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1. Introduction

Paper and steel industries store large amounts of raw material to be cut to manufacture products, because 
(i) the cost of transport, storage, and handling of large objects is smaller than the cost of the items, when they 
are considered separately throughout the manufacturing process, and (ii) the uncertainty of the demand for 
items. The determination of how the stored master rolls (objects) are supposed to be cut to manufacture the 
reels (items) required by the customers is known as the One-Dimensional Cutting Stock Problem. This classic 
problem in Operational Research represents a key process in these production chains. To minimize the trim loss 
or the number of rolls is a straightforward strategy. The first approach in this field was carried out by Kantorovich 
(1960) – and followed by Metzger (1958), Eilon (1960) and others. However, it was Gilmore and Gomory’s 
approach in the 1960s that extended the application to real size problems (Gilmore & Gomory, 1961; 1963).
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The agenda of Cutting and Packing problems over the last decades has accompanied the organized production 
systems in their quest for efficiency. In addition, waste material has been reduced, and almost eliminated, for 
reasons of competitive advantage or environmental responsibility. However, the cutting waste should not be the 
only decision criterion (Diegel et al., 2006; Belov & Scheithauer, 2007; Cherri et al., 2014; Yanasse & Limeira, 
2006; Cui et al., 2015). For efficiency, an adequate approach must also reduce the number of setups in the 
process, because setups require stopping the production line, which decreases performance. Therefore, a good 
solution should have a satisfactory balance between the raw material waste and the amount of generated cutting 
patterns, since this is related to the setup time for reconfiguration of the cutting machine. Moreover, models 
that represent such production systems must be capable of operating in different configurations; that is, they 
must provide good results even under several scenarios of demand and width of the items. In addition, the 
production environment requires models with low computational time to allow a quick response to the customer.

The One-Dimensional Cutting Stock Problem with Setup Costs (1DCSP-S) has been studied by several 
authors (Haessler, 1975; Foerster & Wäscher, 2000; Yanasse & Limeira, 2006; Cui et al., 2008; Mobasher & 
Ekici, 2013; Cui et al., 2015). Its potential applicability varies from paper industries (Diegel et al., 2006), chemical 
fiber industries (Umetani et al., 2003), production of abrasives (Kolen & Spieksma, 2000), shipbuilding settings 
(Cemil Dikili et al., 2007) and with applications that limit the number of orders in process (Yanasse, 1997; 
Belov & Scheithauer, 2007). With respect to computational complexity, as the 1DCSP-S is a strongly NP-Hard 
problem, it is widely tackled by heuristics (Yanasse & Limeira, 2006). One of the first methods for 1DCSP-S 
was the Sequential Heuristic Procedure (SHP) of Haessler (1975), which is presented in Section 2. A SHP is a 
greedy algorithm that generates cutting patterns sequentially to fulfill the demand of some items until complete 
exhaustion of the demand. SHPs differ in the criteria of what is an acceptable cutting pattern and how such 
patterns are generated (Henn & Wäscher, 2013).

The main idea for 1DCSP-S is to generate minimal trim loss patterns with high frequencies of use. The model 
proposed by Vahrenkamp (1996) considered these two descriptors and the search for the next pattern is chosen 
according to the best outcome of 200 trials of random bin-packing. Cemil Dikili et al. (2007) addressed the 
problem by generating a set of all complete cutting patterns and then selecting patterns from this set by applying 
a lexicographic SHP. Cui et al. (2008) developed the SHP-Cui (SHPC) algorithm that generates patterns through 
a bounded knapsack problem with a small set of the remaining item types. This set is controlled according to 
specified thresholds to reduce the trim loss by considering only some item types to maximize the frequency of 
the patterns. Cui el al. (2015) developed a robust algorithm that generates cutting patterns by using an SHP, 
and then uses an integer linear model that minimizes the sum of material and setup costs.

