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ABSTRACT. In various Multi-objective Programming (MOP) problems, decision-makers are often faced
with a large set of efficient solutions, presenting a challenge in discerning and selecting the best solutions
within this broad set. To overcome this, decision-makers can tune and optimize their preference function
over this efficient set to identify the optimal solutions that align with their preferences. Most existing meth-
ods address such problems in the deterministic case, while we aim to tackle a new challenge by dealing
with these problems in a stochastic environment, which increases their complexity. Indeed, we focus in
this study on proposing an exact method to optimize two preference functions over the efficient set of a
Multi-objective Stochastic Integer Linear Programming (MOSILP) problem in order to find the best com-
promise solutions without enumerating all elements of this efficient set. The proposed method is based on
the combination of two techniques: the first one is called the L-shaped method, while the second one is
an adaptation of the branch-and-bound strategy by reinforcing it with efficient cuts and tests, which allows
the method to remove a large number of inefficient solutions within the search tree. Moreover, the method
exhibits adaptability in addressing the general case involving multiple preference functions. A didactic ex-
ample is presented for illustration, followed by a computational study evaluating the method’s efficacy and
performance by solving randomly generated instances.
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2 BIOBJECTIVE INTEGER STOCHASTIC OPTIMIZATION

INTRODUCTION

Multi-objective Programming (MOP) plays an important role in dealing with real-world prob-
lems especially when multiple decision-makers or stakeholders are involved in the same problem,
making it difficult to decide which single goal to achieve since there may be conflicting objectives
that need to be balanced. Imagine a situation where one group wants to maximize profits, while
another wants to minimize costs, which makes balancing these conflicting objectives quite chal-
lenging. Furthermore, MOP can handle effectively both deterministic environments which refer
to situations where all data are known with certainty, such as the works of Obal et al. (2013);
Shidpour et al. (2013); Cao et al. (2018); Ren et al. (2021); Zhang et al. (2021); Halffmann
et al. (2022); Motahari et al. (2023), and stochastic cases, which present intricate challenges
due to the involvement of uncertain or random parameters, including works of Goicoechea et al.
(1976); Urli & Nadeau (1990); Abdelaziz & Masri (2010); Ben Abdelaziz & Masmoudi (2012);
Bozorgi-Amiri et al. (2013); Ramezani et al. (2013); Moayedi & Sadeghian (2023).

The biggest challenge in the MOP realm is the necessity of balancing the multiple conflicting
objectives, this challenge can be tackled by identifying a set of solutions known as an efficient
solution set. The size of this efficient set is influenced by both the complexity of the problem
and the computing resources available, and as the problem size grows, the efficient set has the
potential to expand significantly. Over the last few years, numerous authors have addressed this
challenge of identifying the efficient set in deterministic cases, for example, Ecker & Kouada
(1978); Sylva & Crema (2004); Jahanshahloo et al. (2004); Özlen & Azizoğlu (2009); Lokman
& Köksalan (2013); Kirlik & Sayın (2014); Rasmi & Türkay (2019); Tamby & Vanderpooten
(2021). In contrast, for stochastic cases, the presence of these stochastic parameters heightens
the complexity of the problem. It is noteworthy that a limited number of studies have addressed
this specific challenge, such as Abbas & Bellahcene (2006); Amrouche & Moulaı̈ (2012).

In numerous real-world problems, decision-makers often find themselves in front of a multitude
of efficient solutions, which places them in difficult situations where they must carefully evaluate
and select the best solution among all these efficient solutions. One effective approach to address
this problem is to employ optimization techniques that allow decision-makers to fine-tune their
preference function, and optimize it over the set of efficient solutions to ultimately obtain the
optimal solution that aligns with their preferences. It is worth noting that the classic approach
of enumerating all the efficient solutions is not recommended, due to its impracticality and the
significant computational complexity it entails.

Optimization over the efficient set is a well-established and dynamic research field that is con-
stantly evolving. It was first considered by Philip (1972), who made a significant contribution
to this field. Because of its substantial implications for various research endeavors, this field has
garnered the attention of numerous scholars from its inception. Indeed, it has been studied in
several notable works such as Benson (1984); Ecker & Song (1994). Subsequently, based on the
previous works, Abbas & Chaabane (2006) developed the first method for optimizing a linear
function over the efficient set without finding all non-dominated points. Following that, Jorge
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(2009) proposed an exact algorithm to optimize a linear function over the integer efficient set
of a Multi-objective Integer Linear Programming (MOILP) problem. Later, Ouaı̈l et al. (2017)
introduced a branch and bound-based method to optimize a linear function over the efficient set
of a MOILP problem. After that, Boland et al. (2017) described a new algorithm to solve the
same problem by modifying the algorithm of Jorge (2009). In a different direction, Sierra Al-
tamiranda & Charkhgard (2019) developed the first criterion space search algorithm for opti-
mizing a linear function over the set of efficient solutions of Bi-objective Mixed Integer Linear
Programs (BOMILP). Later on, Lokman (2021), based on the work of Jorge (2009) and Boland
et al. (2017) developed two algorithms to optimize a linear function over the nondominated set of
Multi-objective Integer Programming (MOIP) problem. Most recently, Belkhiri et al. (2022) pro-
posed a new methodology to search for an efficient extreme point that optimizes a linear function
over the set of efficient extreme points of a convex polyhedron. Furthermore, this area of re-
search has extended further than linear cases, with many authors looking at non-linear scenarios,
such as the work of Zerdani & Moulai (2011), where they developed an algorithm that optimizes
an arbitrary linear function over an integer efficient set of a Multi-objective Linear Fractional
Programming (MOLFP) problem. Later on, Drici et al. (2018) proposed a new exact method to
maximize a linear fractional function over the integer efficient set of a MOILP problem. After
that, Moulaı̈ & Drici (2018) presented a new exact method for solving the maximization of an in-
definite quadratic utility function over the efficient set of a MOILP problem. Recently, Chaiblaine
& Moulaı̈ (2021) described an exact method to optimize a quadratic function over the efficient set
of a Multi-objective Integer Linear Fractional Programming (MOILFP) problem. However, it’s
worth noting that in stochastic cases, this specific problem has attracted less attention compared
to its deterministic counterparts. To the best of our knowledge, the only work that addresses
this problem is by Chaabane & Mebrek (2014), where their research is primarily centered on
optimizing a linear function over the efficient set of Multi-objective Stochastic Integer Linear
Programming (MOSILP) problem.

In this research endeavor, our focus is directed toward a new challenge known as bi-objective op-
timization over an efficient set. Essentially, this challenge can arise when two decision-makers or
more collaborate on the same MOILP problem, with each of them possessing their unique prefer-
ence objectives and visions. This situation presents a complex task of optimizing their individual
preference objectives over the efficient solutions set of this problem in order to ultimately identify
the best compromise solutions that satisfy the preferences of each decision-maker. In addition,
this challenge also occurs when it comes to identifying the intersection between two efficient
solution sets arising from two distinct MOILP and Bi-objective Integer Linear Programming
(BOILP) problems to determine the common optimal solutions shared between these two sets.

Nowadays, BOILP has become a sophisticated and well-established field in the operations re-
search domain, marked by significant contributions from various authors, including Soylu (2015);
Boland et al. (2015); Adelgren & Gupte (2022); Bongo & Sy (2023). Despite the important roles
played by both BOILP and optimization over an efficient set in various fields, the intersection
of these two areas remains comparatively less explored and developed. Notably, few references

Pesquisa Operacional, Vol. 44, 2024: e281853



4 BIOBJECTIVE INTEGER STOCHASTIC OPTIMIZATION

delve into this particular area, such as the work of Chaiblaine et al. (2020), where the authors
introduced an exact method for optimizing two fractional linear functions over the efficient set of
a MOILFP problem. After that, Cherfaoui & Moulaı̈ (2021) presented an exact method for opti-
mizing two preference functions over the efficient set of a MOILP problem. This significant gap
between BOILP and optimization over the efficient set offers an interesting direction for further
exploration and progress in the research operations domain.

