
 e-ISSN 1980-6248 

 

http://dx.doi.org/10.1590/1980-6248-2018-0034 

 

 

 

 Pro-Posições | Campinas, SP | V. 31 | e20180034 | 2020   1/30 

 

ARTIGOS 

 

Computational thinking as a heuristic endeavour: students’ 

solutions of coding problems  1  2  3  4 

Pensamento Computacional como uma iniciativa heurística: 

soluções de estudantes sobre problemas de programação 

 

Ricardo Scucuglia Rodrigues da Silva (i) 

George Gadanidis (ii) 

Janette Hughes (iii) 

Immaculate Kizito Namukasa (iv) 

 

(i) Universidade Estadual Paulista Júlio de Mesquita Filho – Unesp, São José do Rio Preto, SP, Brasil. 
http://orcid.org/0000-0002-5810-2259, ricardo.scucuglia@unesp.br 

(ii) Western University – UWO, London, ON, Canada. https://orcid.org/0000-0002-5982-6056, 
ggadanid@uwo.ca 

(iii) University of Ontario Institute of Technology – UOIT, Oshawa, ON, Canada. 
https://orcid.org/0000-0002-3463-8382, janette.hughes@uoit.ca 

(iv) Western University – UWO, London, ON, Canada. https://orcid.org/0000-0001-7231-0671, 
inamukas@uwo.ca 

  

 
1 Apoio: Social Sciences and Humanities Research Council of Canada (SSHRC) 

Ontario Research Fund: Research Excellence (ORF-RE) 

National Council for Scientific and Technological Development (CNPq) (428323/2018/-9) 

2 References correction and bibliographic normalization services: Andressa Picosque (Tikinet) – 
revisao@tikinet.com.br 

3 Copy Editor: José Pereira de Queiroz – ze.pereira.queiroz@gmail.com 

4 Responsible Editor: Prof. Dr. Carlos Miguel da Silva Ribeiro, https://orcid.org/0000-0003-3505-4431, 
cmribas78@gmail.com 

http://dx.doi.org/10.1590/1980-6248-2018-0034
http://orcid.org/0000-0002-5810-2259
https://orcid.org/0000-0002-5982-6056
https://orcid.org/0000-0002-3463-8382
https://orcid.org/0000-0001-7231-0671
https://orcid.org/0000-0003-3505-4431
mailto:cmribas78@gmail.com


 e-ISSN 1980-6248 

 

http://dx.doi.org/10.1590/1980-6248-2018-0034 

 

 

 

 Pro-Posições | Campinas, SP | V. 31 | e20180034 | 2020   2/30 

 

 

Abstract: In this paper we investigate students’ computational thinking in 

mathematics education. Specifically, through the analysis of teaching experiments 

conducted as qualitative case studies, we explore aspects of constructionism and 

problem solving. In different learning scenarios, pairs of elementary school and 

undergraduate students explored coding puzzles in order to complete a posed 

computational-mathematical task. From a constructionist point of view, the results 

indicate that the learning experience involved a problem solving spiral of 

description, execution, reflection and debugging. In the case of the experience of 

the undergraduate students, we also identified specific characteristics of 

computational thinking related to heuristic processes such as exploration, 

planning, analysis, and verification. 

Keywords: mathematics education, constructionism, problem solving 

 

Resumo: Neste artigo, investigamos o pensamento computacional de alunos em educação 

matemática. Especificamente, pela análise de experimentos de ensino conduzidos como estudos de 

caso qualitativos, exploramos aspectos do construcionismo e da resolução de problemas. Em 

diferentes cenários de aprendizagem, duplas de alunos do ensino fundamental e de graduação 

exploraram problemas de codificação para concluir uma tarefa matemático-computacional. Do 

ponto de vista construcionista, os resultados indicam que a experiência de aprendizagem envolveu 

uma espiral de descrição, execução, reflexão e depuração de problemas. No caso da experiência 

dos estudantes de graduação, também identificamos características específicas do pensamento 

computacional relacionadas a processos heurísticos, como exploração, planejamento, análise e 

verificação. 

Palavras-chave: educação matemática, construcionismo, resolução de problemas 

 

 

 

 

Introduction 

The genesis of the very notion of computational thinking is directly related to problem 

solving, which is integral to mathematics doing and learning. For Denning (2017), the history 

of computational thinking begins with Polya. Moreover, the emergence of new types of digital 

media and its relation to K-12 curricula in the mid-2000’s has offered alternative ways to 

explore tasks based on computational affordances for (mathematical) teaching and learning 

(Lu & Fletcher, 2009). In the scope of this study, computational thinking is related to other 
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types of thinking and usually involves aspects such as automation, abstraction, decomposition, 

coding, problem solving, heuristics, and so on. According to Wing (2008), 

Computational thinking is a kind of analytical thinking. It shares with mathematical thinking in 
the general ways in which we might approach solving a problem. It shares with engineering 
thinking in the general ways in which we might approach designing and evaluating a large, 
complex system that operates within the constraints of the real world. It shares with scientific 
thinking in the general ways in which we might approach understanding computability, 
intelligence, the mind and human behaviour. (p. 3717) 

Computational thinking is evident in three different contexts: (i) on-screen 

programming, such as writing code in a specific language like Python to dynamically simulate 

the graph of a family of mathematical functions (such as y=mx+b), (ii) off-screen or unplugged 

programming-based solutions, such as using pseudocode to plan solutions or using commands 

to control objects in the physical world (for example instructing a peer how to walk a square), 

and (iii) using programming to control digital tangibles, such as a digital circuits or robots. 

