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Abstract

In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) 
at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously 
r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most 
promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. 
In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated 
Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark 
instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution 
quality and running times.
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1. Introduction

Many practical optimization problems, generally, 
involve simultaneous minimization (or maximization) 
of several conflicting decision criteria. The goal of 
multiobjective combinatorial optimization (MOCO) is 
to optimize simultaneously r > 1 criteria or objectives. 
MOCO problems have a set of optimal solutions 
(instead of a single optimum) in the sense that no 
other solutions are superior to them when all objectives 
are taken into account. They are known as Pareto 
optimal or efficient solutions.

Solving MOCO problems is quite different from 
single-objective case (r = 1), where an optimal solution 
is searched. The difficulty is not only due to the 
combinatorial complexity as in single-objective case, 
but also due to finding all elements of the efficient 
set, whose cardinality grows with the number of 
objectives.

In the literature, some authors have proposed 
exact methods for solving specific MOCO problems 
(EHRGOTT; GANDIBLEUX, 2000; EPPRECHT; LEIRAS, 
2007; ULUNGU; TEGHEM, 1995; VISÉE et al., 1998). 

These methods are generally valid for bi-objective 
(r = 2) problems but cannot be adapted easily to a 
higher number of objectives. Also, exact methods 
are inefficient to solve large-scale NP-hard MOCO 
problems. As in the single-objective case, the use 
of heuristic/metaheuristic techniques seems to be 
the most promising approach to MOCO problems 
because of their efficiency, generality and relative 
simplicity of implementation. These techniques 
generate good approximated solutions in a short 
computational time. Several articles have proposed 
heuristic procedures to solve MOCO problems (ARROYO; 
VIEIRA; VIANNA, 2008; COELLO, 2000; DEB, 2004; 
EHRGOTT; GANDIBLEUX, 2000; JONES; MIRRAZAVI; 
TAMIZ, 2002; LAMONT, 2000; LINS; DROGUETT, 
2009; MAURI; LORENA, 2009; VAN VELDHUIZEN; 
LAMONT, 2000; VIANNA et al., 2007).

There are only few studies on the application 
of GRASP (Greedy Randomized Adaptive Search 
Procedure) and ILS (Iterated Local Search) heuristics 
to MOCO problems.
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⊆ Ω is nondominated in S if there is no x ∈ S such 
that x dominates x*.

2.1. Multiobjective knapsack problem 
(MOKP)

In the literature, different versions of the 0/1 
multiobjective knapsack problem are studied 
(GANDIBLEUX; FRÉVILE, 2000; ZITZLER; THIELE, 
1999). In this paper we use the same problem 
considered by Zitzler and Thiele (1999), Jaskiewicz 
(2002) and Alves and Almeida (2007) in their 
experiments, who considers the multiobjective problem 
that allows r knapsacks with different capacities 
and n items that can be chosen for insertion in the 
knapsacks. This problem can be formulated as follows:

Maximize 
1

n

j ij i
i

f ( x ) c x
=

= ∑ , j = 1, …, r

Subject to

1

n

ij i j
i

w x W
=

≤∑ , j = 1, …, r

xi ∈ {0, 1}, i = 1, …, n,

where cij and wij are, respectively, the profit and weight 
of item i according to knapsack j, Wj is the capacity 
of knapsack j and x = (x1, …, xn) is a vector of binary 
variables such that xi = 1 if the item i belongs to the 
knapsacks and xi = 0, otherwise.

The objectives are conflicting because the benefit 
of putting an item i into a knapsack j (cij) can be high, 
while placing the same item i in another knapsack l 
(cil) may not be attractive (low benefit).

3. Multiobjective grasp 
algorithm – MGRASP

GRASP – Greedy Randomized Adaptive Search 
Procedure (FEO; RESENDE, 1995; RESENDE; RIBEIRO, 
2003) – is a multi-start metaheuristic, in which each 
iteration consists of two phases: construction and 
local search. The construction phase builds a feasible 
solution using a greedy randomized algorithm, while 
the local search phase calculates a local optimum in 
the neighborhood of the feasible solution. Both phases 
are repeated a pre-specified number of iterations and 
the best overall solution is kept as the result.