The main objective of our contribution is to address this new challenge, specifically tackling the
resolution of the problem mentioned above within a stochastic environment. To the best of our
knowledge, no prior study has addressed this specific problem thus far. The only study that tack-
led a similar problem is the previously mentioned work by Djamal and Fatma (2014), It is worth
noting that their work focused on optimizing a single linear function over an efficient set of a
MOSILP problem. In contrast, our research takes a different approach by concentrating on the
optimization of two preference functions over the efficient set. To be precise, this paper intro-
duces an exact method to optimize two preference functions over an efficient set of a MOSILP
problem. The proposed method is a combination of two approaches: the first one is known as
the L-shaped method which is an iterative algorithm used to solve the two-stage stochastic linear
programming problems, such as Li & Grossmann (2018); Ušpurienė et al. (2018); Dos Santos &
Oliveira (2019); Torres et al. (2022). In this context, first-stage decisions precede the realization
of uncertainty, while second-stage decisions occur after the realization of uncertain parameters.
One of the most significant roles of the L-shaped method is its efficiency in handling large-scale
problems with numerous scenarios. Instead of solving the entire problem at once, it decomposes
the original stochastic problem into two manageable levels: a master deterministic problem and
subproblems, where the master problem is solved in the first level and provides an initial solution.
After that, the subproblems are solved iteratively, incorporating information from realized sce-
narios to improve the solution. For more details see Kall (1976); Van Slyke & Wets (1969); Kall
et al. (1994); Birge & Louveaux (2011). The second approach involves adapting the branch-and-
bound procedure to suit our needs, this adaptation is enhanced by the implementation of efficient
cuts and tests, enabling the removal of a substantial number of inefficient solutions within the
search tree.

In summary, the rest of the paper is structured as follows, the first section (cf., Section 1) pro-
vides an overview of the problem under investigation and presents its definition within the gen-
eral context, as well as explains the transformation of the stochastic problem to the equivalent
deterministic problem. Section 2 presents some basic results concerning the L-shaped method. In
addition, the section offers some definitions and results related to multi-objective integer linear
programming. Section 3 explains the methodology used in the resolution process and introduces
the technical presentation of the algorithm followed by a discussion of some theoretical results,
as well as how to generalize the proposed method in the multi-decision case. In section 4, a didac-
tic example is given to illustrate the different steps of the method, followed by the outline of the
search tree. In section 5, a preliminary experimental study is provided to show the performance
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of the method by testing it on randomly generated instances. Finally, the paper is terminated with
a conclusion that summarizes the work presented in this paper.

1 PRELIMINARIES

In this section, we establish some notations and definitions essential for comprehending the con-
tent presented in this article. First, we outline the MOSILP problem within the general context
of Urli & Nadeau (1990); Adeyefa et al. (2011); Amrouche & Moulaı̈ (2012), as well as the
definition of our primary problem which is called ”Bi-objective Integer Stochastic Optimiza-
tion over the Integer Stochastic Efficient Set”. Following this, we elucidate the methodology for
transforming the stochastic problem into an equivalent deterministic counterpart.

1.1 Problem formulation

The multi-objective stochastic integer linear programming (MOSILP) problem with random
variable coefficients in objective functions and/or some constraints is formulated as follows:

(MOSILP)



min Zi =Ci(ξ )x, i ∈ {1,2, . . . ,K},
s.t.,

A x = b,

T (ξ ) x = h(ξ ),

x ∈ N,

(1)

where K ≥ 2 represents the number of objectives, the vector b of dimension (m× 1) and the
real matrix A of dimension (m× n) are deterministic, whereas the decision vector variables x
belong to Rn. Besides, ξ represents the possible realization. Ci(ξ ),T (ξ ) are random matrices of
dimensions (1× n), (m1 × n) respectively, and h(ξ ) is a random vector of dimension (m1 × 1),
with a known joint probability distribution which is not influenced by the choice of the decision
x and defined on a probability space (Ω,Ξ,P).

In this article, our primary objective is to solve the problem involving the optimization of two
preference functions over the efficient set of the MOSILP problem (1). This can be formulated
as follows:

(P)


min φ1 = d1(ξ )x,

min φ2 = d2(ξ )x,

s.t.,

x ∈ XE ,

(2)

where d1(ξ ) and d2(ξ ) are two random vectors in Rn that represent the preference functions of
decision-makers. XE denotes the efficient solution set of the MOSILP problem (1).

The main difficulty in solving problem (2) is the fact that it considers several stochastic objec-
tive functions simultaneously. Before starting to solve problem (2), we pass through an essential
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step which is the transformation of a stochastic problem into an equivalent deterministic prob-
lem. The most usual approach that has used this strategy is the work of Caballero et al. (2001,
2004). This transformation is necessary because stochastic problems contain uncertain param-
eters, which cannot be directly optimized. We will discuss this transformation in detail in the
following subsection.

1.2 Equivalent deterministic problem

Let us commence by considering a probability space (Ω,Ξ,P) that encompasses random vari-
ables controlled by a finite discrete probability distribution (ξ r,Pr),r ∈ {1,2, . . . ,R}. This
distribution comprises a limited number of realizations, denoted by R, with each realization
corresponding to a distinct scenario.

For each realization ξ r of ξ , we associate a criterion Zr
i =Ci(ξ

r)x, where Ci(ξ
r)x represents the

objective function for the ith objective under the rth scenario. Furthermore, we introduce a matrix
T (ξ r) and a vector h(ξ r) to incorporate the diverse scenarios that impact the K objectives and
stochastic constraints. By employing this approach, we can effectively integrate the uncertainty
within the problem and reformulate problem (1) as follows:

(MOSILPR)



min Zr
i =Ci(ξ

r)x, i ∈ {1,2, . . . ,K}, r ∈ {1,2, . . . ,R},
s.t.,

A x = b,

T (ξ r) x = h(ξ r), r ∈ {1,2, . . . ,R},
x ∈ N.

(3)

This paper adopts the concept of recourse from single-criterion stochastic programming, as pre-
viously explored by Van Slyke & Wets (1969); Teghem (1983, 1990); Higle & Sen (1991), using
a deterministic recourse matrix W. To effectively address constraint violations, penalties denoted
as qr = q(ξ r) are assigned to each realization Zr

i , where r ∈ {1,2, . . . ,R}. Moreover, to integrate
these penalties into the problem formulation, a recourse function Q(x,ξ r) is introduced, as de-
fined in (4). This function encapsulates the penalties associated with constraint violations and is
incorporated into each criterion Zr

i .

Q(x,ξ r) = min
y
{(qr)⊺y|Wy = h(ξ r)−T (ξ r)x,y ≥ 0}. (4)

The deterministic equivalent of the problem presented in (3) takes the form of a multi-objective
integer linear program (MOILP). This program can be defined as follows:

(MOILPD)


min Z̃i +Q(x), i ∈ {1,2, . . . ,K},
s.t.,

Ax = b,

x ∈ N,

(5)
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where 
Z̃i = E[Zr

i ] =
R

∑
r=1

PrZr
i =

R

∑
r=1

PrCi(ξ
r)x = C̃ix, i ∈ {1,2, . . . ,K},

Q(x) = E[Q(x,ξ )] =
R

∑
r=1

Pr(qr)⊺yr.

Similarly, when considering preference objectives, we express φ r
i = di(ξ

r)x for i ∈ {1,2}, where
di(ξ

r)x represents the preference objective for the ith criterion in the rth scenario. In this context,
the deterministic equivalent of our primary problem is defined as follows:

(PD)


min φ̃1 +Q(x),

min φ̃2 +Q(x),

s.t.,

x ∈ XED,

(6)

where 

φ̃1 = E[φ r
1 ] = E[d1(ξ )x] =

R

∑
r=1

Prd1(ξ
r)x = d̃1x,

φ̃2 = E[φ r
2 ] = E[d2(ξ )x] =

R

∑
r=1

Prd2(ξ
r)x = d̃2x,

Q(x) = E[Q(x,ξ )] =
R

∑
r=1

Pr(qr)⊺yr.