In this paper we focus on on-screen programming, often referred to as coding, and we 

are especially interested in the role coding plays in problem solving when the same task is 

explored at different school levels, that is, how an open-ended mathematics/coding task offers 

ways to engage elementary school and undergraduate students in heuristics processes of 

learning mathematics. Specifically, we investigate aspects of learning experiences of Grade-6 

students and undergraduate mathematics majors using a framework based on two main 

theoretical approaches: (i) constructionism (Papert, 1993) as learning spiral (Valente, 2003); and 

(ii) problem solving components for heuristic learning (Polya, 1957; Schoenfeld, 1992). Our 

research question is: “What are the main aspects of students’ learning experience in terms of 

computational thinking and heuristics, in different school levels, when students explore a 

mathematical-computational task based on coding?” 

To do this, we conducted teaching experiments with two different groups of students 

using the computational-mathematical learning environment named Repeating Patterns 

(Gadanidis & Yiu, 2017). The experiments were each structured in four-hour sessions, with (i) 

three pairs of Grade-6 students; and (ii) two pairs of undergraduate majors in mathematics. 

Our goal is not to prove that students learned more or less (especially given the small sample 

in our study), but to investigate in depth and to identify and analyze the learning processes 

involved. 
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Our findings indicate that, at different school levels, the exploration of computational-

mathematical tasks may offer ways to conceive the learning experience as a spiral process, 

whose cognitive and attitudinal components reveal problem solving components. On the one 

hand, description, execution, reflection, and debugging are processes that form a learning 

spiral. On the other hand, exploration, planning, analysis, and verification are fundamental 

components of heuristics related to computational thinking. Although these components are 

also in part mathematical doing and learning, there is a difference, and an enhancement, made 

possible by the ability to model mathematical processes and relationships with code. These 

models through code make dynamic modelling possible, and enhance the ability to explore 

and to verify, for example. 

According to Borba and Villarreal (2005), experimentation-with-technology in 

mathematics education offers ways for reorganization of mathematical thinking, regarding 

processes such as “the possibility of testing a conjecture using a great number of examples and 

the chance of repeating experiments, due to quick feedback given by computers” (p. 75). This 

study explores the reorganization of students’ mathematical thinking due to the enhanced 

ability offered by computer programming to build and control dynamic models of 

mathematical relationships—that is, the enhanced ability to engage in constructionist 

practices. 

 

Theoretical framework 

As an initial strategy to built our theoretical framework, we explore the very notion of 

networking of theories (Artigue & Mariotti, 2014; Bikner-Ahsbahs & Prediger, 2010), because we 

seek to elaborate connections between computational thinking, constructionism, problem 

solving, and heuristics. Specifically, we first relate constructionism to the idea of learning 

spiral, and problem solving to heuristics, then we make connections between learning spiral 

and heuristics (see Figure 1). We also regard that “theories within this semiosphere can be 

described as triplets (P, M, Q) that establish languages and allow the building of relationships 

between them” (Bikner-Ahsbahs, 2010, p. 9). In this context, P refers to principles, M to 

methodologies, and Q represents questions related to P and M. According to Bikner-Ahsbahs 
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(2010), “a connection between two theories establishes a specific relation that depends on the 

theories’ structures and the goal of this connection” (p. 9). 

 
Figure 1 – Networking theories of the study 

 

In the following subsections, we discuss aspects related to the principles (Ps) of the 

theories used in this study. First, we explore constructionism in terms of computational 

thinking, and thus we discuss the notion of learning spiral in constructionism. Then, we 

discuss computational thinking, problem solving, and heuristics seeking to establish 

connections between the learning spiral and heuristics components. Our goal is to show that 

the synergy between these perspectives, that is, they are not in epistemological conflict and 

they are complementary. 

 

Computational thinking, constructionism, and learning spiral 

From Wing’s (2006) work, we identify a connection between computational thinking 

and computer programing, although “thinking like a computer scientist means more than 

being able to program a computer. It requires thinking at multiple levels of abstraction” (p. 

35). According to Papert (1993), computer programing has an epistemological potential for 

children’s learning, offering ways to ‘think about thinking’. Thus, the very notion of 

constructionism emphasizes students’ effective actions for learning. This perspective  

is built on the assumption that children will do best by finding … for themselves the specific 
knowledge they need; organized or informal education can help most by making sure they are 
supported morally, psychologically, materially, and intellectually in their efforts. (p. 139) 
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Construction of knowledge is achieved “when it is supported by construction of a 

more public sort ‘in the world’[, that is,] the product can be shown, discussed, examined, 

probed, and admired. It is out there” (Papert, 1993, p. 142). Using programs such as LOGO, 

children may program the computer and, through hands-on activities, explore science, 

mathematics, and other subjects (Papert, 1980). Papert (1980) suggested that exploration and a 

failure-positive learning environment promotes problem solving: 

many children are held back in their learning because they have a model of learning in which 
you have either “got it” or “got it wrong”. But when you learn to program you almost never 
get it right the first time. Learning to be a master programmer is learning to become highly 
skilled at isolating and correcting “bugs”, the parts that keep the program from working. The 
question to ask about the program is not whether it is right or wrong, but if it is fixable. If this 
way of looking at intellectual products were generalized to how the larger culture thinks about 
knowledge and its acquisition, we all might be less intimidated by our fears of “being wrong”. 
(p. 23) 

Building on the constructionist approach, Valente (2003) developed a theoretical view 

referred to as learning actions or spiral that conceive user-computer interaction as description-

execution-reflection-debugging-description-… actions. After a first stage of debugging, a new second 

type of description emerges, and so on (see Figure 2). 

 
Figure 2 – Constructionist learning spiral (Valente, 2003) 

Source: adapted by the authors from Idem (2017) 
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According to Valente (2003), these actions can be described as: 

 Description: initial proposed solution of the learner to describe steps of the problem 

solution in terms of the software language; 

 Execution: procedures executed by the computer; 

 Reflection: based on results given by the computer, the learner compares what was 

achieved with the initial intended ideas; 

 Debugging: the learner explores new information and alternate solutions into 

another action of description. 

