shared storage e has no representative: S Repe = N A. Storage capacity constraints are generated

only if a limited capacity is specified. Constraints (7) concern non-shared stocks. Constraints (8)
for shared stocks are generated only for representatives, i.e., states e such that S Repe = e.

∀ e ∈ S I D | SCapae < Huge and S Repe = N A,

∀ t ∈ [S Bege, S Ende] : Se,t ≤ SCapae
(7)

∀ e ∈ S I D | SCapae < Huge and S Repe = e,
∀ t ∈ [S Bege, S Ende] : ∑

u∈S I D | S Repu=e Su,t ≤ SCapae
(8)

Inventory balance equations. They take degradations into account. Constraints (9) concern the

first period of the opening window and the initial inventory. Constraints (10) are for the other
periods.

∀ e ∈ S I D : Se,S Bege

= S QBege · S Dege + ∑
(i,e)∈T S A Yi,e,S Bege

− ∑
(e,i)∈ST A Xe,i,S Bege

(9)

∀ e ∈ S I D, ∀ t ∈ ]S Bege, S Ende] : Se,t

= Se,t−1 · S Dege + ∑
(i,e)∈T S A Yi,e,t − ∑

(e, j)∈ST A Xe, j,t
(10)

Definition of flows on task outgoing arcs. Constraints (11) translate one property of STN net-
works: the flow on a task outgoing arc (i, e) is equal in each period t to a fraction T S Fraci,e of
the total input flow consumed T S Duraie periods before.

∀ (i, e) ∈ T S A, ∀ t ∈ [S Bege, S Ende] | t − T S Duraie ≥ 1 : Yi,e,t

= T S Fraci,e · ∑
(u,i)∈ST A Xu,i,t−T S Duraie

(11)

Definition of flows on task incoming arcs. Constraints (12) specify the fraction of the total input
flow taken on each incoming arc. For the Re f ine task, they are replaced by demand constraints,
see 5.3.

∀ (e, i) ∈ ST A | T T ypei �= “Re f ine′′, ∀ t ∈ [S Bege, S Ende] : Xe,i,t

= ST Frace,i · ∑
(e, j)∈ST A| j=i Xe, j,t

(12)

Flow conservation for each task. In constraints (13), the left sum is the total flow consumed by
task i, taken in parallel on all incoming arcs (e, i). It is multiplied by the sum of T S Frac, which
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18 A GENERIC TACTICAL PLANNING MODEL TO SUPPLY A BIOREFINERY WITH BIOMASS

can be less than 1 if the yield is not perfect. The resulting flow appears on outgoing arcs (i, u),

T S Durai,u periods later. For the refinery, these constraints have a different form explained in
5.3.

∀ i ∈ T I D | T T ypei �= “Re f ine′′,
∀ t ∈ H : ∑

(e,i)∈ST A | t ∈ [S Bege,S Ende] Xe,i,t · ∑(i,u)∈T S A T S Fraci,u =
∑

(i,u)∈T S A| t ∈[S Begu ,S Endu−T S Dura(i,u) ] Yi,u,t+T S Dura(i,u)

(13)

Final inventory constraints. They are generated for the last period of the opening period of each

stock e if a final stock is specified. Constraints (14) for minimum final inventories are mainly used
for the input stocks of the refinery, to chain successive years without having to stop activities.
Constraints (15) deal with maximum final inventories. For instance, S QEnd Maxe = 0 is used

to empty a stock after the last period S Ende of its window.

∀ e ∈ S I D | S QEnd Mine > 0 : Se,S Ende ≥ S QEnd Mine (14)

∀ e ∈ S I D | S QEnd Maxe < Huge : Se,S Ende ≤ S QEnd Maxe (15)

Maximum reception capacity of storage states. Constraints (16) deal with storage states like silos.

They have a maximum reception capacity ST hrue, in metric tons per hour, to be multiplied by
the number of opening hours per period of the geographical site containing the state.