Subsections 3.1 and 3.2 present, respectively, the 
construction and local search phases of the proposed 
multiobjective GRASP algorithm (MGRASP algorithm). 
The description of MGRASP algorithm is given in 
Subsection 3.3.

The application of ILS metaheuristic (LOURENÇO; 
MARTIN; STÜTZLE, 2002) for MOCO problems is 
scarcer than GRASP. As example of ILS applied to 
MOCO problems we can cite the paper proposed 
by Ribeiro et al. (2008), in which was developed a 
multiobjective hybrid heuristic for a life car sequencing 
problem with painting and assembly line constraints. 
In this paper, the ILS is used as a single objective 
optimizer.

The literature on the multiobjective knapsack 
problem is rather scarce. The methods proposed by 
Ulungu and Teghem (1995) and Visée et al. (1998) 
are based on exact algorithms; Jaskiewicz (2002), 
Zitzler and Thiele (1999) and Alves and Almeida (2007) 
use genetic algorithms; the methods of Gandibleux 
and Frévile (2000) and Hansen (1997) are based on 
tabu search; and the methods proposed by Czyzak 
and Jaskiewicz (1998) and Ulungu, Teghem and Ost 
(1998) are based on simulated annealing.

In this paper, we propose algorithms based on 
GRASP and ILS metaheuristics to generate a good 
approximation of the set of efficient or Pareto optimal 
solutions of the multiobjective knapsack problem. 
They are compared with three genetic algorithms from 
literature: MOGLS (Multiobjective Genetic Local Search) 
suggested by Jaskiewicz (2002); SPEAII (ZITZLER; 
LAUMANNS; THIELE, 2002), which is an improved 
version of the genetic algorithm SPEA (Strength 
Pareto Evolutionary Algorithm) proposed by Zitzler 
and Thiele (1999); and MOTGA (Multiple objective 
Tchebycheff based Genetic Algorithm) proposed by 
Alves and Almeida (2007).

The organization of the paper is as follows. In the 
next section, we present the formulation of a MOCO 
problem and a formal definition of the multiobjective 
knapsack problem. In Section 3, we discuss with 
more details the multiobjective GRASP algorithm 
proposed. In Section 4, we detail the multiobjective 
ILS algorithm proposed. We present computational 
results in Section 5. Finally, Section 6 contains our 
concluding remarks.

2. Multiobjective optimization

Given a vector function of r components f = (f1, …, 
fr) defined on a finite set Ω, consider the multiobjective 
combinatorial optimization problem: Maximize 
f(x) = (f1(x), …, fr(x)), subject to x ∈ Ω.

A solution x dominates x’ if f(x) dominates 
f(x’), that is, if fj(x) ≥ fj(x’), for all objective j, and 
fj(x) > fj(x’) for at least one objective j. A solution 
x* ∈ Ω is Pareto optimal (or efficient) if there is no 
x ∈ Ω such that x dominates x*. A solution x* ∈ S 
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This ratio measures the benefit of including an 
item e in the knapsacks. The BuildSolution algorithm 
receives as input parameters the solution x to be 
built, the percentage α used in the selection of the 
next element to be inserted in x, the search direction 
Λ and the lPareto list, where the nondominated 
solutions are stored. As output, the algorithm returns 
the built solution x.

The candidates list CL is defined in line 1, which 
is formed by all the items out of the knapsacks. 
The CL list is sorted in decreasing order according 
to the ratio (1). As showed in line 3, the restricted 
candidates list (RCL) is composed by the α × |CL| first 
items of CL list. The loop in lines 4-8 is responsible 
by the randomization of the algorithm. An item e is 
randomly selected from RCL and inserted in x. This 
process is repeated while the insertion of e does not 
violate the capacity of the knapsacks. The loop in 
lines 9-14 looks for additional insertions from CL. This 
stage is greedy, respecting the sorting of CL list, and 
try to improve, if possible, the solution found in the 
previous stage (loop in lines 4-8). Experiments have 
shown that only very few items are inserted during this 
stage. Thus, an improvement in the current solution 

3.1. Greedy randomized construction

To generate an initial set of dominating solutions, 
a greedy heuristic is used to maximize a linear 
combination of the objective functions:

1

r

j j
j

f ( x )
=

λ∑

where 
1

1
r

j
j =

λ =∑ and 0 ≤ λj ≤ 1, ∀j.