 

Maltempi (2005) describes these constructionist processes as the following: 

The description action corresponds to the explication of the ideas, concepts and strategies that 
the learner uses to elaborate his/her (project) program, and offers the opportunity to “see” the 
student’s reasoning process and understand what is being done, conceptual problems etc. To 
the student, the opportunity to “test” ideas and conceptions is amplified when the computer 
executes the program, presenting the result of the same. The answer given by the computer is 
faithful and immediate, offering the student the possibility of confronting their original ideas 
with the result. This has led to a process of reflection and awareness he knows it or not. When 
the result provided by the computer does not match the expected, the learner needs to debug 
the program, that is, review the process of representing the solution of the problem (his/her 
ideas). (p. 6) 

Although Valente (2003) proposes a learning spiral as a sequence of actions within 

constructionism, computer-based learning processes are considerably dynamic, that is, actions 

usually happen simultaneously, revealing the complexity of cognitive, linguistic, and 

technological processes of learning. In our study, we identified the description and execution 

actions as students’ inputs of commands and computer’s executions, respectively. However, 

reflections and debugging actions appeared to happen simultaneously, through students’ 

dialogues and interactions. Indeed, these processes seem to be similar and directly related to 

the main components of problem solving. We do find this type of dynamicity/complexity in 

computational thinking related to problem solving (Denning, 2017). In particular, problem 

solving is related to heuristics. Schoenfeld (1985) states: 
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Heuristic strategies are rules of thumb for successful problem solving, general suggestions that 
help an individual to understand a problem better or to make progress toward its solution. 
Such strategies include exploiting analogies, introducing auxiliary elements in a problem or 
working auxiliary problem, arguing by contradiction, working forward from the data, 
decomposing and recombining, exploiting related problems, drawing figures, generalizing and 
using ‘inventor’s paradox’ specializing, using reductio ad absurdum and indirect proof working 
backward. There is some consensus among mathematicians that these strategies are useful. (p. 
23) 

Thus, constructionism, computational thinking, and problem solving are closely 

related. Constructionism, in general, is a learning theory involving problem solving that usually 

offers ways to explore computer programming in mathematics learning. 

 

Computational thinking, problem solving, and heuristics 

According to Wing (2006), 

Computational thinking involves solving problems, designing systems, and understanding 
human behavior, by drawing on the concepts fundamental to computer science. 
Computational thinking includes a range of mental tools that reflect the breadth of the field of 
computer science.… Computational thinking is using heuristic reasoning to discover a 
solution. It is planning, learning, and scheduling in the presence of uncertainty. (p. 33-34) 

The heuristics involved in computational activities have a similar nature in problem 

solving. Schoenfeld (1992) presents a framework on metacognition exploring heuristic aspects 

of students’ problem solving in different scenarios. Specifically, Schoenfeld (1992) built graphs 

to display students’ activities over time to identify the variety of thinking processes involved 

(or not) in solving a problem, and the depth/diversity of heuristic endeavours. We explore 

these processes as heuristic actions in problem solving. In some types of exploration, students 

only read the mathematical problem or task and briefly explored it. That is, students may not 

meaningfully engage with the problem solving and heuristic processes when they explore 

mathematics. In contrast, in rich heuristic situations, students developed dynamically the 

following processes, identified by Schoenfeld (1992): analyze; explore; plan; implement; and 

verify. Thus, regarding Schoenfeld’s (1992) heuristic processes, and fundamental ideas 

supported by Polya (1957), we suggest for this research the following heuristic components as 

essential processes for problem solving in computational environments: 
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 Exploring: In the exploratory stage of problem solving, students read, reread, and 

restate the problem in order to understand it. That is, students “identify the 

information given and the information that needs to be determined” (Ontario Ministry 

of Education, 2005, p. 15). It is important for students’ learning to talk about the 

problem in order to better understand it. Beyond understanding the problem, students 

“should also desire its solution” (Polya, 1957, p. 6). In constructionist terms, 

exploration in problem solving may be conceptualized as a first attempt of debugging. 

 Planning: Students must relate the problem with problems previously explored in 

order to elaborate, select, and combine different potential strategies for solutions 

(Ontario Ministry of Education, 2005). In constructionist terms, the processes of 

planning in problem solving consolidates the description component of the spiral. 

 Verifying: Students execute their strategies, exploring possible calculations, 

computations, and constructions one must perform in order to obtain the unknown 

(Polya, 1957). They may draw pictures, use manipulatives, verbal and written words 

and symbols to represent and share possible results or solutions (Ontario Ministry of 

Education, 2005). Regarding the constructionist spiral components, verification refers 

to computer execution. 

 Analysing: Students check their results or answers, reviewing their methods or 

strategies. “By looking back at the completed solution, by considering and re-

examining the result and the path that led to it, they could consolidate their knowledge 

and develop their ability to solve problems” (Polya, 1957, p. 14-15). In constructionist 

terms, analysis refers to the reflection component of the spiral. 

 

In this way we consider two conceptualizations of related processes of learning (with 

technology), one regarding actions within a computer environment and another emphasizing 

heuristic or discovering processes in problem solving (see Figure 3). We must also 

acknowledge the complexity of these components and their relations, as they may be related in 

a variety of ways and their characteristics are quite similar depending on the nature of the 

investigated learning phenomena. 
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Figure 3 – Constructionist and Problem Solving components 

 

Objectives and methodology 

The goal of this study is to investigate aspects of students’ learning when they are 

engaged in the exploration of computational-mathematical tasks. Specifically, we explore 

connections between constructionism (Valente, 2003) and problem solving (Polya, 1957; 

Schoenfeld, 1992) to discuss relations between computational thinking and heuristics in school 

learning. To develop this investigation, we conducted teaching experiments (Steffe & 

Thompson, 2000), conceived in this report as qualitative case studies (Stake, 2000). As Ms 

within a networking of theory, teaching experiments, video analysis, and case studies are 

coherent methodologies in the scope of this study related to computational thinking, 

constructionism, and problem solving. 