Mobasher & Ekici (2013) proposed a mixed integer linear model to the problem. Due its weak LP-relaxation, 
they also developed two local search algorithms (for a special case of the problem) and a column generation based 
heuristic algorithm. The 1DCSP-S is also addressed by metaheuristics (Araujo et al., 2014) and as a bi-objective 
problem (Aliano Filho et al., 2017). In general, the planning of the cutting process involves three interrelated 
decisions: (i) defining the cutting pattern, that is, the combination of (some) items on the master roll; (ii) the 
sequencing of execution of the cutting patterns to minimize the setup time between cutting patterns in the 
final solution; and, (iii) the definition of each cutting pattern frequency of use. The sequencing of cutting 
patterns will not be discussed here.

In this paper, a Modified Sequential Heuristic Procedure (MSHP) is proposed for 1DCSP-S, from Haessler’s 
initial proposal (1975). MSHP seeks to further reduce the cutting waste and setup number. Note that Haessler’s 
SHP has been used as an initial solution for some methods – as it has low computational cost – or even as a 
comparative solution. Our aim is to maintain the low computational cost and, at the same time, provide better 
solutions. The remaining part of this paper is organized as follows. Haessler’s SHP is presented in Section 2. 
The main contribution of this paper is the MSHP formulated in Section 3. Our model for generating cutting 
patterns seeks to minimize trim loss and maximize the frequency of the pattern. In other words, this model 
interprets Haessler’s lexicographic search. The computational tests are reported in Section 4. The final remarks 
are provided in Section 5.

2. Haessler’s SHP

Haessler (1975) presented a heuristic for generating cutting patterns with low trim loss and high frequency, 
aiming to find a good compromise solution for the Model (1–3). In our notation, index i for item types, 

{ } 1, 2, ,i m∈ … , and j for cutting patterns, { } 1, 2, , j n∈ … .
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where:

•	 rc  is the cost of each master roll;

•	 sc  is the setup cost of a pattern;

•	 ija  is the number of item types i obtained by using the pattern j;
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•	 1
ir  and 2

ir  are the lower and upper demands ( id ) agreed upon by the client for each item type i;

•	 is the set of non-negative integers, and objective function (1) minimizes the costs of trim loss and of setup 
cost, constraints (2) ensure each item is produced according to the demand bounds, and constraints (3) deal with 
the variable domain.

Instead of considering Model (1-3), Haessler proposed a heuristic algorithm that searches to generate cutting 
patterns according to three aspiration criteria in a lexicographic manner. When such pattern is found, it is used 
as maximum as possible and the residual demand is updated. The process iterates until all items are scheduled. 
The author proposed two descriptors, Equations (4) and (5), for setting the aspiration level considered for the 
next cutting pattern search. Note that before the first pattern is generated, i ir d= , where ir  is the residual demand 
for item type i from one iteration to another. These descriptors are stated below:

1. To estimate the number of master rolls needed to satisfy the remaining demand;
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2. To find the average number of items to be obtained from each master roll;

	 1
2

1

 
 ,  

m
ii

r
I

I
== ∑  	 (5)

The aspiration level considers trim loss, the number of items in the pattern, and the minimum frequency of 
the pattern. These criteria determine what an acceptable pattern is:

1. There is a maximum allowable trim loss (MAXTL);

2. There is a minimum and maximum number of items in the pattern (respectively, MINR and MAXR);

3. The pattern must be used a reasonable number of times ( 1GMINU Ia= , and 0 1Ga< ≤ ).

Cutting patterns are generated in a lexicographic manner, considering the residual demand, ir , in descending 
order, until a pattern fulfills the current aspiration criteria. If no pattern meets such criteria, MINU is reduced by 
one unit and the search process is restarted until a pattern is found. If MINU reaches the unit value, the pattern 
with least trim loss is accepted, so that the process ends. The demand update process is simply: (i) to check the 
maximum frequency of the pattern j without the occurrence of surplus as Equation (6), and (ii) to update the 
residual demand ir  as Equation (7), where k is the largest integer smaller than or equal to k:
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The author indicated the possibility of surplus to reduce the number of patterns used. This practice also 
helps to avoid the last pattern having a higher trim loss.