The preference vector Λi = (λ1, …, λr) determinates 
the search direction i on the Pareto optimal frontier. 
For building a solution, first, a preference vector Λi 
is defined. For this vector is generated a solution x, 
whose weighted function f(x) is maximized.

Murata et al. (2001) introduces a way of generating 
the preference vector distributed uniformly on the 
Pareto frontier. Each component of the vector Λ = (Λ1, 
Λ2, …, Λm) is generated combining r non-negatives 
integers with sum equal to s,

v1 + v2 + … + vr = s, where vi ∈ {0, ..., s},

which is a value large enough to produce m search 
directions. The number of generated search directions 
for r objectives and a value s, Nr(s), is calculated as 
follows:

N2(s) = s + 1.

N3(s) = 2
0 0

1 1 2 2
s s

i i
N ( i ) ( i ) ( s )( s ) /

= =
= + = + +∑ ∑ .
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N ( i ) ( i )( i ) /

= −
= + +∑ ∑ .

For instance, for r = 2 objectives and s = 5 we 
have 6 vectors (v1, v2): (0,5), (1,4), (2,3), (3,2), (4,1) 
and (5,0). For r = 3 and s = 3 we have 10 vectors (v1, 
v2, v3): (0,0,3), (0,1,2), (0,2,1), (0,3,0), (1,0,2), (1,1,1), 
(1,2,0), (2,0,1), (2,1,0) and (3,0,0).

With the goal of obtaining normalized directions 

(
1

1
r

j
j =

λ =∑ ) we calculate λj = vj/s, vj ∈ {0, 1, 2, ..., s}.

Figure 1 presents the implemented constructive 
algorithm, BuildSolution, which is a greedy randomized 
algorithm that builds a solution by inserting items 
with the higher value for the following ratio:
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Figure1. Constructive algorithm.
Procedure BuildSolution (x, α, Λ, lPareto)

Input

      x – solution to be built;

      α – percentage used on the definition of the restricted 
candidates list (RCL);

      Λ – vector of preferences (search direction);

      lPareto – list of nondominated solutions that are updated 
with x.

Output

      x – built solution.

Begin

01.      Insert each item e (xe = 0) in the candidates list CL sorted 

decreasing by 
= =
∑ ∑λ

1 1
/ ;

r r

j ej ej
j j

c w
02.      Let RCL be a list with the α × |CL| first items of CL;

03.      Select randomly an item e of RCL;

04.       While x ∪ xe does not violate Wj , for j = 1, ..., r do

05.            x ¬ x  xe;      //insert item e in the knapsacks

06.            Remove the item e of CL;

07.            Select randomly an item e of RCL;

08.      End_while

09.      For i ¬ 1 to |CL| do

10.            e ¬ the ith item of CL;

11.            If x ∪ xe does not violate Wj, for j=1, ..., r then

12.                x ¬ x ∪ xe;      //insert item e in the knapsacks

13.            End_if

14.      End_for

15.      Verify the insertion of x in lPareto list;

16.      Return x;

End-BuildSolution
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is out of the knapsack that cannot be inserted without 
violating any restriction of the problem. In other words, 
the items are removed from the knapsacks until the 
free space obtained in this way allows the insertion 
of any item that remains out of the knapsacks. This 
step is completely greedy. In line 6, the BuildSolution 
algorithm is executed completing the construction 
of the solution y.

If the new solution, y, is better than x, then the 
solution x is updated at line 8 and the vector Marked 
is reinitialized in lines 9-10. Otherwise, in line 13, 
the first element that was removed from y during 
the stage described in line 5 is marked. In line 16, 
the refined solution, x, is returned.

The number of iterations of the local search 
algorithm depends on the quality of the initial solution 
x received as a parameter.