The teaching experiments were structured in two main sessions of four hours each 

with each group of participants. That is, we conducted one set of “1-hour×4 sessions” with 

each group as follows: (i) three pairs of Grade-6 students; and (ii) two pairs of undergraduate 

majors in mathematics. With the first group, we recorded field notes, saved/printed screens of 

their work and solutions, and interviewed all the students after each 1-hour session. With the 

group of undergraduates, instead of conducting interviews, we screen recorded all their actions 

during the experiment using the software Flashback Pro 5 recorder. 
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We proposed to develop the same task with different groups of students, from two 

different school levels, in order to explore aspects towards the very notion of “low floor, high 

ceiling”. That is, “students engage with coding with minimal prerequisite knowledge, have 

opportunities to explore more complex coding concepts and problems, and can pursue many 

different interests and for a wide audience” (Gadanidis, 2015, p. 308). With this contrast, we 

can investigate similarities and differences in terms of computational/heuristic processes and 

aspects of elementary school students’ and pre-service mathematics teachers’ ways of thinking. 

By investigating two different groups we explore specific kinds of reasoning deployments 

from low floor to high ceiling. 

In Chart 1 we present a description of what both groups of students explored about 

the task in each 1-hour session. The sample selected for discussion in this report refers to the 

final exploration conducted in the last session. 

 

Chart 1 – Description of students’ explorations sessions 

Content Description 
 

 
Session 1 – (1 hour) 

 
Explored an introductory activity using the app 

available at 
http://researchideas.ca/wmt/c2a0.html 

Explored the “play with patterns” activity of 
the task (pages 1-3 of 

researchideas.ca/patterns/repeating-patterns-
tutorial.pdf) 

Students explored an app involving coding and arts 
(colors and sounds). That was their first experience and 
familiarization with a “simplified” tool of coding and a 
visual-artistic-aural way of exploring patterns. Based on 
the experimental actions with the app, the task was 
introduced to the students, in which they explored 
sequences of colors related to multiples of 3 (pages 1-2). 
They were also encouraged to create their own sequences 
of colors and variations of their sequences, creating 
different types of patterns of colors (pages 2-3). 

 
Session 2 – (1 hour) 

 
Explored “play with code”, “predict, edit, and 
test” and “solve puzzles #1” activities of the 

task (pages 4-6 of 
researchideas.ca/patterns/repeating-patterns-

tutorial.pdf) 

That was students’ first experience with the Repeating 
Patterns computational-mathematical environment. They 
developed an initial familiarization with commands and 
functions of the parameters of the application. They were 
engaged in conjecturing connections between the 
computer code and the respective execution of the 
computer, that is, connections between representations 
(Borba & Villarreal, 2005). For example, they discovered 
that commands such as <set x to #> and <set y to #> 
refer to the initial position of the sequence of shapes, 
that is, the visual computational display regarded a 
Cartesian plane. Other commands explored by the 
students were <set angle to #>, <set step size to #>, 
<set stamp rate to #>, <add color shape to pattern> 
and <repeat # times <do #>>. In this activity, students 
created and saved their first repeating pattern 
algorithm/image and solved three problems in puzzle 
#1.  
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Session 3 – (1 hour) 

 
Explored the “create a grid pattern” and “solve 
puzzles #2” activities of the task (pages 7-9 of 
researchideas.ca/patterns/repeating-patterns-

tutorial.pdf) 

The main objective of this activity of the task was to 
engage students in the exploration of nested loops. 
Through this ability/resource, students were able to 
construct grid patterns, displaying a repeating pattern 
sequence of shapes 2-dimentionally (in a grid 
arrangement). Puzzle #2 is formed by 6 problems. Both 
groups of students had difficulty in solving problems #1 
and #2. Actually, Grade-6 students were unable to 
present a satisfactory final solution. Undergraduate 
students presented solutions with some incoherence, 
mistakes and/or imperfections. 

 
Session 4 – (1 hour) 

 
Explored the “combine patterns” and “solve 
puzzles #3” activities of the task (pages 10-13 

of researchideas.ca/patterns/repeating-
patterns-tutorial.pdf) 

In the last part of the task, the episode we selected as the 
one we discuss in this paper (Marshall, 1996). Students 
explored combined patterns using nested loops. That is, 
they elaborated and ran two algorithms simultaneously. A 
first algorithm (pattern 1) was given to them and they 
elaborated pattern 2 based on the first. One of the 
reasons we selected this episode was because it is a 
natural extension of using nested loops to create more 
elaborate repeating patterns. Another reason was because 
the nature of the final solutions between the two groups 
was qualitatively different and allowed us to connect to 
the goal of this paper—to understand how students at 
different levels engage with the same task. Within the last 
1-hour session, the selected episode lasted about 20-30 
minutes. 

 

Data analysis was conducted based on the Powell, Francisco, and Maher (2003) 

analytic model of video analysis. This model is composed by the following non-linear 

procedures: observation, description, identification of turning points, transcription, coding, 

and composition of the narrative. Using Marshall’s (1996) notion of judgement and theoretical 

samples in qualitative research, we report actions of pairs of students to build our case studies. 

Regarding the Grade-6 case, we selected from our data the interactions of one pair of students 

consisting of two 12-year-old male students, who are identified in this report as Student A and 

Student B. Regarding the mathematics majors’ case, we also selected one pair of participants 

consisting of one 21-year-old female student and another 22-year-old male student. We refer 

to the undergraduate participants as Student C and Student D. In Chart 2, we describe the 

participants of the research. 
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Chart 2 – Description of the participants 

School Level Participants in the research Selected participants for the current 
report 

Grade-6 3 pairs of students (11-12 year old) 1 pair (two 12 year old males) 

Undergraduate 2 pairs of students (21-24 year old) 1 pair (21 year old female / 22 year old 
male) 

 

To organize, analyze, and discuss the research data through a constructionist learning 

spiral perspective (Valente, 2003), we created charts with four columns. In the first column, 

we indicated the attempt of the current students’ solution (e.g., first attempt of solution, 

second attempt of solution, …, final solution). In the second column—named reflection and 

debugging—we presented a transcription of samples of students’ and teacher’s dialogues during 

their exploration, to give the reader a better sense of students’ learning experiences. In the 

third column—named description—we displayed students’ typed commands on the computer 

screen (from screen-captured images of the commands). In the last column—execution—we 

displayed the screen-captured images of the output generated by the computer due to the 

respective inputs. 