Here, XED signifies the set of efficient solutions for the deterministic equivalent problem (5).
Furthermore, the relaxed problem of our main problem can be defined as follows:

(PR)


min φ̃1 = d̃1x+E[Q(x,ξ )],

min φ̃2 = d̃2x+E[Q(x,ξ )],

s.t,

x ∈ S ,

(7)

where S = {x ∈ Nn|Ax = b}.

2 THE MAIN RESULTS OF THE COMBINED TECHNIQUE

This section introduces the various methods and strategies incorporated into the proposed algo-
rithm. It begins by providing a brief detailed description of the L-shaped method, as expounded
in Kall (1976); Van Slyke & Wets (1969); Kall et al. (1994); Birge & Louveaux (2011). Fol-
lowing this, the section delves into the adaptations adopted into our algorithm by elucidating the
efficiency definition within a broader context - Ecker & Kouada (1978), followed by a detailed
explanation of the efficient cutting strategy - Ouaı̈l et al. (2017).
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8 BIOBJECTIVE INTEGER STOCHASTIC OPTIMIZATION

2.1 The principle of the L-shaped method

The L-shaped method stands as an optimization algorithm developed to tackle two-stage stochas-
tic linear programming problems. These problems involve decision-making amid uncertainty,
where the decision-maker navigates choices based on both known and uncertain parameters. The
fundamental concept behind the ”L-shaped method” revolves around a two-stage resolution pro-
cess. In the initial stage, decisions are formulated relying on known parameters, while the second
stage entails decision-making grounded in uncertain parameters. The method iteratively tackles
the second-stage problem, referred to as feasibility and optimality tests, while maintaining the
first-stage decision as a constant until an optimal solution is found, see Van Slyke & Wets (1969).

It’s crucial to discern between two methodologies, both labeled as the ”L-shaped method.” The
more widely recognized version, employed in this paper, pertains to a stochastic programming
approach. In contrast, Boland et al. (2016) introduced their ”L-shaped method” tailored for solv-
ing deterministic multi-objective problems through a search for non-dominated solutions. In ex-
ploring the complexities of decision-making in a stochastic environment, we focus on two essen-
tial evaluations that are part of the L-method: the feasibility test and the optimality test. In the
following subsections, we meticulously discuss the different methodologies used to evaluate the
feasibility and optimality of solutions within the L-shaped method framework across the various
scenarios.

2.1.1 Feasibility Test

Suppose that the recourse matrix W is fixed, and let xl be a feasible solution to problem (7). To
check for feasibility of the second-stage problems, the L-shaped algorithm endeavors to identify
a directional vector σ by solving the following program (8) - Farkas (1902):

(FT )


max σ⊺[(h(ξ r)−T (ξ r)xl)],

s.t.,

σ⊺W ≤ 0,

∥σ∥1 ≤ 1.

(8)

The last constraint is added to bound σ ; otherwise, the maximum value will be set up to +∞

which is not interesting. In addition, if, for some ξ r, σ
⊺
r [(h(ξ r)−T (ξ r)xl)]> 0, r ∈ {1,2, . . . ,R},

where σr,r ∈ {1,2, . . . ,R} is the optimal solution of program (8), then we have found a ξ r for
which xl does not yield a feasible second-stage problem. In this case, the feasibility cut (9) is
added to problem (7).

σ
⊺[(h(ξ r)−T (ξ r)x]≤ 0. (9)

It is worth noting that the program (8) is solved iteratively during the algorithm’s process, helping
to obtain a feasible solution for the second-stage problem.
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2.1.2 Optimality Test

Supposing that all feasible cuts are there, we can reformulate problem (7) by introducing a new
variable θ

(Pl
R)


min φ̃i = d̃ix+θ , i ∈ {1,2},
s.t.,

x ∈ Sl ,

θ ≥ Q(x),

(10)

where Sl = {x ∈ S , σ
⊺
r T (ξ r)x ≥ σ

⊺
r h(ξ r), r ∈ {1,2, . . . ,R}} is a non-empty compact polyhe-

dron in Rn and θ ≥ Q(x) represents the optimality cut. Of course, computationally we can not
use θ ≥ Q(x) as a constraint since Q(x) is defined implicitly by a large number of second-stage
problems.
To address this, we solve problem (10) by removing this constraint to find a feasible solution
(xl ,θ l). The process begins by initializing θ =−∞.

To verify the optimality of xl , we solve first the dual problem of problem (4) as outlined below:

(OT )


max π⊺[(h(ξ r)−T (ξ r)xl)],

s.t.,

π⊺W ≤ (qr)⊺.

(11)

In this situation, the optimal solutions (πr, r ∈ {1,2, . . . ,R}) of problems (11) are used to
calculate the expected recourse function value Q(xl) given by:

Q(xl) =
R

∑
r=1

PrQ(xl ,ξ r) =
R

∑
r=1

Pr(πr)
⊺[h(ξ r)−T (ξ r)xl ].

If θ l ≥ Q(xl), then xl is optimal for problem (10), otherwise, the optimality cut (12) is
incorporated into problem (10) which is being optimised again.

θ ≥
R

∑
r=1

Pr(πr)
⊺[h(ξ r)−T (ξ r)x]. (12)

In the following subsections, we will discuss in detail the strategies adopted and explain how they
integrate seamlessly into the proposed algorithm to provide an overview of the proposed method.
We begin by describing the famous efficiency test cited in Ecker & Kouada (1978). Then we
introduce the cutting technique used to reduce the search domain, known as ”efficient cut”, see
Ouaı̈l et al. (2017).

2.2 Efficiency Test

In the realm of multi-objective programming (MOP), the existence of conflicting objectives leads
to the generation of multiple efficient solutions. Additionally, efficiency can be defined in this
context as follows:

Pesquisa Operacional, Vol. 44, 2024: e281853



10 BIOBJECTIVE INTEGER STOCHASTIC OPTIMIZATION

Definition 1. A point x ∈ S is an efficient solution for problem (5) if, and only if, there is no
x ∈ S , such that, Z̃i(x) ≤ Z̃i(x), for all i ∈ {1,2, . . . ,K} and Z̃i(x) < Z̃i(x), for at least one i ∈
{1,2, . . . ,K}. Otherwise, x- is not efficient and the corresponding vector (Z̃1(x), Z̃2(x), . . . , Z̃p(x))
is said to be dominated.

The following theorem (1) provides another characterization of an efficient solution, which is
used as a test procedure in our study. Moreover, let xl be the integer solution obtained following
the branching process reinforced by the feasibility and optimality test at each step.

Theorem 1. xl ∈ XED if, and only if, the optimal value of the objective function Ψ(ψ,x) is null
in the following integer linear programming problem:

(EK(xl))



max Ψ =
K
∑

i=1
ψi,

s.t.,


C̃ix+ψi = C̃ixl , i ∈ {1,2, . . . ,K},
x ∈ S ,

ψi ≥ 0, i ∈ {1,2, . . . ,K}.

(13)

The efficiency of the solution xl is verified through the resolution of problem (13). In particular, xl

is efficient if and only if the optimal value of the objective function Ψ equals zero in problem (13).
In cases where the optimal value is not zero, the optimal solution of problem (13) is considered
an efficient solution to problem (5). It is noteworthy that Theorem 1 is specifically applicable to
the linear case and was originally proposed by Ecker & Kouada (1978). For the general case, we
mention the scalarization introduced by Benson (1984).