3.3. MGRASP algorithm

Figure 3 presents the proposed MGRASP algorithm, 
which receives as input parameters the number of 
iterations (N_iter), the percentage α used at the 
construction phase and the percentage β used at 
the local search phase. Parameters α and β were 
empirically set at 10% and 50%, respectively. As 
output, the algorithm returns the lPareto list, where 
the nondominated solutions are stored. In line 1, 
the lPareto list is initialized. The loop in lines 2-7 
executes N_iter GRASP iterations. In line 3, the solution 
x is initialized. The search direction Λi is defined in 
line 4. The solution x is built by the BuildSolution 
procedure in line 5. In line 6, the solution x is refined. 
Finally, the lPareto list is returned.

can be achieved without compromising the greedy-
randomized feature of the algorithm. In line 15 it is 
verified if solution x is a nondominated solution and, 
finally, the solution x is returned in line 16.

3.2. Local search

Figure 2 presents the LocalSearch algorithm that 
removes the worst items from the knapsacks according 
to the ratio (1) and uses the BuildSolution algorithm 
to produce a new solution. This algorithm receives 
as input parameters the solution x to be refined, the 
percentage β that is used at the solution reconstruction 
stage, the search direction Λ and the lPareto list, 
where the nondominated solutions are stored.

The loop in lines 1-2 initializes all the positions 
of the vector Marked with false. An item e can be 
removed from the knapsack only if Marked[e] = false. 
The loop in lines 3-15 is executed while exist elements 
that can be removed, that is, elements still unmarked. 
In line 4, the solution x is assigned to the auxiliary 
solution y. In line 5, the element that present the 
shortest value of the ratio (1) is removed from y. This 
process is repeated while there exists an element that 

Figure 2. Local search algorithm.
Procedure LocalSearch (x, β, Λ, lPareto)

Input

      x – solution to be refined;

      β – percentage used at the reconstruction of solution x;

      Λ – vector of preferences (search direction);

      lPareto – list of nondominated solutions.

Output

      x – refined solution.

Begin

01.      For i ¬ 1 to n do

02.            Marked[i] ¬ false;

03.      While there exists an item e such that Marked[e] = false do

04.            y ¬ x;

05.            Remove the unmarked item j (yj = 1) that presents the 
smallest value of the ratio (1). Repeat this process until any item g 
(yg = 0) may be chosen for insertion;

06.            y ¬ BuildSolution (y, β, Λ, lPareto);

07.            If f(y) > f(x) then

08.                  x ¬ y;

09.                  For i ¬ 1 to n do

10.                        Marked[i] ¬ false;

11.            Else

12.                  Let xe be the unmarked item of x that presents the 
smallest value of the ratio 1;

13.                  Marked[e] ¬ true;

14.            End_if

15.      End_while

16.      Return x;

End-LocalSearch

Figure 3. MGRASP algorithm.
Procedure MGRASP (N_iter, α, β)

Input

      N_iter – number of GRASP iterations;

      α – percentage used at the construction stage;

      β – percentage used at the local search stage.

Output

      lPareto – list of nondominated solutions.

Begin

01.      lPareto ¬ ∅;

02.      For i ¬ 1 to N_iter do

03.            x ¬ ∅;

04.            Let Λi be the search direction in the position i of Λ, 
defined according to the preference specification method described 
at Subsection 3.1;

05.            x ¬ BuildSolution (x, α, Λi, lPareto);

06.            x ¬ LocalSearch (x, β, Λi, lPareto);

07.      End_for

08.      Return lPareto;

End-MGRASP
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returns the lPareto list, where the nondominated 
solutions are stored. In line 1, the lPareto list is 
initialized. The loop in lines 3-16 executes N_iter 
iterations. In line 4, the solution x is initialized. The 
search direction Λk is defined in line 6. The solution 
x is built in line 7 and refined in line 8. The loop 
in lines 9-15 executes ILS_iter ILS iterations. In line 
10, the perturbation method is applied at solution 
x. The resulting solution y is refined in line 11. If the 
refined solution is better than x, x is updated in line 
13. Finally, the lPareto list is returned.