Regarding students’ computational-mathematical exploration, we also analyzed the 

data in terms of problem solving. Specifically, based on the study developed by Schoenfeld 

(1992), we identified the constructionist components as heuristics processes and we 

constructed graphs to represent these processes along time. This type of methodological 

approach was also conducted by Wilkerson (2016) in her study on the role of technology in 

engaging pre-service teachers with the iterative nature of model-based inquiry. The 

methodological enterprise of the study towards graph constructions focused on content 

analysis of group discussions. As described in Figure 2, when comparing constructionism and 

problem solving, we built a direct relation between description and planning, execution and 

verifying, reflection and analysing, and debugging and exploring. For example, when reflection 

and debugging were explored together, we were able to find and represent graphically 

different nuances between analysis and exploration based on students’ speeches/actions. 

Thus, examples of these distinctions were identified in data analysis as follows (Chart 3): 
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Chart 3 – Example of the categorization of data (transcription) in terms of problem solving 
components (analysing and exploring) 

Reflection and Debugging 
 

(actual/chronological 
transcription) 

 

Problem solving component Heuristic endeavour 
 

(transcription related to analysis 
and exploration) 

Teacher: Something is missing! 
Student C: The directions of the 
diagonals are wrong too. 
Student D: But we did not 
change anything in relation to the 
first pattern. 
Teacher: The position is correct, 
right? 
Student C: Only the first line of 
pattern 2 is right. 
Teacher: What if you start 
pattern 2 from another position? 
Student C: Let us change y to 
100, change y by 40 and… 
Student D: … and put the 
sequence as blue, blue, yellow, 
yellow. 

Analyzing: students’ explicit 
descriptions; actual configuration 

of parameters 
 

Student C: Let us change y to 
100, change y by 40 and… 
Student D: … and put the 
sequence as blue, blue, yellow, 
yellow. 

 
 
 

Exploring: students’ debugging 
actions related to the information 

(given/requested) and/or 
computer executed image. 

Teacher: Something is missing! 
Student C: The directions of the 
diagonals are wrong too. 
Student D: But we did not 
change anything in relation to the 
first pattern. 
Teacher: The position is correct, 
right? 
Student C: Only the first line of 
pattern 2 is right. 
Teacher: What if you start 
pattern 2 from another position? 

 

Posing the puzzle 

The mathematics-coding problem posed to students in the research is part of the 

sequence of puzzles organized as a task available at www.researchideas.ca/patterns (Gadanidis 

& Yiu, 2017). The coding environment was developed using Google’s Blockly 

(developers.google.com/blockly/), which is a tool for creating applications with custom code 

blocks. Students explored the whole task at the teaching experiment sessions, but in this 

article, we only discuss the last puzzle of the task. Step 1 of this puzzle is shown in Figure 4. 

 
Figure 4 – The selected puzzle discussed in this paper (part 1) 
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Then, in Step 2, students are asked to edit the code shown in Figure 4 so that it 

generates the new pattern depicted in Figure 5. One of the main pedagogic characteristics of 

the problem is its open-ended nature, because there is not only one solution to solve it. As we 

investigated, in this study, Grade-6 and undergraduate students developed different strategies 

of solutions, and solutions. 

 
Figure 5 – The selected puzzle discussed in this paper (part 2) 

 

From a didactic point of view, the objective of this task is to offer students ways to 

explore concepts in Geometry such as angles, plotting coordinates, and symmetry. To solve 

the problem, students have to think computationally, coordinating representations (visual and 

numerical) regarding the functionally of the parameters within an algorithm, which can be 

modified. The nature of the virtual object in construction assumes also an artistic dimension, 

since colors, shapes, order/pattern, and symmetry are fundamental elements of the 

construction. 

We also highlight two significant (semiotic) aspects potentially prompted by this 

puzzle in terms of mathematical and computational thinking: 

(i) Aesthetics/artistic thinking. The puzzle explores direct connections between 

representations regarding the description-execution actions. For instance, when one 

configures/describes different values for (x, y), that is, <set x to> and <set y to>, then, the 

execution changes the initial position of the object, which also can be configured differently. 

Thus, there is also an artistic/aesthetics component, because the object can be described in 
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different forms, with different colours, and it produces different sounds when executed. These 

types of direct connections between description and execution were explored by the students 

from the beginning of the investigation of the first puzzle of the task. 

(ii) Thinking in two dimensions. The puzzle introduces the need to use nested 

loops to develop a coherent solution for the puzzle, which enhances the complexity of 

computational thinking within the heuristic endeavour and opens windows into mathematics. 

With a “singular” loop we have a linear/unidimensional repetition of a configured core of 

objectives, forming a sequence of multiple cored objects. The combination of loops, in this 

case, the elaboration of nested loops, implies a qualitative change of the mathematical-

computational construction from unidimensional to two-dimensional representations. 

Moreover, symmetry plays a significant role towards the connections between mathematical-

aesthetic thinking and computational thinking when we consider the visual complementarity 

of the patterns. 

 

Results and discussion 

Regarding the notion of networking of theories as a strategy to build connections 

between problem solving/heuristics and constructionism/computational thinking in this 

study, we are able now to represent connections between principles and methods (see Figure 

6) and, thus, pose specific questions related to these principles and methods. We present some 

research questions of this study in the following subsections. 