2.3 Efficient Cut

In each iteration l of the optimization process, the efficient cut is utilized to eliminate all inef-
ficient solutions from the feasible region and remove areas that do not improve the value of the
utility function.

Assuming that xl is the lth generated optimal solution of problem (10), the following definitions
and notations are used:

• Bl is the indexes set of the basic variables of xl .

• Nl is the indexes set of the non-basic variables of xl .

The decrease direction of each criterion Z̃i, i∈{1,2, . . . ,K} of problem (5) is determined by using
their reduced gradient vectors. On the other hand, the method uses this information to build an
efficient cut to remove integer solutions that are not efficient for problem (5) and determine an
efficient new integer solution. To do so, we define a new set of all decreasing directions of the
criteria as follows:

• Hl =
{

j ∈ Nl |∃i ∈ {1,2, . . . ,K}, with C̄ j
i < 0

}⋃{
j ∈ Nl |C̄ j

i = 0, ∀i ∈ {1,2, . . . ,K}
}
.
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Here, C̄ j
i is the jth component of reduced gradient vectors of the objective function Z̃i.

Once this set has been identified, we proceed to formulate the efficient cut (14) designed to
eliminate all inefficient solutions, see Ouaı̈l et al. (2017). This cut plays an essential role in the
optimization process, enabling us to reduce the search space, improve the overall efficiency of
the optimization process, and ultimately, find optimal solutions.

∑
j∈Hl

x j ≥ 1. (14)

3 METHODOLOGY, ALGORITHM AND THEORETICAL RESULTS

In the following subsection, we detail each step of our methodology that is designed to solve
the problem described in (6). Following this, we describe the algorithm, giving a comprehensive
overview of the essential steps in our proposed method. After that, we turn to a discussion of
various theoretical results. Finally, we demonstrate how to extend the method to general multi-
decision cases.

3.1 Methodology description

The proposed algorithm aims to generate a subset XB ⊂ XE , where XE is the efficient set of
the deterministic equivalent problem (5). The elements in XB are selected to be also efficient
in terms of both objective functions d1 and d2. Contrary to the classical approach, our algorithm
avoids the exhaustive enumeration of all elements in XE to generate XB. The classical method
for solving problem (6) is to determine two sets XE and XC, where XC represents the efficient
solutions in terms of d1 and d2. Then we have to select the elements that are in both sets XE

and XC simultaneously, which is very computationally expensive. As mentioned previously, the
proposed algorithm employs two distinct techniques to address the problem. These include the
well-known L-shaped method and an adaptation of the branch-and-bound procedure, reinforced
by efficient cuts and tests.

To start the process, we initialize the two variables, θ and l, to −∞ and 0, respectively. Further-
more, at each node l, the algorithm resolves the linear program (15) using the simplex or dual
simplex method.

(Pl)


min φ̃1 = d̃1x,

s.t.,

x ∈ Sl = {x ∈ Nn|Ax = b}.

(15)

Once the linear program (15) has been solved, the algorithm checks for the existence of a solu-
tion. In case the program has no solution, the node is fathomed. Otherwise, there are two possible
situations:

1. The optimal solution xl is not an integer. in this situation, the algorithm follows a basic
branching process according to the following steps: Identify a component x j of xl such
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that x j = α j, where α j represents a fractional value. After that, the node l of the tree is
separated into two nodes which are imposed by the following two additional constraints:{

x j ≤
⌊
α j
⌋
,

x j ≥
⌊
α j
⌋
+1,

(16)

where,
⌊
α j
⌋

indicates the greatest integer less than α j. The linear program obtained must
be solved until an integer feasible solution is found (if it exists).

2. The solution xl is an integer. Here, the process passes through two tests: the feasibility and
optimality tests, which are detailed in subsections (2.1.1) and (2.1.2), respectively.

As soon as an optimal integer solution xl is found after the feasibility and optimality tests, then
two efficiency tests are performed by solving the programs 17 and 18 (see Subsection 2.2).

1. In the first step, we test the efficiency of the solution xl in terms of d̃1 and d̃2 by solving
the following first program:

(EK1(xl))



max∑
2
i=1 vi,

s.t.,
d̃ix− vi = d̃ixl , i ∈ {1,2},
x ∈ Sl ,

vi ≥ 0, i ∈ {1,2}.

(17)

As a well-known result, xl is efficient if and only if EK1(xl) has a maximum value of zero.
See, Ecker & Kouada (1978).

2. The process continues by passing the second efficiency test for the deterministic equivalent
problem (5).

(EK2(xl))



max∑
K
i=1 wi,

s.t.,
C̃ix−wi = C̃ixl , i ∈ {1,2, . . . ,K},
x ∈ Sl ,

wi ≥ 0, i ∈ {1,2, . . . ,K}.

(18)

Based on the same previous concept, the solution xl is efficient for the deterministic
equivalent problem (5) if and only if EK2(xl) has a maximum value of zero.

As a result, if both EK1(xl) and EK2(xl) have zero maximum value, then xl belongs to XB. The
process continues to search for other efficient solutions in other nodes (if they exist) by applying
efficient cuts to the related program (see, subsection 2.3). Initially, two sets Hl and H ′

l are
constructed. After that, the efficient cuts (19) and (20) are constructed and incorporated into the
successor nodes of l.

Hl =
{

j ∈ Nl |∃i ∈ {1,2, . . . ,K}, C̄ j
i < 0

}
∪
{

j ∈ Nl | C̄ j
i = 0, ∀i ∈ {1,2, . . . ,K}

}
,
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ILIAS BADAOUI, MUSTAPHA MOULAÏ, YACINE CHAIBLAINE and DJAMAL CHAABANE 13

∑
j∈Hl

x j ≥ 1, (19)

And
H

′
l =

{
j ∈ Nl | d̄ j

2 < 0
}
∪
{

j ∈ Nl | d̄ j
1 = 0 and d̄ j

2 = 0
}
,

∑
j∈H

′
l

x j ≥ 1. (20)

Hence, the domain of the successor node l +1 is determined by applying the efficient cuts (19)
and (20) to Sl .

Sl+1 = S 1
l+1 ∩S 2

l+1, (21)

where 
S 1

l+1 =
{

x ∈ Sl | ∑ j∈Hl
x j ≥ 1

}
,

S 2
l+1 =

{
x ∈ Sl | ∑ j∈H

′
l

x j ≥ 1
}
.

The method ends when all the created nodes are fathomed or when one of the sets (Hl or H
′

l ) is
empty, which means that Hl = /0 or H

′
l = /0.

3.2 Algorithm

Algorithm 1 resumes in detail the main steps of the proposed method, these steps are treated
according to the backtracking principle.

3.3 Theoretical Results

The following theoretical tools show that the algorithm yields the set of solutions for problem
(6) in a finite number of iterations.

Theorem 2. Assume that Hl ̸= /0 and H
′

l ̸= /0 at the current integer solution xl . If x ̸= xl is an
efficient solution of problem (6) in domain Sl , then, x ∈ Sl+1 (l +1 is the successor of l).

Proof. Let x ̸= xl be an integer solution in domain Sl , such that, x /∈ Sl+1. Two situations can
occur in this case:

1. x /∈ S 1
l+1, implies that x ∈

{
x ∈ Sl | ∑ j∈Nl\Hl

x j ≥ 1
}

. The components of vector x here
satisfy the following inequalities: 

∑
j∈Hl

x j < 1,

∑
j∈Nl\Hl

x j ≥ 1.

Which means that x j = 0, for all j ∈ Hl and x j ≥ 1, for at least one index j ∈ Nl \Hl .
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Algorithm 1 A Branch and Cut Strategies based Method

Data: XB = /0, θ =−∞, l = 0.
Result: XB: The solutions set of problem (6).
while As long as a unfathomed node l exists in the tree do

Solve problem (15) using simplex or dual simplex method;
if Problem (15) has a feasible solution xl then

if xl is integer then
Feasibility test.