3. The proposed MSHP algorithm

We propose a Modified Sequential Heuristic Procedure (MSHP). The original SHP framework (Haessler, 1975) 
is maintained for generating patterns, calculating the frequency and updating the residual demand until all 
items have been scheduled. The cutting pattern generator is an adapted Integer Bounded Knapsack Problem that 
minimizes trim loss and maximizes the frequency of the generated pattern. This model is introduced in Section 
3.1. Several cutting plans are obtained by modifying two input parameters of the cutting pattern generator and 
the best cutting plan is stored in the first phase. Like Cui et al. (2015), in Section 3.2 we determine the usage 
of all different generated cutting patterns in MSHP in the second phase by using the Input-Based Total Cost 
Minimization of 1DCSP-S (Henn & Wäscher, 2013) for seeking even better results. In Section 3.3, we indicate 
the range of the parameters of our MSHP.

3.1. The adapted integer Bounded Knapsack Problem

The Integer Bounded Knapsack Problem is adapted here to consider the aspiration criteria of Haessler’s SHP. 
The main considerations are with respect to waste and setup reduction. In this section, we denote a cutting 
pattern by ija , which is an m-dimensional vector; as the index j represents the current cutting pattern being 
generated, we chose to omit it.

3.1.1. Waste reduction

We propose to use the Integer Bounded Knapsack Problem to generate a feasible cutting pattern with 
minimal trim loss. It is reasonable to assume the relation stated in Equation (8).
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One can limit the cutting trim loss as Haessler did with the variable t acting as MAXTL. However, it is more 
natural to have it as a goal to be minimized in the search process. The Integer Knapsack Problem is bounded 
according to Equations (9) and (10). The former constraint states the minimum and the maximum number of 
(small) items in the pattern. The latter constraint states the minimum ( il ) and maximum ( iu ) number of times 
that a particular item type i can appear in the pattern. Note that il  and iu  are calculated, before each cutting 
pattern generation, that is, they are not necessarily related to the original range of demanded item types.

	
1
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	 ,i i il a u≤ ≤  { } 1, 2, , .i m∈ …  	 (10)

3.1.2 Setup reduction

The generated cutting pattern should be used as many times as possible in order to reduce the number 
of setups in 1DCSP-S. Thus, we recommend maximizing the minimum frequency of the cutting pattern as 
described in Equation (11). This principle composes the objective function of our mathematical model plus the 
variable t. We note that Equation (11) does not contain a rounding function in its description, because it is not 
a residual demand update process and, a priori, one unit must be added in the denominator of the fraction to 
avoid mathematical discontinuity.
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Equation (11) is nonlinear. However, without loss of generality, it can be rewritten as Equation (12).
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In addition, the maximum of a list of attributes can be linearized as Equation (13), by introducing and 
minimizing a variable v.
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The Model (14-20) is the cutting pattern generator of MSHP, and it is presented below.
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Note that Constraint (16) allows for as many (or as few) item types i in the pattern as necessary to force 
high frequencies. However, at the same time, the trim loss is also minimized.

3.2. Total cost minimization of 1DCSP-S

In the first phase, several cutting plans and different patterns are generated for the problem. In the second 
phase, we provide these different patterns for Model (21-25), and the best cutting plan of first phase as an 
initial solution.
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where j∈  is a binary variable whose value is one if pattern j is used ( 0jx > ), according to constraints (23). We note 

that parameter jM  is limited by the possible maximum frequency of pattern j, that is, 0ij

i
i a

ij

dmax
a∀

  
 
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, where k 
is the smallest integer larger than or equal to k.