 
Figure 6 – Relations between principles and methods in this study’s framework  
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Constructionist actions: elementary school students 

Q: How did Grade-6 students explore the task from a constructionist point of view? What are some 

of the main aspects of students’ learning experience? 

In this research, 3 pairs of Grade-6 students explored the proposed task in four 

sessions of 1 hour each. Three teachers also participated and each one of them worked with 

one pair of students. We took notes about the students-teacher-computer interactions, saved 

students’ final solutions and interviewed them at the end of each 1-hour session. Following, 

we present the beginning of the dialogue just after one pair of students claim they had solved 

the last puzzle of the task. 

Teacher: How did you get this second pattern? 

Student A: This pattern was one of the most difficult we constructed. But, together, we 
understood the first part of the pattern was already done. Then, we just had to invert it. We 
tried many times. We tested many different parameters of the commands. 

Teacher: So, you guys have two patterns here? 

Student B: Yes. Here at the first pattern. We have 5 lines. The first pattern has 5 lines. The 
second one we constructed has 4 lines. 

Teacher: What are the similarities? 

Student A: The order of the blocks is the same, but they are opposed. I mean, the second 
pattern reverses the first one. The angle changes. 

We identify in the dialogue above significant aspects of mathematical thinking with 

computers in problem solving. Statements such as “we tried many times” and “we tested 

many times” reveals the emergence of exploration as a relevant heuristic activity (Schoenfeld, 

1992). Authors such as Borba and Villarreal (2005) explore these aspects as experimentation-

with-technology, due to the role of technology in mathematical thinking. Student B’s 

statement, for instance, might be understood as referring to different types of problem solving 

components such as planning, exploration, and verification. Finally, we also identify analytic 

endeavours in Student A’s last speech. Therefore, we found some evidence that this process 

involving computational-mathematical thinking offered ways for students to get heuristically 

engaged in solving a problem with computer programming. We also acknowledge a 

methodological limitation to analyze in depth students’ heuristics actions in this case, because 

we did not video record the actual experiment with Grade-6 students. We (only) analyzed 
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students’ reports of their explorations through interviews and field notes, but these 

procedures were sufficient to construct graphs of their problem solving processes. 

Regarding our constructionist approach (Papert, 1980), based on Valente’s (2003) 

learning spiral metaphor and components, we present in Chart 4 each of the Grade-6 

students’ actions, including transcriptions of the dialogues in terms of reflection/debugging 

actions toward the construction of attempts of solutions in coding pattern 2 based on pattern 

1. 

Chart 4 – Grade-6 students’ constructionist actions 

Solution Reflection and Debugging Description Execution 
 

 
 
 
 
 
 
 
 
First attempt 
of solution 

Teacher: How did you solve the 
puzzle? 
Student A: First, we were trying to 
repeat the pattern starting from the 
left to the right. Then, we decided 
to start from the right to the left. 
Teacher: How did that work? 
Student B: In our first attempt, we 
figured out we had to change the 
position, that is, x and y. So, our 
first try was 500 and 295. Then, we 
figured out that to start from right 
to left, we had to change the angle 
from 0 to 180. Also, we changed 
the parameters at the repeating 
command like this [point out the 
finger to the parameters of the 
command], because the first 
patterns had 5 lines and the second 
had 4 lines. 
Teacher: Did that work? 
Student B: Not exactly, you see? 

 

 

 

 
 
 
 
 
 
 
 
 
Final 
solution 

Teacher: How did you fix it? 
Student A: We adjusted the initial 
x position to 660 and we changed 
the sequence of blocks from 
blue/circle, blue/circle, yellow/star, 
yellow/star to yellow/star, 
yellow/star, blue/circle, blue/circle. 
Do you see? We made the sequence 
of blocks opposite. 
Teacher: Great! Anything else? 
Student B: Yes! We also changed 
the x position within we repeat 
command to 660. 
Teacher: And why is the y position 
-40 within the repeat command? 
Student A: We did not know at 
first, but after trying a couple of 
times we discovered… 
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Student A and Student B: …it is 
because the step size is 40. 
Teacher: Great! You guys figured 
out the puzzle! 

 

 

The Grade-6 students’ solution reveals the elaboration and testing of conjectures 

regarding the initial position (x, y) and design/order of the sequence of blocks or shapes. In 

this case, students decided to create Pattern 2 starting immediately above Pattern 1. For this, 

they had to change the direction and the design of the sequence of blocks: from 0 to 180 

degrees and the sequence of colors of shapes from blue/blue/yellow/yellow to 

yellow/yellow/blue/blue. Actually, they could have improved their solution by displaying <set 

y to 300>. If they had done that, the small space between Pattern 1 and Pattern 2 (between 

lines 5 and 6) would not exist. Therefore, we found one minor imprecision in elementary 

school students’ final solution. We also highlight that Pattern 2 is (correctly) formed by 4 lines 

of blocks, instead of 5 lines such as in Pattern 1. 

We identified problem solving heuristics processes regarding students’ description of 

their exploration as well. The problem solving endeavour by the students developed along the 

constructionist spiral components and involves the main four problem solving processes: 

exploration, verification, analysis, and planning. However, methodologically, we did not 

produce data about students’ actual investigation of the puzzle. That is, we only used students’ 

descriptions about what they have done through interviews. In this sense, we are not able to 

represent students’ problem solving processes in a graph as Schoenfeld (1992) did. In contrast, 

in our experience with undergraduate students in this research, we were able to analyze and 

discuss both the constructionist and the problem solving components of students’ 

mathematical-computational exploration. 
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Constructionist actions: undergraduate students 

Q: How did undergraduate students explore the task from a constructionist point of view? What are 

some of the main aspects of students’ learning experience? 

Regarding the undergraduate students’ solution, we highlight the possibility of figuring 

out different solutions for this puzzle on the repeating patterns activity, in comparison to 

Grade-6 students. As shown in Chart 5, the majors in mathematics found a solution after 3 

attempts, and created pattern 2 using a different sequence of blocks 

(blue/yellow/yellow/blue) and (100, 180) as the initial (x, y) position. In contrast to the Grade 

6 students, they did not change the angle in relation to pattern 1. Their solution involved the 

construction of the second pattern, which in combination with the given pattern, resulted in a 

solution. 