5. Computational experiments

We compare the results of MGRASP and MILS 
algorithms with the following genetic algorithms: 
MOTGA (ALVES; ALMEIDA, 2007), MOGLS 
(JASKIEWICZ, 2002) and SPEAII (ZITZLER; LAUMANNS; 
THIELE, 2002).

All computational experiments with the MGRASP 
and MILS algorithms were performed on a 3.2GHz 
Pentium IV processor with 1 Gbyte of RAM memory. 
Both algorithms were implemented in C using version 
6.0 of the Microsoft Visual C++ compiler.

4. Multiobjective ILS algorithm – MILS

The Iterated Local Search (ILS) algorithm 
(LOURENÇO; MARTIN; STÜTZLE, 2002) involves 
the repeated application of a local search algorithm 
applied to the candidate solutions found by a broader 
search process that involves a biased random walk 
through the search space.

The algorithm works by first building an initial 
solution, which is refined using a local search strategy. 
The algorithm loop involves three steps: a perturbation 
of the current solution, the application of the local 
search to the perturbed solution, and an acceptance 
decision of whether or not the locally optimizing 
candidate solution should replace the current working 
solution for the search.

Subsection 4.1 presents the perturbation method 
used in the proposed multiobjective ILS algorithm 
(MILS algorithm). The description of the MILS 
algorithm is given in Subsection 4.2.

4.1. Perturbation

In the proposed perturbation method, we exchange 
the content of two regions of a solution x. The size of 
the regions is chosen randomly between the interval 
[1, γ × n], where n is the number of items and γ was 
empirically set at 10%. Figure 4 shows an example 
of perturbation, in which the content of regions 1 
and 2 are exchanged. After applying the perturbation 
method, the solution x can be infeasible. If it happens, 
we randomly select an item to be removed from the 
knapsack. This process is repeated until x becomes 
feasible.

4.2. MILS algorithm

Figure 5 presents the proposed MILS algorithm, 
which receives as input parameters the number of 
iterations (N_iter), the number of ILS iterations (ILS_
iter), the percentage α used at the construction phase 
and the percentage β used at the local search phase.

Parameters ILS_iter, α and β were empirically set at 
5, 0% and 10%, respectively. As output, the algorithm 

Figure 4. Example of perturbation.

Figure 5. MILS algorithm.
Procedure MILS (N_iter, ILS_iter, α, β)

Input

      N_iter – number of iterations;

      ILS_iter – number of ILS iterations;

      α – percentage used at the construction stage;

      β – percentage used at the local search stage.

Output

      lPareto – list of nondominated solutions.

Begin

01.      lPareto ¬ ∅;

02.      i ¬ 1;

03.      while i ≤ N_iter do

04.            x ¬ ∅;

05.            k ¬ i;

06.            Let Λk be the search direction in the position k of Λ, 
defined according to the preference specification method described 
at Subsection 3.1;

07.            x ¬ BuildSolution (x, α, Λk, lPareto);

08.            x ¬ LocalSearch (x, β, Λk, lPareto);

09.            For j ¬1 to ILS_iter do

10.                  y ¬ Perturbation (x);

11.                  y’ ¬ LocalSearch (y, β, Λk, lPareto);

12.                  If y’ > x then

13.                        x ¬ y’;

14.                  i ¬ i + 1;

15.            End_for

16.      End_while

17.      Return lPareto;

End-MILS
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Note that Davg is the average distance from a point 
z ∈ R to its closest point in H.

When the Pareto optimal set is not known and 
H’ is the set of nondominated points generated by 
another heuristic method, we define the reference 
set R as the nondominated points of (H ∪ H’) and 
use the same measures mentioned above to assess 
the approximation of H and H’ relative to R.

We also use an additional measure to compare 
two nondominated solutions sets, H and H’. This 
measure is called strict coverage (ALVES; ALMEIDA, 
2007; JASKIEWICZ, 2002; ZITZLER; THIELE, 1999) 
and computes the fraction of solutions of one set 
dominated by solutions of another set. The strict 
coverage measure is defined as

( ) { } dominates z' H ' z H : z z'
C H ,H'

H'

∈ ∃ ∈
=

The value C(H, H’) = 1 means that all points of H’ 
are dominated by points of H. The value C(H, H’) = 0 
means that no point of H’ is dominated by any 
point of H.