3.3. Setting parameters

The first phase of MSHP generates several cutting plans with different input arguments Ga  and Gβ , which 
are used to calculate the parameter iu , for all i. Thus, parameters a and β  are vectors of same dimension with 
different values for Ga  and Gβ , respectively. Algorithm 1 states the main parts of the MSHP. We recommend 
setting the minimum number of items in the pattern (MINR) as one to allow a more general search. Note that 
in some scenarios, it may not be possible to generate at least 2 1I −  items as indicated by Haessler, especially in 
instances with large-width item types. For the maximum number of items in the pattern (MAXR), as Haessler 
(1975), we recommend the maximum capacity of the cutting machine, that it, the number of knives.

Algorithm 1 – Modified Sequential Heuristic Procedure: Phase 1.

1: Data: Parameters id , iw ,W, a  and β .

2: i ir d← , for all item types i

3: j ←  0

4: for all ( Ga ,  Gβ ) in ( ,a β ) do

5:      while 
1

( 0)
m

i
i

r
=

>∑  do

6:          1j j← +

7:          (Re)Compute parameter iu , for all item types i

8:          Generate pattern ija  with Model (14-20)

9:          Compute jx  of pattern j as Equation (6)

10:         Update the residual demand as Equation (7)

11:      end while

12: end for

13: Return: the best cutting plan and all different patterns.

The minimum number of times that an item type i can be included in the pattern ( il ) can be set to zero for 
all items. Thus, the knapsack problem will have a larger range in the search process. The maximum number of 
times that an item type i can be included in the pattern ( iu ) is related to the geometric bound ( / iW w ) and to 
the parameter MINU. As indicated in Section 2, MINU represents the minimum frequency that the generated 
cutting pattern should have. Haessler indicated that the fraction varies in the range [0.5;0.9] as the residual 
demand decreases. According to Haessler, the expected behavior is that the first patterns have high frequencies 
to meet item types with major demand and that the last patterns have low frequencies to meet the demand of 
remaining item types. However, we recommend setting a  as a fixed scalar in order to generate different patterns 
in the first phase. Actually, we generate several cutting plans (generations) by varying the parameter Ga  in the 
range indicated by a . We developed Algorithm 2 to calculate parameter iu .

Algorithm 2 – Calculation of parameter iu .

1: Data: Parameters ir , iw ,W, Ga  and Gβ .

2: Calculate parameter 1I  as Equation (4)

3: ( )1max 1, GMINU Ia←
4: repeat

5:       ( )min / ,  /i i iu W w r MINU←

6:       1MINU MINU← −

7: until{ ( ) /   1i i G
i

u w W MINUβ
∀

≥ ≤∑ or }

8: Return: Parameter iu , { } 1, 2, , .i m∈ …
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4. Computational results

This section is divided into three parts. Section 4.1 introduces the example presented by Haessler (1975) and 
the solution obtained by MSHP. In Section 4.2 and Section 4.3, MSHP is compared to other approaches of the 
literature for 1DCSP-S, using two classical sets of benchmark instances. The computational tests were carried 
out on a notebook, with Intel Core i7-6500U (2.50GHz), RAM 16GB, in a Ubuntu Operating System. MSHP was 
implemented in C++ and CPLEX 12.7 was used as the solver engine, limited to one thread. We also encoded 
Haessler’ SHP in C++. In the first phase, the parameter Ga  varies in the range [0.15;0.60] with an increment of 
0.15 and the parameter Gβ  varies in the range [0.3;5.55] with an initial increment of 0.3 and final increment 
of 0.6; that is, 0.025 is added to the increment at each iteration. Thus, 52 cutting plans are generated per 
instance in the first phase. As mentioned in Section 3.2, all different cutting patterns generated in the first phase 
are used by Model (21-25) in the second phase, with the best cutting plan found as an initial solution to the 
solver. The time limit of the solver was fixed at 1 second for any call. Consider 100Sc = , unless otherwise stated.

4.1. Example of application

Table 2 presents the input parameters of the example considered by Haessler (1975), which has 27 required 
item types and master rolls of W = 141.