Chart 5 – Undergraduate students’ constructionist actions 

Solution Reflection and Debugging Description Execution 
First attempt 
of solution 

Teacher: Now you guys must 
construct this pattern, ok? 
Student C: Do I have to change 
this? [point at the change y by -40 
command]. 
Teacher: You already made the 
pattern above, which goes until the 
middle. What do you guys have to 
change over there? 
Students explore the x and y position 
commands. 
Teacher: For each line, how long 
is it? 
Student C: What do you mean? 
Teacher: From the first to the 
second line, how is it changing? 
Student C and Student D: 40 
[refers to step size]. 
Student D: We must consider 5 
times 40, because we have 5 lines. 
Teacher: So, what happens with 
the sequence? 
Student C: It changes. 
Teacher: Right. It was blue, blue, 
yellow, yellow. And now…? 
Student C: We will try blue, 
yellow, yellow, blue. But look. It is 
not supposed to be 40 there [step 
size]. Each line takes 40. So, I think 
it is -200, because we want 5 times 
40 below. 
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Teacher: Well, are you sure you 
should change y by -200 within the 
repeat command? 
Student D: I see! We must change 
the original y position from 500 to 
300. 
Student C: Let’s see what we get. 

Second 
attempt of 
solution 

Teacher: Something is missing! 
Student C: The directions of the 
diagonals are wrong too. 
Student D: But we did not change 
anything in relation to the first 
pattern. 
Teacher: The position is correct, 
right? 
Student C: Only the first line of 
pattern 2 is right. 
Teacher: What if you start pattern 
2 from another position? 
Student C: Let us change y to 100, 
change y by 40 and… 
Student D: … and put the 
sequence as blue, blue, yellow, 
yellow. 

 

 
 

 

 

Third 
attempt of 
solution 

Student C: Oops! There is one 40 
over the top. 
Student D: Let us try 140? 
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Final 
solution 

Student C: it is still wrong. Look! 
What if we take off another 40? 
Teacher: Try it. 
Student D: Then one line will 
overlap another. 
Student C: Change y to 180. 
Student D and Student C: 
Beautiful! 
 

 

 

 

In the first attempt of solution, the focus of students’ strategies was on (x, y) initial 

position for the beginning of the sequence of figures. They figured out that each line of the 

sequence of figures referred to 40 unities in position. Thus, they conjectured that they had to 

consider 200 units, because there were five lines (40×5=200). Moreover, since the initial 

position of y was 500 in pattern 1, and they would like to move the sequence bottom down in 

pattern 2, they described <set y to 300>, because 500–200=300. However, they did not 

change the configuration of the original sequence of figures. Thus, through the computer 

execution, they verified their first strategy, and decided to start a new attempt at a solution. 

The second attempt at a solution started with students’ verification that the first one 

was wrong. Consequently, they started off the reflect and debug aspects of their mistakes 

about the first attempt of solution. They identified, for instance, that the directions of the 

diagonals were wrong, that is, in comparison to the design of the image given in the task, the 

constructed image was different. This process of visualization through thinking-with-media, 

characterized in this case as a debugging component within a constructionist view, might be 

part of an exploration process in heuristics or problem solving. Then, they started to 

analyze/reflect about their first solution based on what was given by the computer 

(execution), in combination to their description/planning approach. Although the teacher had 

mentioned the accuracy in changing (x, y) position within the students’ first attempt of 

solution, they decided to configure both (x, y) position in two different levels and the 
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color/shape of the sequence that would generate the sequence of objects or shapes. Thus, 

their description/planning action was to configure the initial position as (x, y)=(100, 100) and 

the parameter <change y by 40> within the nested loop, instead of -40. The execution of 

these commands displayed a space between the figures generated by both patterns in 

combination. Quickly, they re-configured a new description as their third attempt solution or 

strategy, in which they change the (x, y) initial position from (100, 100) to (100, 140). 

Finally, the undergraduate students recognized that the combination of images 

generated by the patterns was not correct yet. Visually, they identified that the current 

symmetry was not the same as that given/asked in the task. Thus, the final solution was 

interesting in the sense that students had a conjecture and conducted their plan overlapping 

the lines of sequences of shapes on the symmetry axis. To do that, they added 40 units for y in 

the initial (x, y) position, that is, they configured that to (100, 180). After describing and 

executing that, students arrived at their correct final solution. 

 

 

Heuristic endeavours 

Q: How did Grade-6 and undergraduate students explore the task from a heuristic point of view? 

What are some of the main aspects of students’ learning experience? 

Using Schoenfeld’s (1992) aspects of heuristics processes in problem solving, we 

identify through the learning spiral (Valente, 2003) an interesting process of thinking-with-

technology. We integrated to a heuristic endeavour the instructional role of teachers on 

students’ problem solving. We see this scenario as collectives of students-teacher-media 

(Borba & Villarreal, 2005) as producers of mathematical meaning through computational 

thinking. In Charts 6-7 and 8-11, we display a graph to indicate the heuristic processes 

involved on the students’ learning spiral regarding an adaptation of Schoenfeld’s (1992) 

categories: exploring, planning, verifying, and analysing. The construction of these graphs is 

theoretically and methodologically supported by studies such as Schoenfeld (1992) and 

Wilkerson (2016). Overall, the selected episode of data took 20 minutes for Grade-6 students 

and 22 minutes for undergraduate students.  

http://dx.doi.org/10.1590/1980-6248-2018-0034


 e-ISSN 1980-6248 

 

http://dx.doi.org/10.1590/1980-6248-2018-0034 

 

 

 

 Pro-Posições | Campinas, SP | V. 31 | e20180034 | 2020   24/30 

 

 