∀ e ∈ S I D | ST ypee = Stock,

∀ t ∈ [S Bege, S Ende] : ∑
(i,e)∈T S A Yi,e,t ≤ ST hrue · L Hours[SLocae] (16)

5.3 Demand satisfaction constraints

The supply chain is analyzed over base-periods of 1 or 7 days. Refinery demands use a longer
period, in general 1 or 2 weeks, equal to Re f Per base-periods. Moreover, they are expressed in

dry tons of some crop parts. The exact products are not imposed, e.g., a demand of 185 dry tons
of rape straw can be satisfied using 100 tons of bales with 10% humidity and 100 tons of pellets
with 5%.

As refinery production variations are unknown, we assume that the need in dry tons for crop part

k in refinery period w is consumed at a constant rate in each base-period. For instance, a demand
of 70 tons in week w is consumed at a rate of 10 tons/day. Note that this does not imply to
receive the same amounts daily, since the refinery has input stocks for 2 weeks of production, on

average.
∀ i ∈ T I D|T T ypei = “Re f ine′′, ∀ (w, k) ∈ D Pairs,
∀ t ∈ [(w − 1) · Re f Per + 1, w · Re f Per] :
∑

(e,i)∈ST A |P Part [S Prode]=k P Dry[S Prod e] · Xe,i,t

= DNeedw,k/Re f Per

(17)

In constraints (17), the demand DNeedw,k for refinery period w and crop part k covers base-
periods (w − 1) · Re f Per + 1 to w · Re f Per. It is defined only for the pairs (w, k) contained
in set D Pairs. This set was introduced to reduce memory requirements: indeed, most products
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are requested a few weeks or months per year. The sum cumulates the flows of products Xe,i,t

(converted in dry tons) for crop part k, from the input stocks in each base-period of the refinery
period. It must be equal to the uniform consumption DNeedw,k/Ref Per in the refinery period.

5.4 Resource management constraints

The principles of our resource management system were introduced in subsection 4.2. Recall

that in worksheet TASKS a group of resource combinations is specified for each task i, e.g., “one
tractor + one trailer”. The task may use several combinations in the same group, e.g., one 200-hp
tractor with a 6-meter trailer, plus one 240-hp tractor with a 8-meter trailer.

Constraints (18) mean that the total input flow of each task i in each period t must be processed

by the resource combinations c allowed for this task.

∀ i ∈ T I D| T T ypei �= “Re f ine′′, ∀ t ∈ H :
∑

c ∈RCI D|RCGroupc=T Groupi
Ampi,c,t = ∑

(e,i)∈ST A Xe,i,t
(18)

The next step is to convert the amounts processed in resource combination working times. For
farm tasks Harvest , Rake and Bale (set of task types Z H RB), constraints (19) compute the
variables T C H RB i,c,t (working time of combination c for farm task i en période t ), which are

necessary to count the operational costs of farm equipment (FarmOpCosts) in the objective
function. We have two cases because the productivities RT hru are in hectares per hour for
Harvest and Rake (set Z H R) tasks but in bales per hour for Bale tasks. We get metric tons
per hour using the crop yield for Harvest and Rake tasks, and the volume of a bale and product

density for Bale tasks.

∀ i ∈ T I D | T T ypei ∈ Z H RB, ∀ c ∈ RC I D | RCGroupc = T Groupi , ∀ t ∈ H :
If T T ypei ∈ Z H R

then: T C H RB i,c,t = Amp i,c,t∑
(e,i)∈ST A RCT hruc · ST Y ield e,i

else: T C H RB i,c,t = Amp i,c,t∑
(e,i)∈ST A RCT hruc · RCV olumec · P Dens(S Prod e)

(19)

In constraints (20), the working time T CT i,c,t for a transport task is based on the number of
vehicle rotations RT i,c,t , the distance travelled Dist i and the average speed of the combination

RCSpeed c.
∀ i ∈ T I D | T T ypei = “Transport ′′,
∀ c ∈ RC I D |RCGroupc = T Groupi ,

∀ t ∈ H : T CT i,c,t = 2 · T Dist i · RTi,c,t

RCSpeedc

(20)

In constraints (21), the working time T Rl,r,t of resource r on site l in period t is deduced from the
working times of combinations in which the resource intervenes. Here we do separate constraints
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for Harvest , Rake and Bale tasks from the ones for T ransport tasks, because a tractor (for

instance) can be used by all these tasks.