Solve program (8);
if σ⊺[h(ξ r)−T (ξ r)xl ]> 0 then

Add the feasibility cut (9) to the successors of l;
else

Optimality test.
Solve program (11), calculate Q(x);
if Q(xl)> θ l then

Add the optimality cut (12) to the successors of l;
else

Efficiency test.
Solve program (17);
v is the optimal solution criteria;
if v = 0 then

Solve program (18);
w is the optimal solution criteria;
if w = 0 then

XB = XB ∪{xl};
end

end
Update set S .

Construct the sets Hl and H
′

l ;
if Hl or H

′

l = /0 then
Fathom the node l;

else
Add the efficient cuts (19) and (20) to the successors of l;

end
end

end
else

Branching process.
Choose an index j such that α j is the most fractional number, then:
Split the program Pl into two sub programs, by adding respectively
the constraints x j ≤

⌊
α j
⌋

and x j ≥
⌊
α j
⌋
+1, to obtain (Pl1) and (Pl2)

(l1 ̸= l2 and l1 ≥ l +1, l2 ≥ l +1);
end

else
The corresponding node l is fathomed;

end
end
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On the other hand, for all criterion i ∈ {1,2, . . . ,K}, the following equality is supported
using the simplex table:

Z̃i(x) = C̃ix = ∑
j∈Bl

C j
i x j + ∑

j∈Nl

C j
i x j, where ∑

j∈Bl

C j
i x j = Z̃i(xl).

Hence, we can write as follows:

Z̃i(x)− Z̃i(xl) = ∑
j∈Nl

C j
i x j,

= ∑
j∈Hl

C j
i x j + ∑

j∈Nl\Hl

C j
i x j,

= ∑
j∈Nl\Hl

C j
i x j.

Thus, this implies that Z̃i(x)≤ Z̃i(xl), for all criterion i ∈ {1,2, . . . ,K}. As well as Z̃i(x)<
Z̃i(xl), for at least one criterion of C j

i ≤ 0, for all j ∈ Nl \Hl .

We conclude then that the solution x is not efficient for the deterministic equivalent
problem 5. In other words, this means that x /∈ XE , and x /∈ XB.

2. x /∈S 2
l+1 implies that x ∈

{
x ∈ Sl | ∑ j∈Nl\H

′
l

x j ≥ 1
}

. The components of vector x in this
situation satisfy the following inequalities:

∑

j∈H
′

l

x j < 1,

∑

j∈Nl\H
′

l

x j ≥ 1.

Which means that x j = 0, for all j ∈ H
′

l and x j ≥ 1, for at least one index j ∈ Nl \H
′

l .
Furthermore, by using the simplex table in xl , the following equality is satisfied:

d̃2x = ∑
j∈Bl

d
j
2x j + ∑

j∈Nl

d
j
2x j where ∑

j∈Bl

d
j
2x j = d̃2xl ,

Here, we can write as follows:

d̃2x− d̃2xl = ∑

j∈H
′

l

d̄ j
2x j + ∑

j∈Nl\H
′

l

d̄ j
2x j,

= ∑

j∈Nl\H
′

l

d̄ j
2x j.

Thus, d̃2x ≤ d̃2xl , with d̃2x < d̃2xl and d̃1x ≤ d̃1xl , since xl is the optimum of the current
problem. This means that x /∈ XB.

Since x /∈ XB in both situations. As a result, x is not an efficient solution of problem (6).
□

Proposition 1. Suppose that Hl = /0 or H ′
l = /0 at the current integer solution xl . Then there is

no solution in the remaining domain that is not dominated by xl .
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Proof.

• Suppose that Hl = /0, which means that we have C̄ j
i ≤ 0, ∀ j ∈ Nl , ∀i ∈ {1,2, . . . ,K}. As

well as, ∀ j ∈ Nl ,∃i0 ∈ {1,2, . . . ,K}, such that C̄ j
i0
< 0. This implies that xl dominates all

points x, x ̸= xl of domain Sl .

• Now assume that H
′

l = /0, and this means that ∀ j ∈ Nl , d̄ j
2 < 0 or d̄ j

2 = 0, and d̄ j
1 < 0,

leading to d̄ j
1 < 0, ∀ j ∈ Nl . Since it is an optimal solution for (Pl). Thus, xl becomes the

most preferred solution in the domain Sl . □

Theorem 3. Algorithm 1 terminates in a finite number of iterations and the set XB contains all
the solutions of problem (6).

Proof. Let S be the set of feasible integer solutions of the deterministic equivalent problem 5 a
bounded set. Moreover, the efficient sets XB and XE contain a finite number of integer solutions
which means that the cardinality of these sets is a finite number. For each step l of the algorithm
1, when an integer solution is found, there are only a finite number of cuts that eliminate xl and
all dominated solutions from the search tree (see Proposition 1). Similarly, the algorithm used a
limited number of feasibility and optimality cuts. which means that the search tree would have a
finite number of branches and that the algorithm terminates in a finite number of steps.

For each step l of Algorithm 1, when an integer solution xl is found, the cuts eliminate xl and
all dominated solutions from the search tree (see Proposition 1). In addition, for XB to contain
all the solutions of problem (6), the fathoming rules are used without loss of any elements in
XB. The first rule is when the set Hl or H

′
l is empty. In this case, the current node can be

fathomed since the rest of the domain contains only dominated solutions either in terms of the
deterministic equivalent problem or in terms of the two preference functions. The second rule is
the trivial case when the reduced domain becomes infeasible, whether it is because of previous
cuts or the branching. □

3.4 Generalization of the method

The same algorithm can be used to solve the problem where there are p decision-makers, the
general problem can be formulated as follows:

(P)



min φ1 = d1(ξ )x,

min φ2 = d2(ξ )x,
...

min φp = dp(ξ )x,

s.t.,

x ∈ XE .

(22)
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To solve this problem, we use our algorithm and modify the efficiency test EK(xl) as follows:

(EK(xl))



max∑
p
i=1 vi,

s.t.,
d̃ix− vi = d̃ixl , i ∈ {1,2, . . . , p},
x ∈ Sl ,

vi ≥ 0, i ∈ {1,2, . . . , p}.

(23)

Also, H
′

l is calculated as follows:

H
′

l =
{

j ∈ Nl |∃i ∈ {1,2, . . . , p}, d̄ j
i < 0

}
∪
{

j ∈ Nl | d̄ j
i = 0, ∀i ∈ {1,2, . . . , p}

}
.

The rest of the algorithm remains the same. The algorithm returns the set of efficient solutions
XB = XE ∩XC.

4 DIDACTIC EXAMPLE

Consider the following multi-objective integer linear programming stochastic problem:

Scenario 1 Scenario 2

MOSILP(ξ 1)



minZ1
1 =−9x1 +4x2,

minZ1
2 = 3x1 −5x2,

minZ1
3 = 5x1 −11x2,

s.t.,
x1 −4x2 ≤ 3,
x1 +3x2 ≤ 18,
2x1 + x2 ≤ 10,
x1 +2x2 ≤ 3,
−3x1 + x2 ≤ 5,
x1, x2 ∈ N.

MOSILP(ξ 2)



minZ2
1 = 3x1 −2x2,

minZ2
2 = 6x1 + x2,

minZ2
3 =−7x1 +10x2,

s.t.,
x1 −4x2 ≤ 3,
x1 +3x2 ≤ 18,
2x1 + x2 ≤ 10,
5x1 + x2 ≤ 4,
−3x1 +2x2 ≤ 1,
x1, x2 ∈ N.

The recourse matrix and the deterministic constraints matrices are given for both scenarios by:

A =

 1 −4
1 3
2 1

 , b =

 3
18
10

 ,W =

(
−2 −1 2 1
3 2 −5 −6

)
.