5.3. Results comparison

The experiments done were conducted using 
the test instances described in Table 1, which were 
proposed by Zitzler and Thiele (1999), and has been 
also used by MOTGA (ALVES; ALMEIDA, 2007), 
MOGLS (JASKIEWICZ, 2002) and SPEAII (ZITZLER; 
LAUMANNS; THIELE, 2002) algorithms.

In the first experiment, the MGRASP algorithm 
was run five times to each instance. Each run finished 
when the average running time spent by MOTGA 
algorithm (the fastest algorithm among MOTGA, 
MOGLS and SPEAII) was achieved. The goal of this 
experiment is to evaluate MGRASP, MOTGA, MOGLS 
and SPEAII algorithms running the same time in a 
similar machine. Table 2 shows the average running 
times of MOTGA. In this experiment, we use the 

5.1. Test instances

In this work, we use the set of instances proposed 
by Zitzler and Thiele (1999). They generated instances 
with 250, 500 and 750 items, and 2, 3, and 4 
objectives. Uncorrelated profits and weights were 
randomly generated in the interval [10, 100]. The 
knapsack capacities were set to half the total weight 
regarding the corresponding knapsack:

Wj = 0.5 
1

n

ij
i

w .
=
∑

The problem instances are presented in Table 1 
and are available at: http://www.tik.ee.ethz.ch/~zitzler/
testdata.html.

5.2. Evaluation of computational results in 
multiobjective optimization

The quality of a solution of a single-objective 
minimization problem is evaluated in a straightforward 
manner as the relative difference between the objective 
value of such solution and the value of an optimal 
solution. In multiobjective optimization, however, 
there is no natural single measure that is able to 
capture the quality of a nondominated set H to the 
Pareto optimal set or reference set R.

We measure the quality of the nondominated set 
H generated by the heuristic method relative to the 
reference set R by using two measures:
•	Cardinal measure: number of reference solutions, NRS, 

found by the heuristic method, where NRS = |H∩R|; 
and

•	Average distance measure (proposed by Czyzak and 
Jaszkiewicz (1998) and Ulungu, Teghen and Ost 
(1998)): average distance between the nondominated 
set H generated by the heuristic method and the 
reference set R. We measure the average distance 

Davg with 1
avg z' H

z R
D min d ( z', z ),

R ∈
∈

= ∑  where 
 
d is defined by 1j ,...,r j jd ( z', z ) max ( z' z ),== −   
z’ = (z’1, …, z’r) ∈ H and z = (z1, …, zr) ∈ R.

Table 1. Test instances.

Instance Objectives Items

kn250_2 2 250

kn250_3 3 250

kn250_4 4 250

kn500_2 2 500

kn500_3 3 500

kn500_4 4 500

kn750_2 2 750

kn750_3 3 750

kn750_4 4 750

Table 2. Average running times of MOTGA algorithm on a 
Pentium IV 3.2 GHz.

Instance Time(s)

kn250_2 1.5

kn500_2 7.2

kn750_2 19.5

kn250_3 2.7

kn500_3 12.8

kn750_3 33.4

kn250_4 4.2

kn500_4 18.2

kn750_4 51.9
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instance, the number of reference solutions (NRS) 
and the average distance (Davg). The best results are 
highlighted in bold.

The results show that when the number of 
reference solutions (NRS) is compared, the MILS 
algorithm generates a larger number of reference 
solutions for all instances. So, by the cardinal measure, 
MILS performs better than the others algorithms. 
When the average distance, Davg, is compared, MILS 
also performs better than the others algorithms.

Figure 7 shows the solutions obtained by MILS, 
MOTGA, MOGLS and SPEAII algorithms after a 
running of the test instances “kn250_2”, “kn500_2” 
and “kn750_2”. In this figure, we also can see that the 
solution set obtained by MILS is better distributed.