∀ l ∈ L I D, ∀ r ∈ RI D | (l, RFamr ) ∈ L F Pairs,

∀ t ∈ H : T Rl,r,t = ∑
c∈RCI D | (c,r)∈RC RPairs

(
∑

i ∈ T I D | T T ypei∈Z H RB and RCGroup c=T Groupi and T Locai=l T C H RB i,c,t +
∑

i ∈ T I D | T T ypei=“Transport ′′ and RCGroupc=T Group i and T Locai=l T CT i,c,t )

(21)

To help the solver, simple bounds are applied to the integer variables RT i,c,t , the number of

rotations in period t for the resource combination c used by task i, e.g., a semi-truck with a
road trailer. In the lower bounds of constraints (22), Ampi,c,t is divided by the minimum of
vehicle capacity and maximum weight (resulting from vehicle volume and product density). As

the product is defined for states but not for tasks, the sum is used to get the state e of origin,
which is unique for a transport task. The quotient cannot be rounded up to the closest integer if
we wish to keep the model linear.

∀ i ∈ T I D|T T ypei ∈ Z T, ∀ c ∈ RC I D | RCGroupc = T Groupi , ∀ t ∈ H :

RT i,c,t ≥ Ampi,c,t

min (RCW eightc ,
∑

(e,i) ∈ ST A RCV olumec · P Dens(S Prod e))

(22)

RT i,c,t cannot exceed the previous lower bound plus 1. For instance, if the quotient in (22) is 6.3,
the integer variable RT i,c,t must be greater than 6.3 and less than 7.3: the solver has no choice
and sets it to 7.3. If the quotient is integer, say 6, the solver has the choice, but only among two

values, 6 and 7.

∀ i ∈ T I D | T T ypei ∈ Z T, ∀ c ∈ RC I D | RCGroupc = T Groupi , ∀ t ∈ H :

RT i,c,t ≤ Ampi,c,t

min (RCW eightc ,
∑

(e,i)∈ST A RCV olumec · P Dens(S Prod e))
+ 1

(23)

In constraints (24)-(25), the number of units of resource r required on site l, FSl,r , can be

bounded using the maximum resource working time and the number of opening hours of the site
(per period).

∀ l ∈ L I D, ∀ r ∈ RI D|(l, RFamr ) ∈ L F Pairs,

∀ t ∈ H : FSl,r ≥ T Rl,r,t

min (RW T imer , L Hoursl)
(24)

∀ l ∈ L I D, ∀ r ∈ RI D|(l, RFamr ) ∈ L F Pairs,

∀ t ∈ H : FSl,r ≤ T Rl,r,t

min (RW T imer , L Hoursl)
+ 1 (25)

Finally, the total number of resource units per family is limited via constraints (26). These
constraints were introduced after preliminary tests where all fields were harvested in too few

periods, implying an unrealistic number of combine harvesters.

∀ (l, f ) ∈ L F Pairs : ∑
r ∈ RI D | (l, RFamr ) ∈ L F Pairs FSl,r ≤ L F N Maxl, f (26)
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5.5 Objective function

Over the planning horizon, the objective function defined by Equation (27) includes operational
costs of farm equipment (FarmCosts), transport costs (T ranCosts), fixed costs (capital costs)

of resources (FixedCosts), inventory costs (InvCosts), and handling costs (HandCosts).

Min Z = FarmCosts + TranCosts + FixedCosts + InvCosts + HandCosts (27)

In Equation (28), FarmCosts concerns resource combinations for Harvest , Rake and Bale
tasks (set Z H RB), the transports in the farms being counted with other transports in T ransOp-

Costs. It is derived from working times T C H RB i,c,t computed in constraints (19). The first
sum includes each task i with a type T T ypei is in Z H RB. The second considers only the
combinations c of the resource combination set (RC I D) which have the group recommended

for the task (RCGroupc = T Groupi ).