The penalties of constraint violations and the probability distribution are given for both scenarios
by:

q
(
ξ

1)= (1,3,6,2)⊺ , P
(
ξ

1)= 2
3
, q

(
ξ

2)= (5,3,2,1)⊺ , P
(
ξ

2)= 1
3
.

The stochastic constraints matrices are given for both scenarios by:

T
(
ξ

1)=( 1 2
−3 1

)
,T
(
ξ

2)=( 5 1
−3 2

)
,h
(
ξ

1)=( 3
5

)
,h
(
ξ

2)=( 4
1

)
.

The deterministic multiple objective integer linear programming problem:
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Z̃1 = E [C1 (ξ )x] = P
(
ξ 1)C1

(
ξ 1)x+P

(
ξ 2)C1

(
ξ 2)x,

Z̃2 = E [C2 (ξ )x] = P
(
ξ 1)C2

(
ξ 1)x+P

(
ξ 2)C2

(
ξ 2)x,

Z̃3 = E [C3 (ξ )x] = P
(
ξ 1)C3

(
ξ 1)x+P

(
ξ 2)C3

(
ξ 2)x.

(MOSILPD)



min Z̃1 =−5x1 +2x2,

min Z̃2 = 4x1 −3x2,

min Z̃3 = x1 −4x2,

s.t.,
x1 −4x2 ≤ 3,
x1 +3x2 ≤ 18,
2x1 + x2 ≤ 10,
x1,x2 ∈ N.

Consider now two decision makers with the following preference functions for each scenario.

Scenario 1 Scenario 2

P(ξ 1)


minφ 1

1 =−2x1 +4x2,

minφ 1
2 = 2x1 −1x2,

s.t.,
x1, x2 ∈ XED.

P(ξ 2)


minφ 2

1 = x1 +4x2,

minφ 2
2 = 2x1 +5x2,

s.t.,
x1, x2 ∈ XED.

The main deterministic relaxed problem is defined by:

φ̃1 = E [d1 (ξ )x] = P
(
ξ 1
)

d1
(
ξ 1
)

x+P
(
ξ 2
)

d1
(
ξ 2
)

x,

φ̃2 = E [d2 (ξ )x] = P
(
ξ 1
)

d2
(
ξ 1
)

x+P
(
ξ 2
)

d2
(
ξ 2
)

x.

(PDR)


min φ̃1 =−x1 +4x2,

min φ̃2 = 2x1 + x2,

s.t.,
x1,x2 ∈ S ,

where S = {x1 −4x2 ≤ 3, x1 +3x2 ≤ 18, 2x1 + x2 ≤ 10 | x1,x2 ∈ Rn}.

Initialization: XB = /0, θ =−∞, S0 = S .

Step 1: We start by solving the first following relaxed problem (P0).

(P0)


min φ =−x1 +4x2,

s.t.,
x ∈ S0.

The first optimal solution is x0 = ( 43
9 , 4

9 ) which is not an integer. The algorithm starts the
branching process.

Step 2: The branching process. The search nodes obtained after branching on x0 are:

Node 1 S1 = { x ∈ S0 : x1 ≤ 4}.
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Node 2 S2 = {x ∈ S0 : x1 ≥ 5}. No solution exists in this node. Thus, this node is fathomed.

Now, we continue the process by solving the new problem (P1) at node 1.

(P1)


min φ =−x1 +4x2,

s.t.,
x ∈ S1.

The optimal solution is x1 = (4, 1
4 ). The algorithm will again perform branching process.

Step 2: The branching process. The obtained search nodes after branching on x1 are:

Node 3 S3 = {x ∈ S2 : x2 ≥ 1}.

Node 4 S4 = { x ∈ S2 : x2 ≤ 0}.

In this situation, the process continues with solving problem (P3) at node 3.

(P3)


min φ =−x1 +4x2,

s.t.,
x ∈ S3.

The obtained optimal integer solution is x2 = (4,1). In this situation, x2 is tested for feasibility
and optimality for each scenario.

Step 3: Feasibility and Optimality tests. At first, we evaluate the feasibility of solution x2 by
solving the following two problems:

h
(
ξ 1)−T

(
ξ 1)x2 =

(
3
5

)
−

(
1 2
−3 1

)(
4
1

)
=

(
−3
16

)
.

h
(
ξ 2)−T

(
ξ 2)x2 =

(
4
1

)
−

(
5 1
−3 2

)(
4
1

)
=

(
−6
11

)
.

Scenario 1 Scenario 2

σ(ξ 1)



max −3σ1
1 +16σ2

1 ,

−2σ1
1 +3σ2

1 ≤ 0,
−σ1

1 +2σ2
1 ≤ 0,

2σ1
1 −5σ2

1 ≤ 0,
σ1

1 −6σ2
1 ≤ 0,

σ1
1 +σ2

1 ≤ 1.

σ
⊺
1 =

( 2
3 ,

1
3

)
, σ(ξ 2)



max −6σ1
2 +11σ2

2 ,

−2σ1
2 +3σ2

2 ≤ 0,
−σ1

2 +2σ2
2 ≤ 0,

2σ1
2 −5σ2

2 ≤ 0,
σ1

2 −6σ2
2 ≤ 0,

σ1
2 +σ2

2 ≤ 1.

σ
⊺
2 = (0,0) .

Note that σ
⊺
1

[
h
(
ξ 1
)
−T

(
ξ 1
)

x2
]
=
( 2

3 ,
1
3

)(−3
16

)
= 10

3 > 0, which means that x2 is not feasible for
the first scenario ξ 1, In this case, we add the following feasibility cut to current problem (P3).

( 2
3 ,

1
3 )

(
1 2
−3 1

)(
x1

x2

)
> ( 2

3 ,
1
3 )

(
3
5

)
=

11
3

⇐⇒ −1
3

x1 +
5
3

x2 ≥
11
3
.

After adding the feasibility cut, we solve the following problem (P5):

(P5)


min φ =−x1 +4x2,

s.t.,
x ∈ S5 = {x ∈ S3| − 1

3 x1 +
5
3 x2 ≥ 11

3 }.
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The optimal solution is x3 = ( 39
11 ,

32
11 ). The branching process is then started again.

Step 2: The branching process. After branching on x3, we obtaine the following search nodes:

Node 6 S6 = {x ∈ S5 : x1 ≥ 4}. No solution exists in this node. This node is fathomed.

Node 7 S7 = { x ∈ S5 : x1 ≤ 3}.

The process continues in this step by solving problem (P7) at node 7.

(P7)


min φ =−x1 +4x2,

s.t.,
x ∈ S7.

The obtained solution is x4 = (3, 14
5 ). The branching process begins again.

Step 2: The branching process. The search nodes obtained after branching on x4 are:

Node 8 S8 = {x ∈ S7 : x2 ≥ 3}.

Node 9 S9 = { x ∈ S7 : x2 ≤ 2}. No solution exists in this node. Then, this node is fathomed.

We solve now problem (P8) at node 8.

(P8)


min φ =−x1 +4x2,

s.t.,
x ∈ S8.

The obtained integer solution is x5 = (3,3). We continue the process by testing the feasibility
and optimality of the solution x5.

Step 3: Feasibility and Optimality tests. As previously mentioned, this step commences with a
feasibility test, where the feasibility of the solution x5 is examined by solving the following pair
of problems.

Scenario 1 Scenario 2

σ(ξ 1)



max −6σ1
1 +11σ2

1 ,

−2σ1
1 +3σ2

1 ≤ 0,
−σ1

1 +2σ2
1 ≤ 0,

2σ1
1 −5σ2

1 ≤ 0,
σ1

1 −6σ2
1 ≤ 0,

σ1
1 +σ2

1 ≤ 1.

σ
⊺
1 = (0,0) , σ(ξ 2)



max −14σ1
2 +4σ2

2 ,

−2σ1
2 +3σ2

2 ≤ 0,
−σ1

2 +2σ2
2 ≤ 0,

2σ1
2 −5σ2

2 ≤ 0,
σ1

2 −6σ2
2 ≤ 0,

σ1
2 +σ2

2 ≤ 1.