Charts 6-7: Grade-6 students’ heuristic processes/components 

 

First attempt of solving – Grade-6 students (10 min) 

Exploring                    

Verifying                   

Analysing                   

Planning                   

 

Final solution – Grade-6 students (10 min) 

Exploring                   

Verifying                   

Analysing                   

Planning                   

 

 

From these representations, we identified that Grade-6 solved the problem in their 

second attempt. In the first attempt, there was not an often variation of heuristic components, 

that is, we only identified one moment of exploration and a single and long moment of 

analysis, before exploration, planning, and exploration. In the final attempt, we identified three 

moments of exploration and three (longer) moments of analysis, before planning and 

verification. In this final situation, exploration components were shorter than analysis, which 

took about 7 of 10 minutes through the dynamic. As we discuss next, undergraduate students’ 

exploration was qualitatively different not only from a constructionist point of view, but from 

a heuristic point of view as well. 
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Charts 8-11: Majors’ heuristic processes/components 

First attempt of solving – undergraduate students (8 min) 

Exploring                 

Verifying                 

Analysing                 

Planning                 

Second attempt of solving – undergraduate students (6 min) 

Exploring               
Verifying               
Analysing               
Planning               

Third attempt of solving – undergraduate students (4 min) 

Exploring       
Verifying       
Analysing       
Planning       

Final solution – undergraduate students (4 min) 

Exploring       
Verifying       
Analysing       
Planning       

These graphs offer some evidence toward the nature of students’ heuristic processes in 

thinking mathematically with coding. The established connection between constructionism 

and problem solving revealed similarities between debugging and exploration and between 

reflection and analysis. Thus, the analyzed episode shows that these processes were 

predominant throughout students’ thinking and learning experiences in solving the problem. 

In attempt one, we identified a significant variance between exploring and analysing along 

time before a key provisory ending moment of planning (description) and verification 

(execution). In the second attempt, there is a smaller number of variations of exploration and 

analysis, but the exploration took longer compared to the first attempt. In the third attempt, 

such as in the second one, there was only one variation between exploration and analysis. 

Finally, in the last strategy of solution, we identified two variations between exploration and 

analysis. The reciprocity between computational and mathematical thinking is conceived as a 

“rich” scenario for students’ learning experiences, because we pointed out the existence of all 

the heuristic endeavours considered, regarding variations between them. According to 
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Schoenfeld (1992), the richness in heuristic components in solving problems refers to ways 

mathematicians think. Thus, we argue these types of approaches, like the one developed in 

this research, may offer ways to open windows into (advanced) mathematical thinking (Tall, 

1991). 

Using this style of approach, it is possible to get undergraduates to develop original ways of 
solving problems. The solutions may not be found as quickly as they might, given active 
teaching by the lecturer but the activities can help the students gain in confidence and desire to 
attack problems that they might previously have been unwilling to attempt. Such problem-
solving activities can also help to stimulate reflective thinking and to develop an internal 
monitor within the student’s mind to help keep track on the progress of the solution process 
and to ring warning bells when the solution may be leading up a blind alley. (Tall, 1991, p. 12) 

 

Conclusions 

Our findings show that for both young and older students, the exploration of the 

patterning computational-mathematical tasks illustrated learning experience as a spiral process 

that also revealed problem solving components. Students’ learning actions that involved 

computer interaction, specifically thinking about and changing code showed the description-

execution-reflection-debugging-description stages. Each action took place not one at a time 

and not in a sequential order. Moreover, certain qualitative differences regarding the stages of 

exploring the problem between young children and young adults were evident. We identified 

the description and execution actions as students’ inputs of commands and computer’s 

executions, respectively. However, reflections and debugging actions appeared to happen 

simultaneously, through students’ dialogues and interactions during varied attempts at solving 

the problem. Indeed, these processes of dynamicity/complexity in computational thinking 

seem to be similar and directly related to the main components of problem solving of 

exploration, planning, analysis, and verification that are fundamental components of heuristics 

related to computational thinking. Although these components are also part mathematical 

doing and learning, there is a difference, and an enhancement, made possible by the ability to 

model mathematical processes and relationships with code. These models through code 

enhance the ability to explore and to verify, for example, through different attempts of solving 

the problem. 
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Students’ learning experiences in this study involved mathematical contents/processes 

and computational thinking skills. In terms of mathematical content, they explored concepts 

of Geometry such as angles, plotting coordinates, symmetry, and sequences of colored shapes. 

In terms of processes, they were immersed in a constructionist environment built from the 

exploration of a computer task for solving a coding problem. In terms of computational 

thinking, the heuristics identified components revealed the analytic nature of thinking. In this 

case, thinking computationally involved mathematical, computational, and artistic elements. 

We also must highlight the connections between these types of representations conducted by 

the students in thinking computationally. 

Computational thinking was a relevant educational trend for teaching and learning 

mathematics during the 1980’s, primarily based on Papert’s (1980, 1993) work. This trend has 

become significant again today due to the development of new, visual coding environments 

that allow even very young students to engage meaningfully with computer programming. In 

this study, students solved a computational-mathematical problem through a process of 

elaborating and testing conjectures, that is, experimentation-with-technology, and thinking-

with-media (Borba & Villarreal, 2005). The goal of the study was to explore how elementary 

school students and undergraduate mathematics students engaged with a mathematics task 

using a coding environment. We noted that students at both levels engaged in constructionist 

practices and enhanced learning by using computer programming to build and control 

dynamic models of mathematical relationships. A difference between the two levels of 

students emerged in the final, more complex task. Regarding undergraduate students, we 

identified more attempts of solving the problem and a higher variation of heuristic 

components when comparing to Grade-6 students. That is considered a qualitative difference 

between the ways in thinking mathematically and acting computationally between the two 

groups of students. We see both of these groups’ ways of thinking as complex, but the 

complexity involving undergraduate students seems more sophisticated in terms of heuristics. 
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