FarmCosts = ∑
i ∈T I D|T T ypei∈ Z H RB

∑
c∈RCI D |RCGroupc=T Group i

× ∑
t∈H T C H RB i,c,t · RC OCost c

(28)

T ransCosts is deduced in Equation (29) from working times T CT i,c,t computed in con-
straints (20).

T ranCosts = ∑
i∈T I D|T T ypei=“Transport ′′

∑
c∈RC I D|RCGroup c=T Groupi

× ∑
t∈H T CT i,c,t · RC OCost c

(29)

FixedCosts is computed in equation (30) from variables FSl,r computed in constraints (24)-

(26).

FixedCosts = ∑
l∈L I D

∑
r∈RI D | (l,RFamr ) ∈ L F Pairs FSl,r · RCCost r (30)

A storage cost is applied to the amount contained in each state e at the end of each period t . In
general, Field and W I P states have no storage cost. Some true storages like silos can be used

only a few weeks or months per year for the biorefinery. The rest of the time, they are reserved
to other activities like cereal production. Hence, the storage costs in equation (31) are counted
only in the opening window [S Bege, S Ende].

InvCosts = ∑
e∈S I D

∑
t∈[S Bege,S Ende] S I nvCost e · Se,t (31)

Finally, the handling costs (32) are applied to the amounts of products entering or leaving a stor-
age. They avoid detailing the numerous little resources involved: band conveyors and aspirators
of grain silos, forklifts used to stack bales, etc.

HandCosts = ∑
(i,e)∈T S A

∑
t∈[S Bege,S Ende] S I npCost e · Yi,e,t

+ ∑
(e,i)∈ST A

∑
t∈[S Bege,S Ende] S OutCost e · Xe,i,t

(32)
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5.6 Derivation of energy consumptions and CO2 emissions

Environmental criteria are important to appraise a biomass supply chain. The following equations
are used to derive the energy consumption and the CO2 emissions from the optimal solution

to the mathematical model. They can also be included with adequate weights in the objective
function (27).

For each resource combination is given a power RC Power in kW. In general it corresponds
to the motorized component of the combination, e.g., the tractor for a “tractor + baler” com-

bination. It can be also the power of electric equipment such as an oven or a press in a pre-
treatment/densification site. In Equation (33), the total energy consumption in kW×h is simply
deduced from the powers RC Power of resource combinations and their working times, i.e.,

T C H RBi,c,t for harvesting equipment and T CT i,c,t for transport vehicles.

Energy = ∑
i∈T I D

∑
c∈RCI D | RCGroupc=T Groupi

× ∑
t ∈H (T CT i,c,t + T C H RB i,c,t ) · RC Power

(33)

Equation (34) for CO2 emissions is almost as simple. Indeed, we know for each resource com-
bination the gasoil consumption RFuel in liters per hour, while table PARAMETERS indicates

the number of kilograms of carbon dioxide emitted per liter of gasoil, K gC O2 (nearly 2.6 kg/l).

C O2 = ∑
i∈T I D

∑
c∈RCI D | RCGroupc=T Groupi

× ∑
t ∈H (T CT i,c,t + T C H RB i,c,t ) · RC Fuel · K gC O2

(34)

6 NUMERICAL EVALUATIONS ON REAL DATA

The effectiveness of our MILP model based on extensions and adaptations of state-task networks
is demonstrated on a few numerical examples based on real data. Only the first example can be
described completely, due to the large amount of data involved in the other tests.

6.1 First example

This case involves 10 production zones (“farms” in a broad sense) which cultivate rape (colza)
and/or miscanthus and 3 centralized storage sites, at 50 km maximum from one local refinery
close to the city of Compiègne (60 km at the north of Paris). These sites are listed in Table 6.

The three first columns respectively give the location (geographical sites) identifiers, the site

types and the municipalities. We selected a total demand of 50,730 metric tons/year of dry matter,
a typical value for a local biorefinery. Rape yields three products (bulk seeds, straw bales, chaff
bales) while miscanthus provides straw bales only.

The planning horizon is one year divided into 52 weeks of seven days each, giving 364 elemen-

tary time periods. The annual demands in metric tons for each product are given in Table 7, in
reality they are specified for each refinery-period of one week.
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Table 6 – Data for locations and their attributes.

