
Produção, v. 23, n. 3, p. 478-487, jul./set. 2013

http://dx.doi.org/10.1590/S0103-65132012005000081

Local search-based heuristics for the multiobjective
multidimensional knapsack problem

Dalessandro Soares Viannaa*, Marcilene de Fátima Dianin Viannab

a*dalessandro@pq.cnpq.br, UFF, Brasil
bmarcilenedianin@gmail.com, UFF, Brasil

Abstract

In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective)
at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously
r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most
promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation.
In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated
Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark
instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution
quality and running times.
Keywords
 Multiobjective multidimensional knapsack problem. Multiobjective combinatorial optimization. GRASP. ILS.

*UFF, Rio das Ostras, RJ, Brasil
Recebido 24/05/2010; Aceito 16/11/2011

1. Introduction

Many practical optimization problems, generally,
involve simultaneous minimization (or maximization)
of several conflicting decision criteria. The goal of
multiobjective combinatorial optimization (MOCO) is
to optimize simultaneously r > 1 criteria or objectives.
MOCO problems have a set of optimal solutions
(instead of a single optimum) in the sense that no
other solutions are superior to them when all objectives
are taken into account. They are known as Pareto
optimal or efficient solutions.

Solving MOCO problems is quite different from
single-objective case (r = 1), where an optimal solution
is searched. The difficulty is not only due to the
combinatorial complexity as in single-objective case,
but also due to finding all elements of the efficient
set, whose cardinality grows with the number of
objectives.

In the literature, some authors have proposed
exact methods for solving specific MOCO problems
(EHRGOTT; GANDIBLEUX, 2000; EPPRECHT; LEIRAS,
2007; ULUNGU; TEGHEM, 1995; VISÉE et al., 1998).

These methods are generally valid for bi-objective
(r = 2) problems but cannot be adapted easily to a
higher number of objectives. Also, exact methods
are inefficient to solve large-scale NP-hard MOCO
problems. As in the single-objective case, the use
of heuristic/metaheuristic techniques seems to be
the most promising approach to MOCO problems
because of their efficiency, generality and relative
simplicity of implementation. These techniques
generate good approximated solutions in a short
computational time. Several articles have proposed
heuristic procedures to solve MOCO problems (ARROYO;
VIEIRA; VIANNA, 2008; COELLO, 2000; DEB, 2004;
EHRGOTT; GANDIBLEUX, 2000; JONES; MIRRAZAVI;
TAMIZ, 2002; LAMONT, 2000; LINS; DROGUETT,
2009; MAURI; LORENA, 2009; VAN VELDHUIZEN;
LAMONT, 2000; VIANNA et al., 2007).

There are only few studies on the application
of GRASP (Greedy Randomized Adaptive Search
Procedure) and ILS (Iterated Local Search) heuristics
to MOCO problems.

Vianna, D. S. et al.
Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013 479

⊆ Ω is nondominated in S if there is no x ∈ S such
that x dominates x*.

2.1. Multiobjective knapsack problem
(MOKP)

In the literature, different versions of the 0/1
multiobjective knapsack problem are studied
(GANDIBLEUX; FRÉVILE, 2000; ZITZLER; THIELE,
1999). In this paper we use the same problem
considered by Zitzler and Thiele (1999), Jaskiewicz
(2002) and Alves and Almeida (2007) in their
experiments, who considers the multiobjective problem
that allows r knapsacks with different capacities
and n items that can be chosen for insertion in the
knapsacks. This problem can be formulated as follows:

Maximize
1

n

j ij i
i

f (x) c x
=

= ∑ , j = 1, …, r

Subject to

1

n

ij i j
i

w x W
=

≤∑ , j = 1, …, r

xi ∈ {0, 1}, i = 1, …, n,

where cij and wij are, respectively, the profit and weight
of item i according to knapsack j, Wj is the capacity
of knapsack j and x = (x1, …, xn) is a vector of binary
variables such that xi = 1 if the item i belongs to the
knapsacks and xi = 0, otherwise.