Table 3 presents the cutting plan obtained by MSHP. We set  11MAXR =  to follow the restriction imposed 
by Haessler. Parameters a and β  are as indicated before, as well the setup cost. The other parameters are as 
indicated previously in Table 1. We note that Haessler generated 8 cutting patterns with trim loss of 0.41% 
when using 25 master rolls. MSHP generates 7 cutting patterns with the same trim loss 0.41% using 25 master 
rolls. The descriptor 1I  for this instance indicated that 24.89628 master rolls are needed to fulfill the required 
demand. Thus, 25 master rolls are the optimum solution with respect to trim loss. We note that in Vahrenkamp 
(1996) a similar solution was obtained.

Parameter Gβ  of Algorithm 2 is set to allow the generation of cutting patterns with low trim loss. In practice, we 
just provide a portion of the items to be scheduled using Model (14-20) by setting iu . Note that we maintain the 
upper bound indicated by Haessler in the calculation ( /ir MINU ). Like parameter Ga , Gβ  is also varied in the first 
phase. The stop criteria over MINU is for the end of the process. After all, there may be scenarios in which it is 
not possible to achieve such usability of the master roll. A relation of main parameters and the corresponding 
values or ranges of Haessler’s SHP and MSHP is indicated in Table 1. We note parameter MAXTL is implicit in 
variable t of Model (14-20), while Haessler considered the interval [0.006W;0.03W] for it.

Table 1. Main parameters of Haessler (1975)’s SHP and MSHP.

SHP MINR MAXR Fraction a of MINU il iu

Haessler (1975) 2 1I − Number of knives [0.5;0.9]
0 for all item types, 
except the one with 

highest id
/ir MINU

MSHP 1 Number of knives Fixed scalar by iteration 0 Algorithm 2

Table 2. Haessler’s example.

Width Demand Width Demand Width Demand

54.000 4 19.500 10 11.625 7

52.500 2 18.250 2 11.250 3

47.500 3 17.500 16 10.125 3

26.500 4 15.250 6 10.000 37

25.000 8 13.875 2 9.250 4

24.750 10 13.750 2 9.125 3

23.250 13 12.500 28 8.750 1

22.500 8 12.250 5 8.500 14

20.000 5 12.000 10 7.000 2
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4.2. CutGen1 benchmark instances

The generator CutGen1 for 1DCSP was developed by Gau & Wäscher (1995) and is available at 
https://web.fe.up.pt/~esicup/problem_generators/. We adopt the same 18 classes proposed by Foerster & Wäscher 
(2000), and considered by Yanasse & Limeira (2006) and Cui et al. (2015). Each class features 100 instances. 
A class is characterized by the number of item types (m), the size of the master roll (W), the values 1 v  and 2  v  to 
determine the width of the items in the range [ ]1 2,v W v W  and the average of the demands ( avd ). Table 4 presents 
the parameters to generate such classes.

Table 3. Cutting plan generated by MSHP to Haessler’s example.

Pattern Frequency Trim Loss

24.75(1), 23.25(1), 17.5(1), 12.5(2), 12(1), 10(3), 8.5(1) 10 0

54(1), 25(1), 22.5(1), 20(1), 19.5(1) 4 0

26.5(1), 25(1), 22.5(1), 19.5(1), 17.5(1), 12.25(1), 9.25(1), 8.5(1) 4 0

47.5(1), 23.25(1), 15.25(1), 12.5(1), 11.625(2), 10.125(1), 9.125(1) 3 0

52.5(1), 15.25(1), 12.5(2), 11.25(1), 10(3), 7(1) 2 0

20(1), 19.5(1), 15.25(1), 13.875(2), 13.75(2), 12.25(1), 10(1), 8.75(1) 1 0

19.5(1), 18.25(2), 17.5(2), 12.5(1), 11.625(1), 11.25(1) 1 14.625

Sum 25 14.625

Table 4. Parameters for the random instances of Cutgen1.