Location Type City Time window Harvesting chain

L1 Refinery Venette [1, 364] –

L2 Storage Dammard [1, 364] –

L3 Storage Bresles [1, 364] –

L4 Storage Guiscard [1, 364] –

L5 Farm Essuiles [196, 271] 1

L6 Farm Mouy [69, 144] 2

L7 Farm Catigny [62, 77] and [189, 264] 3

L8 Farm Villeselve [62, 77] and [189, 264] 3

L9 Farm Lassigny [62, 77] and [189, 264] 3

L10 Farm Ravenel [196, 271] 1

L11 Farm Troësnes [69, 144] 2

L12 Farm Brumetz [76, 91] and [203, 278] 3

L13 Farm Raray [76, 91] and [203, 278] 3

L14 Farm Attichy [76, 91] and [203, 278] 3

Table 7 – Annual demands for each crop part.

Crop Product Annual demand

Seeds (bulk) 17,690

Rape Straw (bales) 14,120
Chaff (bales) 6,920

Miscanthus Straw (bales) 12,000

Each farm grows rape and/or miscanthus. The harvesting chain and harvesting windows applied
to each farm are given in the two last columns of Table 6. Chain 1, used by farms 5 and 10 which
produce rape only, is identical to the chain already depicted in Figure 2. Chain 2 (see Fig. 3 for

an example) is employed in farms 6 and 11 which cultivate miscanthus only. The other farms
produce both crops using chain 3, a combination of chains 1 and 2 with a shared on-farm storage
for all baled products (rape straw, rape chaff and miscanthus). The earliest windows, ending at

period 144 or before, are related with miscanthus, harvested in March-April. Those beginning as
from period 189 (beginning of July) concern rape. The windows vary slightly depending on soils
but all end beg-October. The refinery and centralized storages (sites L1-L4) are open all over

the year.

It is assumed that each farm may ship biomass to the closest storage site and to the refinery.
Real distances by road were calculated using the MapPoint software from Microsoft. Data for
the equipment were found in agricultural databases, see for instance [18].

The mathematical model has been implemented under the OPL-STUDIO version 12.6 modeling

environment from IBM (which calls the CPLEX solver in version 12.6 too) and solved on a
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Figure 3 – Harvesting chain number 2 for miscanthus.

portable PC with a 2.7 GHz Intel Core i7-3740 QM processor, 16 GB of RAM, and Windows 7
Professional.

Although the number of farms (10) looks modest, the model is already huge, due to the number
of periods and the number of states and tasks in the STN. For instance, even a farm growing

rape only requires 8 states and 11 tasks, with associated decision variables (flows and stocks) in-
dexed over 364 periods. The whole model has in fact 588,304 constraints and 500,094 variables,
including 91,437 integer variables. The pre-solver of CPLEX reduces it to 87,445 constraints

and 94,883 variables, including 31,575 general integer variables and 9,826 binary variables. The
binary variables are visibly used to replace the number of vehicle rotations and the number of
resource units when they have small upper bounds. The overall running time is reasonable: an

optimal solution costing 4,829,586 euros is obtained in less than 3 minutes (164 seconds).

Figure 4 shows the breakdown of the expenses. The fixed costs of equipment are included in the
harvesting part. Storage costs represent 59%, while they are often under-estimated in the litera-
ture. In fact, this percentage is normal because the harvest periods are short (about 15 days for

each of the two crops), while the refinery consumes biomass throughout the year: it is therefore
necessary to build up important stocks. In particular, initial stocks must be sufficient to supply
the refinery before the harvesting periods for miscanthus and (later) rape, to avoid infeasibility.

Figure 4 – Logistic costs breakdown.
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6.2 Simplifications for large instances

The model can be solved up to 80 farms and 20 centralized storage sites, over one year divided
into 52 weeks. Such a size is already respectable but we found one example with 100 farms/25

storages which cannot be solved over 52 weeks: the branch-and-bound of CPLEX reports an
“out of memory” error. The problem clearly comes from the large number of integer variables,
FSl,r and RTi,c,t .