The objectives are conflicting because the benefit
of putting an item i into a knapsack j (cij) can be high,
while placing the same item i in another knapsack l
(cil) may not be attractive (low benefit).

3. Multiobjective grasp
algorithm – MGRASP

GRASP – Greedy Randomized Adaptive Search
Procedure (FEO; RESENDE, 1995; RESENDE; RIBEIRO,
2003) – is a multi-start metaheuristic, in which each
iteration consists of two phases: construction and
local search. The construction phase builds a feasible
solution using a greedy randomized algorithm, while
the local search phase calculates a local optimum in
the neighborhood of the feasible solution. Both phases
are repeated a pre-specified number of iterations and
the best overall solution is kept as the result.

Subsections 3.1 and 3.2 present, respectively, the
construction and local search phases of the proposed
multiobjective GRASP algorithm (MGRASP algorithm).
The description of MGRASP algorithm is given in
Subsection 3.3.

The application of ILS metaheuristic (LOURENÇO;
MARTIN; STÜTZLE, 2002) for MOCO problems is
scarcer than GRASP. As example of ILS applied to
MOCO problems we can cite the paper proposed
by Ribeiro et al. (2008), in which was developed a
multiobjective hybrid heuristic for a life car sequencing
problem with painting and assembly line constraints.
In this paper, the ILS is used as a single objective
optimizer.

The literature on the multiobjective knapsack
problem is rather scarce. The methods proposed by
Ulungu and Teghem (1995) and Visée et al. (1998)
are based on exact algorithms; Jaskiewicz (2002),
Zitzler and Thiele (1999) and Alves and Almeida (2007)
use genetic algorithms; the methods of Gandibleux
and Frévile (2000) and Hansen (1997) are based on
tabu search; and the methods proposed by Czyzak
and Jaskiewicz (1998) and Ulungu, Teghem and Ost
(1998) are based on simulated annealing.

In this paper, we propose algorithms based on
GRASP and ILS metaheuristics to generate a good
approximation of the set of efficient or Pareto optimal
solutions of the multiobjective knapsack problem.
They are compared with three genetic algorithms from
literature: MOGLS (Multiobjective Genetic Local Search)
suggested by Jaskiewicz (2002); SPEAII (ZITZLER;
LAUMANNS; THIELE, 2002), which is an improved
version of the genetic algorithm SPEA (Strength
Pareto Evolutionary Algorithm) proposed by Zitzler
and Thiele (1999); and MOTGA (Multiple objective
Tchebycheff based Genetic Algorithm) proposed by
Alves and Almeida (2007).

The organization of the paper is as follows. In the
next section, we present the formulation of a MOCO
problem and a formal definition of the multiobjective
knapsack problem. In Section 3, we discuss with
more details the multiobjective GRASP algorithm
proposed. In Section 4, we detail the multiobjective
ILS algorithm proposed. We present computational
results in Section 5. Finally, Section 6 contains our
concluding remarks.

2. Multiobjective optimization

Given a vector function of r components f = (f1, …,
fr) defined on a finite set Ω, consider the multiobjective
combinatorial optimization problem: Maximize
f(x) = (f1(x), …, fr(x)), subject to x ∈ Ω.

A solution x dominates x’ if f(x) dominates
f(x’), that is, if fj(x) ≥ fj(x’), for all objective j, and
fj(x) > fj(x’) for at least one objective j. A solution
x* ∈ Ω is Pareto optimal (or efficient) if there is no
x ∈ Ω such that x dominates x*. A solution x* ∈ S

480
Vianna, D. S. et al.

Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013

This ratio measures the benefit of including an
item e in the knapsacks. The BuildSolution algorithm
receives as input parameters the solution x to be
built, the percentage α used in the selection of the
next element to be inserted in x, the search direction
Λ and the lPareto list, where the nondominated
solutions are stored. As output, the algorithm returns
the built solution x.