In the third experiment, MGRASP and MILS 
algorithms are compared using the strict coverage 
measure presented in Subsection 5.2. The results 
are presented in Figure 8. When the instances with 
2 objectives are analyzed, we can see that the majority 
of the solutions obtained by MGRASP are dominated 
by the solutions obtained by MILS. When the instances 
with 3 and 4 objectives are compared, we can see 
that just a few of the solutions obtained by both 
algorithms are dominated by the solutions obtained 
by the other algorithm.

For making a better comparison between MGRASP 
and MILS algorithms, a fourth experiment was done. 
In this experiment, both algorithms were run five times 

cardinal measure (NRS) and the average distance 
measure (Davg) presented in Subsection 5.2.

Table 3 presents comparative results for the first 
experiment. In the second column we have the number 
|R| of reference solutions. In the following columns 
are presented, for each algorithm (MGRASP, MOTGA, 
MOGLS and SPEAII) and for each instance, the number 
of reference solutions (NRS) and the average distance 
(Davg). The best results are highlighted in bold.

The results show that when the number of 
reference solutions (NRS) is compared, the MGRASP 
algorithm generates a larger number of reference 
solutions on 7 instances from a total of 9 instances. 
So, by the cardinal measure, MGRASP performs 
better than the others algorithms. When the average 
distance, Davg, is compared, MGRASP also performs 
better than the others algorithms.

Figure 6 shows the solutions obtained by MGRASP, 
MOTGA, MOGLS and SPEAII algorithms after a 
running of the test instances “kn250_2”, “kn500_2” 
and “kn750_2”. In this figure, we can see that the 
solution set obtained by MGRASP is better distributed.

In the second experiment, the previous experiment 
is repeated with MILS, MOTGA, MOGLS and SPEAII 
algorithms. Table 4 presents comparative results for 
the second experiment. In the second column we 
have the number |R| of reference solutions. In the 
following columns are presented, for each algorithm 
(MILS, MOTGA, MOGLS and SPEAII) and for each 

Table 3. Comparison of MGRASP, MOTGA, MOGLS and SPEAII algorithms running the same time in a similar machine.

Instance |R|
NRS Davg

MGRASP MOTGA MOGLS SPEAII MGRASP MOTGA MOGLS SPEAII

kn250_2 162.0 86.4 73.0 3.4 - 0.0016 0.0025 0.0094 -

Kn500_2 227.0 68.8 166.4 0.2 - 0.0030 0.0009 0.0181 -

Kn750_2 313.0 75.2 236.6 1.2 0.0 0.0036 0.0007 0.0190 0.0550

Kn250_3 3379.0 1701.4 456.0 1221.6 - 0.0016 0.0118 0.0128 -

Kn500_3 6517.4 3709.4 981.6 1826.4 - 0.0013 0.0101 0.0210 -

Kn750_3 8692.6 4851.0 1378.0 2258.8 204.8 0.0014 0.0091 0.0220 0.0887

Kn250_4 9125.2 4358.0 1002.4 3764.8 - 0.0059 0.0226 0.0182 -

Kn500_4 14809.8 7418.4 2054.6 5336.8 - 0.0068 0.0212 0.0270 -

Kn750_4 19458.8 9700.8 2982.6 6515.6 259.8 0.0071 0.0193 0.0307 0.1504

Table 4. Comparison of MILS, MOTGA, MOGLS and SPEAII algorithms running the same time in a similar machine.

Instance |R|
NRS Davg

MILS MOTGA MOGLS SPEAII MILS MOTGA MOGLS SPEAII

kn250_2 218.2 187.2 36.4 0.0 - 0.0003 0.0041 0.0108 -

kn500_2 385.8 306.6 86.2 0.0 - 0.0003 0,0027 0.0192 -

kn750_2 472.2 281.0 191.8 0.0 0.0 0.0011 0.0016 0.0206 0.0603

kn250_3 3262.8 1621.4 436.0 1206.0 - 0.0044 0.0134 0.0153 -

kn500_3 5747.6 2866.6 971.0 1910.0 - 0.0074 0.0104 0.0214 -

kn750_3 7355.6 3375.8 1392.2 2374.2 213.4 0.0070 0.0089 0.0210 0.0844

kn250_4 7952.4 3709.8 1000.8 3241.8 - 0.0195 0.0240 0.0207 -

kn500_4 12895.0 5505.4 2048.2 5341.4 - 0.0182 0.0210 0.0270 -

kn750_4 16955.4 7155.8 2968.0 6561.0 270.6 0.0283 0.0282 0.0308 0.1437
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The results show that when the number of 
reference solutions (NRS) is compared, the MILS 
algorithm generates a larger number of reference 
solutions on 8 instances from a total of 9 instances. 
When the average distance, Davg, is compared, the 
MILS algorithm has a smaller average distance on 8 
instances from a total of 9 instances. When the time 
consumed is compared, similar results are obtained 
by both algorithms.