σ
⊺
2 = (0,0) .

Here, σ
⊺
1 = σ

⊺
2 = 0, which means that, x5 is feasible for both scenarios. Following this, we

perform the optimality test for x5 by solving the following two problems.
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Scenario 1 Scenario 2

π(ξ 1)



max −6π1
1 +11π2

1 ,

−2π1
1 +3π2

1 ≤ 1,
−π1

1 +2π2
1 ≤ 3,

2π1
1 −5π2

1 ≤ 6,
π1

1 −6π2
1 ≤ 2.

π
⊺
1 = (7,5) , π(ξ 2)



max −14π1
1 +4π2

1 ,

−2π1
1 +3π2

1 ≤ 5,
−π1

1 +2π2
1 ≤ 3,

2π1
1 −5π2

1 ≤ 2,
π1

1 −6π2
1 ≤ 1.

π
⊺
2 =

(
− 11

3 ,− 7
9
)
.

Once the previous two problems have been solved, the process is followed by first calculating
the value of the expected recourse function value Q(x) by:

Q
(
x,ξ 1)= π

⊺
1

[
h
(
ξ

1)−T
(
ξ

1)x3]= 13,

Q
(
x,ξ 2)= π

⊺
2

[
h
(
ξ

2)−T
(
ξ

2)x3]= 434
9

,

Q(x) =
2
3

Q
(
x,ξ 1)+ 1

3
Q
(
x,ξ 2)= 668

27
.

Note that: Q(x) > θ = −∞. Based on this, we construct the optimal cut as outlined below. We
then add it to the current problem (P8).

θ ≥ 689
27

− 32
3

x1 +
295
27

x2.

After adding the optimality cut, we proceed to solve the new problem (P10).

(P10)


min φ =−x1 +4x2,

s.t.,
x ∈ S10 = {x ∈ S8| θ ≥ 689

27 − 32
3 x1 +

295
27 x2}.

After solving problem (P10), we obtain the same optimal solution x5 = (3,3). As we have seen
previously, this obtained solution is the feasible and optimal solution for both scenarios with the
penalty value θ = 668

27 , see Table 1.

The algorithm now proceeds to another essential step, namely the efficiency test. This test is
performed to evaluate the efficiency of the solution x5 for both bi-objective and multi-objective
problems.

Step 5: Efficiency tests. We start first by testing the efficiency of x5 for the bi-objective problem
by solving the following problem:

(EK1(x5))



maxω = ω1 +ω2,

s.t.,
x ∈ S8,

θ ≥ 689
27 + 32

3 x1 − 295
27 x2,

−x1 +4x2 +ω1 = 9,
2x1 + x2 +ω2 = 9,
x1,x2 ∈ N, θ ,ω1,ω2 ∈ R+.
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Table 1 – Optimal simplex table at node 8.

B Rhs x9 x10

x8
1
3

−1
3

−5
3

x3 12 −1 −4

x4 6 −1 3

x5 1 −2 1

x6 1 −1 0

x2 3 0 −1

x7 2 0 −1

θ
668
27

32
27

295
27

x1 3 1 0

Z̄1 −9 5 2

Z̄2 3 −4 −3

Z̄3 −9 −1 −4

d̄1 9 1 4

d̄2 9 −2 1

Note that ω = 0, this means that x5 is efficient for the bi-objective problem. Following this, we
test its efficiency for the multi-objective problem by solving the following problem:

(EK2(x5))



maxΨ = ψ1 +ψ2 +ψ3,

s.t.,
x ∈ S8,

θ ≥ 689
27 + 32

3 x1 − 295
27 x2,

−5x1 +2x2 +ψ1 =−9,
4x1 −3x2 +ψ2 = 3,
x1 −4x2 +ψ3 =−9,
x1,x2 ∈ N, θ ,ψ1,ψ2,ψ3 ∈ R+.

Here, Ψ = 0, that means that x5 = (3,3) is efficient for the multi-objective problem. Furthermore,
we notice that x5 is efficient for both bi-ovjective and multi-objective problems. Thus, the solution
x5 is added to the efficent set XB = {(3,3)} and the algorithm continue the process through the
last step.

Step 6: The efficient cuts. We start first by constructing the two sets H1 and H ′
1 by using

the decreasing direction of each criterion Z̃i∈{1,...,3} for the multi-objective problem, and the
decreasing direction of each criterion φ̃i∈{1,2} for the bi-objective problem, respectively.

From Table 1, H1 = {9,10} ̸= /0 and H ′
1 = {9} ̸= /0.
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After adding the cuts x9+x10 ≥ 1 and x9 ≥ 1 to the current problem (P10), the algorithm continues
the search process for other efficient solutions by solving the following new problem.

(P11)


min φ =−x1 +4x2,

s.t.,
x ∈ S11 = {x ∈ S10 | x9 + x10 ≥ 1, x9 ≥ 1}.

The algorithm continues the process by following the same previous steps to generate all the
efficient solutions to the main problem, as shown below in the efficient set XB.

Final result:

The final efficient set found is XB = {(3,3),(2,3)}.

Where:

• XC = {(3,3),(2,3),(1,3),(0,3)}, the efficient solutions in terms of d1 and d2.

• XE = {(3,3),(2,3),(3,4),(2,4),(1,4),(0,4),(2,5),(1,5),(0,5),(0,6)}, the efficient set
of the deterministic equivalent problem (5).

4.1 The search tree

The search tree presented in Figure (1) summarizes and illustrates the different steps and states
of the nodes throughout the algorithm process in the previous Example 4.

5 COMPUTATIONAL RESULTS

To the best of our knowledge, this particular problem has not been studied in existing literature.
Indeed, according to the available literature, no benchmark instance has been proposed to test
the performance of this type of problem. For this reason, we thought of creating randomly gen-
erated instances to test the performance of our method for solving this problem. Moreover, the
algorithm has been implemented in the MATLAB 2019 environment without making use of any
solver and tested over the randomly generated instances, as for the efficiency and optimality tests
we have used the linprog solver. In addition, all proposed solution procedures of the computa-
tional results section are performed on a computer with Intel(R) Core(TM) i3-3120M CPU @
2.50GHz 2.50 GHz processor and 4 GB RAM.
Regarding deterministic data (objective functions and constraint coefficients) they are uncorre-
lated and uniformly distributed. Each component of the vector b, the entries of the matrix A, and
the coefficients of the objective functions C and d were drawn randomly from discrete uniform
distributions in the following ranges [100,200], [1,100], [−100, 100] and [−100,100].
The stochastic data are generated in the same way as the deterministic ones. For each component
of the recourse matrix W , the penalties for constraint violations q, the matrice T and the vector
h are in the intervals [−50,50], [1,50], [−50,50] and [−50,50], respectively. The probability for
each scenario is randomly generated with the sum of probabilities equal to 1.
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0 XE = /0( 43
9 , 4

9 )

1 (4, 1
4 )

4 (3,0)3(4,1)

13

Infeasible

5( 39
11 ,

32
11 )

7 (3, 14
5 )

8 (3,3)XE = XE ∪{(3,3)}

10 (2,3)XE = XE ∪{(2,3)}

11 (1,3)

12 (0,3)

H
′

4 = /0, STOP

9

Infeasible

6

Infeasible

2

Infeasible

x1 ≤ 4

x2 ≥ 1 x2 ≤ 0

− 1
3 x1 +

5
3 x8 ≥ 11

3− 1
3 x1 +

5
3 x8 ≥ 11

3

x1 ≤ 3x1 ≥ 4

x2 ≥ 3 x2 ≤ 2

x9 + x10 ≥ 1, x9 ≥ 1

x10 + x14 ≥ 1, x14 ≥ 1

x10 + x16 ≥ 1, x16 ≥ 1

x1 ≥ 5

Figure 1 – Search tree of the example.
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We have worked on 44 distinct groups of instances of the (n,m,k,R) type, where n represents the
number of variables, m denotes the number of constraints, k indicates the number of objectives,
and R signifies the number of scenarios, with R = 2,3,5,10. Additionally, for each group, we
generated five instances randomly, resulting in a total of 220 instances. Our method successfully
solved these instances, and the corresponding results are presented in the following Table 2.