The candidates list CL is defined in line 1, which
is formed by all the items out of the knapsacks.
The CL list is sorted in decreasing order according
to the ratio (1). As showed in line 3, the restricted
candidates list (RCL) is composed by the α × |CL| first
items of CL list. The loop in lines 4-8 is responsible
by the randomization of the algorithm. An item e is
randomly selected from RCL and inserted in x. This
process is repeated while the insertion of e does not
violate the capacity of the knapsacks. The loop in
lines 9-14 looks for additional insertions from CL. This
stage is greedy, respecting the sorting of CL list, and
try to improve, if possible, the solution found in the
previous stage (loop in lines 4-8). Experiments have
shown that only very few items are inserted during this
stage. Thus, an improvement in the current solution

3.1. Greedy randomized construction

To generate an initial set of dominating solutions,
a greedy heuristic is used to maximize a linear
combination of the objective functions:

1

r

j j
j

f (x)
=

λ∑

where
1

1
r

j
j =

λ =∑ and 0 ≤ λj ≤ 1, ∀j.

The preference vector Λi = (λ1, …, λr) determinates
the search direction i on the Pareto optimal frontier.
For building a solution, first, a preference vector Λi
is defined. For this vector is generated a solution x,
whose weighted function f(x) is maximized.

Murata et al. (2001) introduces a way of generating
the preference vector distributed uniformly on the
Pareto frontier. Each component of the vector Λ = (Λ1,
Λ2, …, Λm) is generated combining r non-negatives
integers with sum equal to s,

v1 + v2 + … + vr = s, where vi ∈ {0, ..., s},

which is a value large enough to produce m search
directions. The number of generated search directions
for r objectives and a value s, Nr(s), is calculated as
follows:

N2(s) = s + 1.

N3(s) = 2
0 0

1 1 2 2
s s

i i
N (i) (i) (s)(s) /

= =
= + = + +∑ ∑ .

N4(s) = 3
0 0

1 2 2
s s

i i
N (i) (i)(i) /

= −
= + +∑ ∑ .

For instance, for r = 2 objectives and s = 5 we
have 6 vectors (v1, v2): (0,5), (1,4), (2,3), (3,2), (4,1)
and (5,0). For r = 3 and s = 3 we have 10 vectors (v1,
v2, v3): (0,0,3), (0,1,2), (0,2,1), (0,3,0), (1,0,2), (1,1,1),
(1,2,0), (2,0,1), (2,1,0) and (3,0,0).

With the goal of obtaining normalized directions

(
1

1
r

j
j =

λ =∑) we calculate λj = vj/s, vj ∈ {0, 1, 2, ..., s}.

Figure 1 presents the implemented constructive
algorithm, BuildSolution, which is a greedy randomized
algorithm that builds a solution by inserting items
with the higher value for the following ratio:

1

1

r

j ej
j

r

ej
j

c

w

=

=

λ∑

∑
	

(1)

Figure1. Constructive algorithm.
Procedure BuildSolution (x, α, Λ, lPareto)

Input

 x – solution to be built;

 α – percentage used on the definition of the restricted
candidates list (RCL);

 Λ – vector of preferences (search direction);

 lPareto – list of nondominated solutions that are updated
with x.

Output

 x – built solution.

Begin

01. Insert each item e (xe = 0) in the candidates list CL sorted

decreasing by
= =
∑ ∑λ

1 1
/ ;

r r

j ej ej
j j

c w
02. Let RCL be a list with the α × |CL| first items of CL;

03. Select randomly an item e of RCL;

04. While x ∪ xe does not violate Wj , for j = 1, ..., r do

05. x ¬ x xe; //insert item e in the knapsacks

06. Remove the item e of CL;

07. Select randomly an item e of RCL;

08. End_while

09. For i ¬ 1 to |CL| do

10. e ¬ the ith item of CL;

11. If x ∪ xe does not violate Wj, for j=1, ..., r then

12. x ¬ x ∪ xe; //insert item e in the knapsacks

13. End_if

14. End_for

15. Verify the insertion of x in lPareto list;

16. Return x;

End-BuildSolution

Vianna, D. S. et al.
Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013 481

is out of the knapsack that cannot be inserted without
violating any restriction of the problem. In other words,
the items are removed from the knapsacks until the
free space obtained in this way allows the insertion
of any item that remains out of the knapsacks. This
step is completely greedy. In line 6, the BuildSolution
algorithm is executed completing the construction
of the solution y.