Figure 7. Solution obtained by MILS, MOTGA, MOGLS and 
SPEAII.

to each instance. Each run finished after N_iter = 1000 
iterations. Table 5 presents comparative results for the 
fourth experiment. In the second column we have the 
number |R| of reference solutions. In the following 
columns are presented, for each algorithm (MGRASP 
and MILS) and for each instance, the number of 
reference solutions (NRS), the average distance (Davg) 
and the time consumed in seconds. The best results 
are highlighted in bold.

Figure 6. Solution obtained by MGRASP, MOTGA, MOGLS 
and SPEAII.

Table 5. Comparison of MILS and MGRASP.

Instance |R|
NRS Davg Time (s)

MILS MGRASP MILS MGRASP MILS MGRASP

Kn250_2 305.6 281.6 36.4 0.0001 0.0027 12.2 10.9

Kn500_2 549.2 540.8 8.8 0.0001 0.0032 70.8 62.8

Kn750_2 764.4 735.4 29.2 0.0001 0.0023 217.1 189.3

Kn250_3 8831.0 5011.2 3828.0 0.0006 0.0035 81.1 67.7

Kn500_3 11963.0 6746.2 5217.0 0.0006 0.0012 336.8 319.1

Kn750_3 33359.0 17151.4 16207.6 0.0019 0.0024 711.4 675.5

Kn250_4 34876.4 18229.4 16647.8 0.0044 0.0058 299.7 251.4

Kn500_4 74492.6 33676.4 40816.4 0.0085 0.0048 1042.2 987.6

Kn750_4 105150.0 58121.4 47029.0 0.0042 0.0112 2252.8 2179.5
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compared, the MGRASP algorithm obtained a smaller 
average distance on 7 instances from a total of 9 
instances. The MILS algorithm obtained a smaller 
average distance for all instances. It was also noted 
that the solutions sets obtained by MGRASP and 
MILS algorithms are better distributed than the ones 
obtained by the others algorithms.

When the proposed algorithms are compared, 
it is concluded that the MILS performs better than 
MGRASP. When the number of reference solution 
(NRS) is compared, the MILS algorithm generates a 
larger number of reference solutions on 8 instances 
from a total of 9 instances. When the average distance 
(Davg) is compared, the MILS algorithm obtained a 
smaller average distance on 8 instances from a total 
of 9 instances. Similar times consumed are obtained 
by both algorithms.

Based on the obtained results, it is concluded 
that the proposed algorithms, MGRASP and MILS, 
are very robust, outperforming three efficient genetic 

6. Conclusion

In this paper, we have proposed local search 
based algorithms, MGRASP and MILS, to generate a 
good approximation of the set of efficient or Pareto 
optimal solutions of a multiobjective combinatorial 
optimization problem. They are applied for solving 
the knapsack problem with r objectives and they are 
compared with MOTGA algorithm, proposed by Alves 
and Almeida (2007), MOGLS algorithm, proposed by 
Jaskiewicz (2002), and SPEAII algorithm, proposed 
by Zitzler, Laumanns and Thiele (2002).

In the experiments comparing the proposed 
algorithms with MOTGA, MOGLS and SPEAII 
algorithms, when the number of reference solution 
(NRS) is compared, the MGRASP algorithm generates 
a larger number of reference solutions on 7 instances 
from a total of 9 instances. The MILS algorithm 
generates a larger number of reference solutions 
for all instances. When the average distance (Davg) is 

Figure 8. Strict coverage comparison between MILS and MGRASP algorithm.
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