The model computes the number of machines FSl,r to buy for each site. This leads to a total

cost where equipment investments are predominant. In reality, a farmer uses also his machines for
other crops not asked by the refinery and may help other farmers or be helped. So, it is difficult to
isolate the equipment cost fraction related to the refinery supply chain. The French Chambers of

Agriculture regularly publish tariffs to invoice such exchanges [18]. The main interest is to pro-
vide costs which include everything, even maintenance and equipment amortization. It becomes
possible to optimize a total cost, composed of the resource working times of constraints (19)-(20),

multiplied by the hourly tariffs. The modification of the objective function is straightforward and
variables FSl,r can be suppressed. However, if the user wishes so, it is still possible to derive the
equipment required on each site from the optimal solution, using constraints (24)-(26).

The numbers of vehicle rotations RTi,c,t used to compute transport costs can also be avoided

using a simpler system in tons × km, often applied when a refinery subcontracts its transports.
The French Federation of Road Transport (FNTR) (http://www.fntr.fr) gives formulas for various
trucks.

We have solved again the 10-farm case with 364 days to evaluate the impact of these simplifica-

tions. The numbers of variables and constraints are roughly divided by 2 and, obviously, there are
no more integer variables. Before the pre-solve, the model has 265,245 variables and 212,760
constraints. The pre-solver goes down to 26,580 variables and 9,791 constraints. The running

time drops from 164 seconds to less than one second. The solution obtained is very similar to
the one of the complete model, with an important cost difference equal to the equipment fixed
costs since they are no longer counted. Looking at the other costs, a marginal difference of only

0.53% can be observed.

These simplifications also allowed to solve the case with 100 farms, 25 storages and 52 weeks
which raised an “out of memory” error for the complete model. The simplified MILP has 162,074
variables and 203,721 constraints. Once pre-solved, only 8,339 variables and 5,839 constraints

remain. The running time reaches 8,158 seconds (2 hours 1/4) but this duration is acceptable for
strategic studies. By dichotomy, we were able to solve instances with 150 production zones, but
not more.

To go further, it is important to notice that model size mainly results from the states and tasks of

harvesting chains, which are applied to hundreds of farms. In comparison, the states and tasks
for the refinery and centralized storage represent around 10% of the STN nodes. Hence, we tried
a formulation where all the tasks and states of a harvesting chain, between the Field state and
the farm storage, are aggregated to give a “macro-task” Harvest . An example is given in Figure
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5. The stock-states before leaving the farm must be kept, otherwise the macro-task would be

connected to transport tasks (remember that two tasks cannot be directly connected in an STN).

Macro-tasks are similar to the tasks considered before, with three important differences.

• A classical task may use one resource combination only, while a macro-task may involve

several combinations, in fact, all resource combinations required by the aggregated tasks.

• In a classical task, the resource combination used processes 100% of the total input flow,

while in a macro-task it can be applied to sub-products. For instance, Figure 2 shows that
rape yields 18% of chaff, which explains that the combination “tractor + square baler” used
to bale chaff in Figure 5 treats only 18% of the total amount of rape harvested on input.

• Waiting times are still possible for some outputs, see the straw released after 3 days of
passive drying in Figure 5, but feasible solutions with pauses inside the harvesting process
are now excluded, e.g., when the farmer harvests during one day, stops the second day,

and terminates the job the third day. However, we have never seen such useless breaks
in the optimal solutions of the complete model and, anyway, they do not correspond to
agricultural practices: indeed, due to meteorological uncertainties, farmers prefer to work

continuously once they start harvesting.

The condensation of harvesting chains into macro-tasks must be done manually and carefully, but

then the database and model modifications are relatively easy. The model encompassing all these
simplifications, called “compact model” is applied to a large-scale case in the next subsection.

6.3 Large-scale example

To appraise the performance of the compact model, a large case was built after a long work to

collect data and format them for our database. Although many detailed data at the farm level
are protected in France by the statistical secret, the main results per municipality of the 2010
Agricultural Census are publicly available, including the number of farms, the cultivated area,

and the dominating profile, e.g., “cereals and oilseed crops”, “viticulture”, etc.