If the new solution, y, is better than x, then the
solution x is updated at line 8 and the vector Marked
is reinitialized in lines 9-10. Otherwise, in line 13,
the first element that was removed from y during
the stage described in line 5 is marked. In line 16,
the refined solution, x, is returned.

The number of iterations of the local search
algorithm depends on the quality of the initial solution
x received as a parameter.

3.3. MGRASP algorithm

Figure 3 presents the proposed MGRASP algorithm,
which receives as input parameters the number of
iterations (N_iter), the percentage α used at the
construction phase and the percentage β used at
the local search phase. Parameters α and β were
empirically set at 10% and 50%, respectively. As
output, the algorithm returns the lPareto list, where
the nondominated solutions are stored. In line 1,
the lPareto list is initialized. The loop in lines 2-7
executes N_iter GRASP iterations. In line 3, the solution
x is initialized. The search direction Λi is defined in
line 4. The solution x is built by the BuildSolution
procedure in line 5. In line 6, the solution x is refined.
Finally, the lPareto list is returned.

can be achieved without compromising the greedy-
randomized feature of the algorithm. In line 15 it is
verified if solution x is a nondominated solution and,
finally, the solution x is returned in line 16.

3.2. Local search

Figure 2 presents the LocalSearch algorithm that
removes the worst items from the knapsacks according
to the ratio (1) and uses the BuildSolution algorithm
to produce a new solution. This algorithm receives
as input parameters the solution x to be refined, the
percentage β that is used at the solution reconstruction
stage, the search direction Λ and the lPareto list,
where the nondominated solutions are stored.

The loop in lines 1-2 initializes all the positions
of the vector Marked with false. An item e can be
removed from the knapsack only if Marked[e] = false.
The loop in lines 3-15 is executed while exist elements
that can be removed, that is, elements still unmarked.
In line 4, the solution x is assigned to the auxiliary
solution y. In line 5, the element that present the
shortest value of the ratio (1) is removed from y. This
process is repeated while there exists an element that

Figure 2. Local search algorithm.
Procedure LocalSearch (x, β, Λ, lPareto)

Input

 x – solution to be refined;

 β – percentage used at the reconstruction of solution x;

 Λ – vector of preferences (search direction);

 lPareto – list of nondominated solutions.

Output

 x – refined solution.

Begin

01. For i ¬ 1 to n do

02. Marked[i] ¬ false;

03. While there exists an item e such that Marked[e] = false do

04. y ¬ x;

05. Remove the unmarked item j (yj = 1) that presents the
smallest value of the ratio (1). Repeat this process until any item g
(yg = 0) may be chosen for insertion;

06. y ¬ BuildSolution (y, β, Λ, lPareto);

07. If f(y) > f(x) then

08. x ¬ y;

09. For i ¬ 1 to n do

10. Marked[i] ¬ false;

11. Else

12. Let xe be the unmarked item of x that presents the
smallest value of the ratio 1;

13. Marked[e] ¬ true;

14. End_if

15. End_while

16. Return x;

End-LocalSearch

Figure 3. MGRASP algorithm.
Procedure MGRASP (N_iter, α, β)

Input

 N_iter – number of GRASP iterations;

 α – percentage used at the construction stage;

 β – percentage used at the local search stage.

Output

 lPareto – list of nondominated solutions.

Begin

01. lPareto ¬ ∅;

02. For i ¬ 1 to N_iter do

03. x ¬ ∅;

04. Let Λi be the search direction in the position i of Λ,
defined according to the preference specification method described
at Subsection 3.1;

05. x ¬ BuildSolution (x, α, Λi, lPareto);

06. x ¬ LocalSearch (x, β, Λi, lPareto);

07. End_for

08. Return lPareto;

End-MGRASP

482
Vianna, D. S. et al.

Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013

returns the lPareto list, where the nondominated
solutions are stored. In line 1, the lPareto list is
initialized. The loop in lines 3-16 executes N_iter
iterations. In line 4, the solution x is initialized. The
search direction Λk is defined in line 6. The solution
x is built in line 7 and refined in line 8. The loop
in lines 9-15 executes ILS_iter ILS iterations. In line
10, the perturbation method is applied at solution
x. The resulting solution y is refined in line 11. If the
refined solution is better than x, x is updated in line
13. Finally, the lPareto list is returned.