5.1 Table Contents

Table 2 shows the results achieved by our method on five instances for each group.

• Column 1 represents the number of existing scenarios R.

• Column 2 presents the size of each instance (n×m×k), where n is the number of variables,
m is the number of constraints and k is the number of objectives.

• Column 3 displays the minimum (Min), the average (Mean), and the maximum (Max) of
the CPU time (in seconds).

• Column 4 reports the minimum (Min), the average (Mean), and the maximum (Max) of
the number of nodes required (Nbr of Nodes) to get the final set XB.

• The last column ρ represents the average (Mean) of |XB/XE |.

The elements and cardinality of XE are calculated using the algorithm presented in Ouaı̈l et al.
(2017). The elements and cardinality of XB are calculated by using the present method. In ad-
dition, we have reported a global average (Glob Avrg) in the last line for each R scenario case,
which represents the total mean for all instances studied in that R case. The results from Table
2 show that average CPU time generally increases with the size of the instance and the number
of scenarios. For example, for R = 2 the average CPU time increases from 2.47 seconds for the
instance (5×3×3) to 1407.96 seconds for the instance (100×50×20). Similarly, for R = 2, the
average CPU time for the instance (20×10×5) is 8.51 seconds, while for R= 10 it rises to 23.96
seconds. However, this trend is not always consistent. For example, the instance (90×45×20)
shows a decrease in average CPU time from 1070.44 seconds for R = 2 to 954.20 seconds for
R = 3. This is due to the fact that the average CPU time is mainly influenced by the number of
visited efficient solutions. In the same instance (90× 45× 20), the average number of nodes is
higher for R = 2 at 2667.60 compared to 2415.20 for R = 3, which suggests that more efficient
solutions were visited for R = 2. Thus, the average CPU time is mainly related to the number of
efficient solutions explored.
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Table 2 – The behavior of our method on medium and large scale instances in different scenarios and
based on different criteria.

CPU (Sec) Nbr of Nodes ρ

R n×m× k Min Mean Max Min Mean Max Mean
2 5×3×3 0.41 2.47 6.43 10 42 88 0.40

10×5×3 2.08 4.49 6.80 40 79 116 0.39
20×10×5 5.39 8.51 12.58 134 197.20 338 0.09
30×15×5 21.15 30.11 39.15 322 490 652 0.10
40×20×5 55.80 82.15 164.64 608 721.20 954 0.10

50×25×10 76.74 113.55 135.27 754 918 1044 0.27
60×30×10 138.55 181.98 243.79 916 1112.80 1478 0.12
70×35×10 346.84 405.40 489.74 1580 1822.40 2344 0.09
80×40×20 513.05 565.49 649.62 1446 1770 2206 0.11
90×45×20 783.20 1070.44 1395.43 2546 2667.60 2978 0.10
100×50×20 1003.98 1407.96 1897.15 2288 2816 3438 0.12

Glob Avrg(R = 2) 267.93 352.05 458.24 967.64 930.49 1421.45 0.17
3 5×3×3 0.97 3.51 11.65 8 33.20 98 0.57

10×5×3 1.06 4.23 7.50 18 66.40 118 0.37
20×10×5 3.54 11.78 18.64 106 190.80 256 0.29
30×15×5 18.64 23.62 26.31 322 398.80 454 0.13
40×20×5 38.28 60.72 88.62 576 693.20 904 0.30

50×25×10 71.32 104.45 187.82 538 862.40 1424 0.19
60×30×10 110.91 191.95 358.30 832 1111.60 1634 0.06
70×35×10 205.65 340.08 492.87 864 1425.20 1798 0.07
80×40×20 349.53 612.98 876.32 1180 2019.20 2844 0.08
90×45×20 689.63 954.20 1466.57 1706 2415.20 3040 0.06
100×50×20 273.65 1402.61 2272.41 746 2535.60 4096 0.12

Glob Avrg(R = 3) 160.24 337.29 527.91 337.29 626.91 1515.09 0.20
5 5×3×3 1.84 3.94 6.70 10 26.40 46 0.29

10×5×3 5.65 7.89 14.33 58 84.40 154 0.40
20×10×5 7.60 11.75 20.91 152 183.20 238 0.27
30×15×5 22.31 27.64 33.54 302 361.20 450 0.13
40×20×5 36.35 72.61 118.72 384 648.80 992 0.08

50×25×10 101.96 143.70 213.36 826 1036.80 1434 0.08
60×30×10 154.29 267.86 360.80 1048 1419.60 1816 0.07
70×35×10 244.93 350.09 471.33 1324 1523.20 1804 0.05
80×40×20 545.48 812.29 993.73 1860 2357.20 2882 0.04
90×45×20 913.20 1033.18 1240.23 1944 2503.60 2966 0.04
100×50×20 873.47 1282.77 1674.22 1744 2548.80 3398 0.07

Glob Avrg(R = 5) 264.28 364.88 467.98 877.45 1153.93 1470.91 0.14
10 5×3×3 1.40 5.12 8.36 8 21.20 34 0.33

10×5×3 3.44 9.40 16.91 18 56 104 0.27
20×10×5 8.59 23.96 44.38 68 231.20 434 0.07
30×15×5 18.74 41.13 63.64 172 419.60 552 0.11
40×20×5 67.11 86.19 127.58 598 762.80 994 0.16

50×25×10 68.85 135.97 170.81 570 1040 1288 0.07
60×30×10 167.50 261.94 304.53 904 1348 1844 0.07
70×35×10 290.50 373.66 485.72 1404 1499.20 1752 0.07
80×40×20 427.21 596.96 759.83 1462 1771.20 2274 0.05
90×45×20 621.69 1032.79 1626.56 1934 2383.20 3042 0.06
100×50×20 477.19 1263.33 1814.29 1180 2535.60 3724 0.07

Glob Avrg(R = 10) 195.66 348.22 492.96 756.18 1097.09 1458.36 0.12
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6 CONCLUSION

This paper presents an exact method for dealing with a new type of stochastic environment prob-
lem. The problem considered involves two or more decision-makers, each seeking to optimize
their utility functions over the efficient solution set in a multi-objective stochastic integer linear
programming (MOSILP) problem. In addition, the proposed method can be used to identify the
intersection between the efficient sets of the two stochastic multi-objective problems. Moreover,
by optimizing two functions over the efficient set, decision-makers obtain a set of best compro-
mise solutions in a finite number of iterations. It is also worth noting that the proposed method
obtains this set without having to explore the whole efficient set of the MOSILP problem, which
reduces the computational complexity compared to solving the MOSILP problem.

The proposed solution approach mainly relies on the combination of two techniques: the first
is the L-shaped method, and the second involves an adapted branch-and-bound strategy. This
combined approach is further enhanced by incorporating efficient tests and cuts to iteratively re-
duce the search space of the MOSILP problem. Moreover, the algorithm can be readily extended
to accommodate multiple decision-makers by integrating their respective preferences into the
efficient cuts. Experimental results showcase the effectiveness of the method, demonstrating ex-
cellent performance in terms of the number of iterations required while maintaining reasonable
computation times. This contribution has prompted us to contemplate several future avenues of
research. Our focus will be directed towards addressing the nonlinear aspect of the problem by
considering the adaptation of our method to handle nonlinear multi-objective models, incorpo-
rating nonlinear preference functions. We remain committed to continuous improvement of the
method in future endeavors.
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