m 10 20 40

Class 1 2 3 4 6 7

1v 0.01 0.01 0.01 0.01 0.01 0.01

2v 0.20 0.20 0.20 0.20 0.20 0.20

avd 10 100 10 100 10 100

Class 7 8 9 10 11 12

1v 0.01 0.01 0.01 0.01 0.01 0.01

2v 0.80 0.80 0.80 0.80 0.80 0.80

avd 10 100 10 100 10 100

Class 13 14 15 16 17 18

1v 0.20 0.20 0.20 0.20 0.20 0.20

2v 0.80 0.80 0.80 0.80 0.80 0.80

avd 10 100 10 100 10 100

These classes are divided into three groups: (G1) six classes of small items ( 1 0.01v =  and 2 0.20v = ); (G2) six 
classes of miscellaneous items ( 1 0.01v =  and 2 0.80v = ); and (G3) six classes of large items ( 1 0.20v =  and 2 0.80v = ). 
Classes with low demand have 10avd =  and the ones with high demand have 100avd = . The parameter m admits 
the following values: 10, 20, and 40 item types. For all classes, 1000W =  and the same seed (‘1994’) of the 
original paper was used.

Table 5 presents the computational results from MSHP compared to Haessler (1975) (denoted as SHP), 
Cui et al. (2015) (denoted as Cui) and Yanasse & Limeira (2006) (denoted as YL). MSHPR represents the average 
number of master rolls and MSHPP the average pattern count. The other approaches follow the same subscript 
definitions. The concept of non-dominated solutions is used to compare the approaches, as in Cui et al. (2015). 
The results in bold indicate that the analyzed approach presents non-dominated (average) results for that 
class. MSHP is non-dominated by any of the other approaches in 5 of the 18 classes. Cui et al. (2015) contains 
13 non-dominated classes, Yanasse & Limeira (2006) contains 3 non-dominated classes, while Haessler (1975) 
is dominated in all classes.

Table 6 indicates the computational results organized by the groups mentioned earlier. We also indicate 
the average and total values over all instances for the indicators considered here. In general, MSHP provides 
non-dominated solutions for Group 1, and Cui et al. (2015) provides non-dominated solutions for Groups 2 and 3. 
In all classes, the average master roll count of MSHP is smaller than YL and in just three classes the average 
pattern count is larger. Thus, the average performance of MSHP is better than YL.
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These results show our MSHP seems to perform better in scenarios of smaller-width items types (group G1) 
in relation to the object’s width, while Cui is better in scenarios of large-width item types (groups G2 and G3). 
Indeed, for instances like of G2 and G3, MSHP tends to generate patterns with minimum waste in the first iterations 
of its first phase and with significantly waste in the last iterations – SHP has a similar behavior. This feature 
may not be overcome in its second phase. On the other hand, the sequence value correction of Cui et al. (2015) 
efficiently addresses such quest for these scenarios. For the 1800 instances, the average computation time of 
MSHP is 3.60 seconds and of SHP is less than 0.1 seconds. In general, the computation time is not an issue for 
1DCSP methods based on SHP algorithms. The computation time for the algorithm in Cui is 1.14 seconds on 
a computer Intel Core i7 CPU 2.20GHz RAM 8GB, and for the algorithm in YL is 7.83 seconds on a computer 
Intel Celeron CPU 266MHz RAM 128MB.

4.3. Fiber benchmark instances

Umetani et al. (2003) provided 40 practical instances from a chemical fiber industry. These instances are 
available at Umetani (2018). Table 7 presents the computational results from MSHP by using two different 
setting parameters, following the approach of Cui et al. (2015). For example, the instance name “fiber29” means 

29m = , and parameter W  is equal to 5180 or 9080. When possible, we consider equal size (width) items of the 
same type. In Tables 7 and 8, each row shows the difference of the instances in relation to the costs of the 
master roll and the setup. The average computation time of an instance was 3.36 seconds for MSHP.