The web site http://agreste.agriculture.gouv.fr/chiffres-cles-4/commune/ provides for instance
one file for the 2,292 cities of the Picardie Region (north-west of France). To build a realistic
scenario, we selected in this file the cities with a profile compatible with rape, i.e., with codes

15 (“cereals and oilseed/protein crops”) and 16 (“field crops of general type”). Among them, we
kept the 460 cities at 50 km maximum from Compiègne, where a local biorefinery is foreseen.
The “farms” correspond to the resulting cities, as the data for the underlying 2,146 real farms are

not accessible. To estimate the harvestable amount of rape, the cultivated area of each selected
city was divided by 3, assuming a classical crop rotation rape-wheat-barley. The resulting area
was finally multiplied by the average rape yield in the region, i.e., 6.95 tons/ha. Rape is obtained
via the harvesting chain of Figure 2.
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A partner of the research project has sent questionnaires to the operators of centralized storages,

again within a maximum distance of 50 km to Compiègne. The answers were typed in an Excel
file giving the following data for 46 storage sites: kind of storage (silo or platform), capacities in
tons for silos and square meters for platforms, storage costs, input and output costs, availability

window in the year. Storage capacities vary from 200 to 60,000 tons. Each farm may send its
products (seeds, straw bales and chaff bales from rape) to the nearest centralized storage, but not
directly to the refinery. The planning horizon is one year subdivided into 52 weeks. The total

refinery demand is 50,000 metric tons per year and road distances were computed again using
MapPoint.

The resulting model contains 588,249 constraints and 574,795 variables. After a reduction to
4,801 constraints and 19,558 variables by the pre-solver, it is solved to optimality in less than

one minute (47 seconds).

Our model and its results can be compared BioFeed (Shastri et al., 2011a). This closest model in
the literature is more restrictive than ours, since it considers a single product from a single crop
and a unique harvesting chain in three steps (harvest, rake, and bale). In Shastri et al. (2011b),

BioFeed is applied to a switchgrass supply chain involving 31 farms, 1 centralized storage, and
1 biorefinery. The harvesting period of 120 days is divided into 15-day time steps. In the rest of
the year, divided into 60-day time steps, flow variables for farm activities are not generated. The

model requires 5,706 seconds of CPU time on a Dell PowerEdge 1900 server with 8 processors,
a more powerful computer than our portable PC. So, although the instances compared differ
substantially, it seems that our model can tackle larger supply chains, in a more flexible way, and
in shorter CPU times.

7 CONCLUSION

A mixed integer linear programming (MILP) model was formulated to optimize biomass supply
chains. The state-task network used to describe a chain is very flexible, since its allows to model

in details farm activities, equipment selection, pretreatments, storages, and transports, for differ-
ent crops and multiple products per crop, over a one-year planning horizon divided into days or
weeks. The state-task network and other data such as resource characteristics are described in a

database from which the mathematical model is automatically generated.

Although this MILP can already solve instances of respectable size, simplifications were intro-
duced to reduce the number of variables, in particular integer variables. One of these simplifica-
tions, the macro-task system which aggregates all states and tasks related to harvesting activities

in a farm, has made possible the exact resolution in less than one minute of a large instance with
460 biomass production zones, 46 centralized storages and 1 refinery, over 52 weeks. Instances
of that size have never been solved so fast in the literature, especially for such complex supply

chains.
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The database and the model have been designed carefully to evolve easily, for instance new crops

or harvesting chains and multiple refineries can be already handled. They are already integrated
in a software prototype from which the development of a commercial version is foreseen.

The next step of our work will be to study dedicated algorithms, such as decomposition tech-
niques, Lagrangean relaxation, and metaheuristics, for large-scale problems beyond 500 farms.

We wish also to add to the model not only the possibility of using multi-modal transportation and
tackling uncertainties in biomass availability, but also multi-objective optimization in the Pareto
sense, to minimize both cost criteria and environmental impacts (up to now these criteria can be

coped with, but only in a weighted sum).
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