5. Computational experiments

We compare the results of MGRASP and MILS
algorithms with the following genetic algorithms:
MOTGA (ALVES; ALMEIDA, 2007), MOGLS
(JASKIEWICZ, 2002) and SPEAII (ZITZLER; LAUMANNS;
THIELE, 2002).

All computational experiments with the MGRASP
and MILS algorithms were performed on a 3.2GHz
Pentium IV processor with 1 Gbyte of RAM memory.
Both algorithms were implemented in C using version
6.0 of the Microsoft Visual C++ compiler.

4. Multiobjective ILS algorithm – MILS

The Iterated Local Search (ILS) algorithm
(LOURENÇO; MARTIN; STÜTZLE, 2002) involves
the repeated application of a local search algorithm
applied to the candidate solutions found by a broader
search process that involves a biased random walk
through the search space.

The algorithm works by first building an initial
solution, which is refined using a local search strategy.
The algorithm loop involves three steps: a perturbation
of the current solution, the application of the local
search to the perturbed solution, and an acceptance
decision of whether or not the locally optimizing
candidate solution should replace the current working
solution for the search.

Subsection 4.1 presents the perturbation method
used in the proposed multiobjective ILS algorithm
(MILS algorithm). The description of the MILS
algorithm is given in Subsection 4.2.

4.1. Perturbation

In the proposed perturbation method, we exchange
the content of two regions of a solution x. The size of
the regions is chosen randomly between the interval
[1, γ × n], where n is the number of items and γ was
empirically set at 10%. Figure 4 shows an example
of perturbation, in which the content of regions 1
and 2 are exchanged. After applying the perturbation
method, the solution x can be infeasible. If it happens,
we randomly select an item to be removed from the
knapsack. This process is repeated until x becomes
feasible.

4.2. MILS algorithm

Figure 5 presents the proposed MILS algorithm,
which receives as input parameters the number of
iterations (N_iter), the number of ILS iterations (ILS_
iter), the percentage α used at the construction phase
and the percentage β used at the local search phase.

Parameters ILS_iter, α and β were empirically set at
5, 0% and 10%, respectively. As output, the algorithm

Figure 4. Example of perturbation.

Figure 5. MILS algorithm.
Procedure MILS (N_iter, ILS_iter, α, β)

Input

 N_iter – number of iterations;

 ILS_iter – number of ILS iterations;

 α – percentage used at the construction stage;

 β – percentage used at the local search stage.

Output

 lPareto – list of nondominated solutions.

Begin

01. lPareto ¬ ∅;

02. i ¬ 1;

03. while i ≤ N_iter do

04. x ¬ ∅;

05. k ¬ i;

06. Let Λk be the search direction in the position k of Λ,
defined according to the preference specification method described
at Subsection 3.1;

07. x ¬ BuildSolution (x, α, Λk, lPareto);

08. x ¬ LocalSearch (x, β, Λk, lPareto);

09. For j ¬1 to ILS_iter do

10. y ¬ Perturbation (x);

11. y’ ¬ LocalSearch (y, β, Λk, lPareto);

12. If y’ > x then

13. x ¬ y’;

14. i ¬ i + 1;

15. End_for

16. End_while

17. Return lPareto;

End-MILS

Vianna, D. S. et al.
Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013 483

Note that Davg is the average distance from a point
z ∈ R to its closest point in H.

When the Pareto optimal set is not known and
H’ is the set of nondominated points generated by
another heuristic method, we define the reference
set R as the nondominated points of (H ∪ H’) and
use the same measures mentioned above to assess
the approximation of H and H’ relative to R.