Considering setup as an auxiliary objective ( , 100r sc W c= = ), MSHP requires 2 more master rolls (=1551‑1549) 
and 46 fewer patterns (=194-148) than Cui for instances with 5180W = , and same quantity of master rolls 
(=876‑876) and 17 fewer patterns (=124-105) than Cui for instances with 9080W = . Considering equal objective 
costs ( r sc c W= = ), MSHP requires 8 additional master rolls (=1568-1560) and 36 fewer patterns (=159-123) than 
Cui for instances with 5180W = . For instances with 9080W = , MSHP requires the same 879 master rolls and 18 fewer 
patterns (=116-98) than Cui. The average computation time of the algorithm Cui is 1.445 seconds. These results 
show that MSHP yields Cui in scenarios of larger objects ( 9080W = ). In other words, also considering the results of 
previous section, MSHP seems to perform better than Cui when the relative width of the item types are smaller 

Table 5. Computational results of CutGen1 instances per class.

Classes MSHPR MSHPP SHPR SHPR CuiR CuiP YLR YLP

1 11.48 3.61 11.56 4.49 11.49 3.73 11.56 3.31

2 110.26 6.13 110.91 6.46 110.25 6.42 110.40 6.95

3 22.13 5.16 22.18 5.90 22.13 5.42 22.17 4.96

4 215.93 8.49 217.39 8.64 215.93 8.84 215.98 10.32

5 42.95 8.14 43.26 9.03 42.95 8.01 42.99 7.63

6 424.68 12.48 427.57 13.01 424.68 12.98 424.89 13.31

7 50.27 6.44 51.85 10.79 50.24 6.40 51.69 7.66

8 499.64 7.19 518.39 11.48 499.62 7.03 502.23 9.62

9 93.86 12.61 97.61 19.62 93.65 12.26 99.49 13.64

10 932.53 14.27 976.07 21.54 932.26 14.03 948.41 18.21

11 177.64 24.77 186.99 37.28 176.91 24.21 195.67 24.60

12 1765.93 28.11 1871.74 40.53 1763.46 28.06 1.847.42 33.23

13 63.48 7.55 64.71 10.25 63.47 7.52 64.20 8.93

14 632.36 8.16 646.82 10.76 632.36 8.10 633.26 10.51

15 119.80 14.22 122.64 19.99 119.59 14.15 123.90 16.28

16 1192.47 15.99 1227.43 20.85 1192.00 15.66 1.197.66 19.89

17 225.80 27.29 235.49 38.20 224.85 27.12 244.02 29.76

18 2246.16 31.08 2358.07 39.92 2242.59 30.26 2.268.30 37.90

Table 6. Computational results of CutGen1 instances per class group.

MSHPR MSHPP SHPR SHPR CuiR CuiP YLR YLP

G1 137.91 7.34 138.81 7.92 137.91 7.57 138.00 7.75

G2 586.65 15.57 617.11 23.54 586.02 15.33 607.49 17.83

G3 746.68 17.38 775.86 23.33 745.81 17.14 755.22 20.55

Average 490.41 13.43 510.59 18.26 489.91 13.34 500.24 15.37

Total 882737 24169 919068 32874 881843 24020 900432 27666
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in relation to the object’s width. In relation to SHP, as the algorithm does not consider parameters rc  and sc , 
we chose not report results for each instance. However, for instances with W=5180, SHP provided a total of 
1559 master rolls and 212 setups, while for W = 9080 it provided a total of 880 master rolls and 116 setups, 
with average computation time less than 0.1 seconds. Assuming a scenario as Table 7 ( rc W=  and 100)sc = , which 
is more adequate to SHP, the MHSP yields SHP.

Table 7. Computational results of Fiber instances with  rc W=  and 100sc = .

W = 5180 W = 9080

Instances MSHPR MSHPP CuiR CuiP Instances MSHPR MSHPP CuiR CuiP
fiber06 33 5 33 5 fiber06 19 4 19 3

fiber07 33 4 33 4 fiber07 19 3 19 4

fiber08 86 4 86 6 fiber08 48 3 48 4

fiber09 53 7 53 7 fiber09 29 4 29 5

fiber10 69 5 69 7 fiber10 39 4 39 5

fiber11 67 5 67 7 fiber11 38 4 38 6

fiber13a 56 7 56 7 fiber13a 32 5 32 5

fiber13b 28 4 28 5 fiber13b 16 3 16 4

fiber14 48 5 47 10 fiber14 27 4 27 5

fiber15 57 5 57 8 fiber15 32 4 32 5

fiber16 82 10 82 11 fiber16 47 6 47 6

fiber17 83 8 83 8 fiber17 47 5 47 6

fiber18 96 8 96 10 fiber18 54 6 54 7

fiber19 133 9 133 9 fiber19 73 10 73 11

fiber20 32 8 32 8 fiber20 19 5 19 6

fiber23 141 13 141 18 fiber23 80 7 80 9

fiber26 190 12 190 13 fiber26 107 7 107 9

fiber28a 84 9 83 27 fiber28a 48 6 48 7

fiber28b 118 12 118 13 fiber28b 67 8 67 8

fiber29 62 8 62 11 fiber29 35 7 35 7

Total 1.551 148 1.549 194 Total 876 105 876 122

Table 8. Computational results of Fiber instances with  rc W=  and sc W= .

W = 5180 W = 9080

Instances MSHPR MSHPP CuiR CuiP Instances MSHPR MSHPP CuiR CuiP
fiber06 33 5 34 4 fiber06 19 4 19 4

fiber07 33 4 34 3 fiber07 19 3 19 4

fiber08 86 4 86 6 fiber08 48 3 48 4

fiber09 54 5 55 5 fiber09 29 4 30 4

fiber10 70 4 70 6 fiber10 39 4 39 5

fiber11 67 6 67 7 fiber11 38 4 38 5

fiber13a 57 5 56 7 fiber13a 32 5 32 5

fiber13b 28 4 28 5 fiber13b 16 3 16 4

fiber14 49 4 48 6 fiber14 27 4 27 5

fiber15 58 4 57 7 fiber15 32 4 32 5

fiber16 84 7 83 8 fiber16 47 6 47 6

fiber17 85 5 83 8 fiber17 47 5 47 5

fiber18 96 8 96 11 fiber18 55 5 54 7

fiber19 134 7 133 9 fiber19 74 5 74 7

fiber20 32 8 32 8 fiber20 19 5 19 6

fiber23 144 8 142 13 fiber23 80 7 81 8

fiber26 191 9 191 12 fiber26 107 7 107 9

fiber28a 86 8 84 11 fiber28a 49 5 48 8

fiber28b 119 10 119 12 fiber28b 67 8 67 8

fiber29 62 8 62 11 fiber29 35 7 35 7

Total 1.568 123 1.560 159 Total 879 98 879 116
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5. Conclusion

Due to its relevance, the 1DCSP-S is a classical problem in OR which has been tackled by several authors. 
MSHP is a sequential heuristic procedure based on the aspiration criteria presented by Haessler in the 1970s. 
The main feature of the algorithm is a cutting pattern generator model that generates patterns with the best 
compromise considering utilization and pattern repetition. The computational results indicate its quality for 
pattern reduction.

MSHP is a simple algorithm. Thus, its coding can be easily performed. We note that obtaining satisfactory 
results for a class of problems, or even for different classes, is different from obtaining satisfactory results for a 
single instance of each class, in relation to parameter setting. MSHP is able to provide excellent results and the 
setting parameter task involves only a few parameters. Our experimental tests show MSHP is able to obtain better 
results in scenarios of small item types in relation to the master roll (Group 1 of CutGen1) or larger master roll 
(fiber instances with 9080W = ) than other approaches of the literature. Furthermore, such parameters are easily 
adapted to the preferences of the decision-maker that may prioritize setup reduction, cutting waste reduction, 
a trade-off between both objectives, or even to allow overproduction.

For future research, MSHP may also adapt to the 1DCSP-S with multiple master roll lengths or include the 
open-stack minimization problem.
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