We also use an additional measure to compare
two nondominated solutions sets, H and H’. This
measure is called strict coverage (ALVES; ALMEIDA,
2007; JASKIEWICZ, 2002; ZITZLER; THIELE, 1999)
and computes the fraction of solutions of one set
dominated by solutions of another set. The strict
coverage measure is defined as

() { } dominates z' H ' z H : z z'
C H ,H'

H'

∈ ∃ ∈
=

The value C(H, H’) = 1 means that all points of H’
are dominated by points of H. The value C(H, H’) = 0
means that no point of H’ is dominated by any
point of H.

5.3. Results comparison

The experiments done were conducted using
the test instances described in Table 1, which were
proposed by Zitzler and Thiele (1999), and has been
also used by MOTGA (ALVES; ALMEIDA, 2007),
MOGLS (JASKIEWICZ, 2002) and SPEAII (ZITZLER;
LAUMANNS; THIELE, 2002) algorithms.

In the first experiment, the MGRASP algorithm
was run five times to each instance. Each run finished
when the average running time spent by MOTGA
algorithm (the fastest algorithm among MOTGA,
MOGLS and SPEAII) was achieved. The goal of this
experiment is to evaluate MGRASP, MOTGA, MOGLS
and SPEAII algorithms running the same time in a
similar machine. Table 2 shows the average running
times of MOTGA. In this experiment, we use the

5.1. Test instances

In this work, we use the set of instances proposed
by Zitzler and Thiele (1999). They generated instances
with 250, 500 and 750 items, and 2, 3, and 4
objectives. Uncorrelated profits and weights were
randomly generated in the interval [10, 100]. The
knapsack capacities were set to half the total weight
regarding the corresponding knapsack:

Wj = 0.5
1

n

ij
i

w .
=
∑

The problem instances are presented in Table 1
and are available at: http://www.tik.ee.ethz.ch/~zitzler/
testdata.html.

5.2. Evaluation of computational results in
multiobjective optimization

The quality of a solution of a single-objective
minimization problem is evaluated in a straightforward
manner as the relative difference between the objective
value of such solution and the value of an optimal
solution. In multiobjective optimization, however,
there is no natural single measure that is able to
capture the quality of a nondominated set H to the
Pareto optimal set or reference set R.

We measure the quality of the nondominated set
H generated by the heuristic method relative to the
reference set R by using two measures:
•	Cardinal measure: number of reference solutions, NRS,

found by the heuristic method, where NRS = |H∩R|;
and

•	Average distance measure (proposed by Czyzak and
Jaszkiewicz (1998) and Ulungu, Teghen and Ost
(1998)): average distance between the nondominated
set H generated by the heuristic method and the
reference set R. We measure the average distance

Davg with 1
avg z' H

z R
D min d (z', z),

R ∈
∈

= ∑ where

d is defined by 1j ,...,r j jd (z', z) max (z' z),== −
z’ = (z’1, …, z’r) ∈ H and z = (z1, …, zr) ∈ R.

Table 1. Test instances.

Instance Objectives Items

kn250_2 2 250

kn250_3 3 250

kn250_4 4 250

kn500_2 2 500

kn500_3 3 500

kn500_4 4 500

kn750_2 2 750

kn750_3 3 750

kn750_4 4 750

Table 2. Average running times of MOTGA algorithm on a
Pentium IV 3.2 GHz.

Instance Time(s)

kn250_2 1.5

kn500_2 7.2

kn750_2 19.5

kn250_3 2.7

kn500_3 12.8

kn750_3 33.4

kn250_4 4.2

kn500_4 18.2

kn750_4 51.9

484
Vianna, D. S. et al.

Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013

instance, the number of reference solutions (NRS)
and the average distance (Davg). The best results are
highlighted in bold.

The results show that when the number of
reference solutions (NRS) is compared, the MILS
algorithm generates a larger number of reference
solutions for all instances. So, by the cardinal measure,
MILS performs better than the others algorithms.
When the average distance, Davg, is compared, MILS
also performs better than the others algorithms.

Figure 7 shows the solutions obtained by MILS,
MOTGA, MOGLS and SPEAII algorithms after a
running of the test instances “kn250_2”, “kn500_2”
and “kn750_2”. In this figure, we also can see that the
solution set obtained by MILS is better distributed.

In the third experiment, MGRASP and MILS
algorithms are compared using the strict coverage
measure presented in Subsection 5.2. The results
are presented in Figure 8. When the instances with
2 objectives are analyzed, we can see that the majority
of the solutions obtained by MGRASP are dominated
by the solutions obtained by MILS. When the instances
with 3 and 4 objectives are compared, we can see
that just a few of the solutions obtained by both
algorithms are dominated by the solutions obtained
by the other algorithm.

For making a better comparison between MGRASP
and MILS algorithms, a fourth experiment was done.
In this experiment, both algorithms were run five times

cardinal measure (NRS) and the average distance
measure (Davg) presented in Subsection 5.2.

Table 3 presents comparative results for the first
experiment. In the second column we have the number
|R| of reference solutions. In the following columns
are presented, for each algorithm (MGRASP, MOTGA,
MOGLS and SPEAII) and for each instance, the number
of reference solutions (NRS) and the average distance
(Davg). The best results are highlighted in bold.

The results show that when the number of
reference solutions (NRS) is compared, the MGRASP
algorithm generates a larger number of reference
solutions on 7 instances from a total of 9 instances.
So, by the cardinal measure, MGRASP performs
better than the others algorithms. When the average
distance, Davg, is compared, MGRASP also performs
better than the others algorithms.

Figure 6 shows the solutions obtained by MGRASP,
MOTGA, MOGLS and SPEAII algorithms after a
running of the test instances “kn250_2”, “kn500_2”
and “kn750_2”. In this figure, we can see that the
solution set obtained by MGRASP is better distributed.

In the second experiment, the previous experiment
is repeated with MILS, MOTGA, MOGLS and SPEAII
algorithms. Table 4 presents comparative results for
the second experiment. In the second column we
have the number |R| of reference solutions. In the
following columns are presented, for each algorithm
(MILS, MOTGA, MOGLS and SPEAII) and for each

Table 3. Comparison of MGRASP, MOTGA, MOGLS and SPEAII algorithms running the same time in a similar machine.

Instance |R|
NRS Davg

MGRASP MOTGA MOGLS SPEAII MGRASP MOTGA MOGLS SPEAII

kn250_2 162.0 86.4 73.0 3.4 - 0.0016 0.0025 0.0094 -

Kn500_2 227.0 68.8 166.4 0.2 - 0.0030 0.0009 0.0181 -

Kn750_2 313.0 75.2 236.6 1.2 0.0 0.0036 0.0007 0.0190 0.0550

Kn250_3 3379.0 1701.4 456.0 1221.6 - 0.0016 0.0118 0.0128 -

Kn500_3 6517.4 3709.4 981.6 1826.4 - 0.0013 0.0101 0.0210 -

Kn750_3 8692.6 4851.0 1378.0 2258.8 204.8 0.0014 0.0091 0.0220 0.0887

Kn250_4 9125.2 4358.0 1002.4 3764.8 - 0.0059 0.0226 0.0182 -

Kn500_4 14809.8 7418.4 2054.6 5336.8 - 0.0068 0.0212 0.0270 -

Kn750_4 19458.8 9700.8 2982.6 6515.6 259.8 0.0071 0.0193 0.0307 0.1504

Table 4. Comparison of MILS, MOTGA, MOGLS and SPEAII algorithms running the same time in a similar machine.

Instance |R|
NRS Davg

MILS MOTGA MOGLS SPEAII MILS MOTGA MOGLS SPEAII

kn250_2 218.2 187.2 36.4 0.0 - 0.0003 0.0041 0.0108 -

kn500_2 385.8 306.6 86.2 0.0 - 0.0003 0,0027 0.0192 -

kn750_2 472.2 281.0 191.8 0.0 0.0 0.0011 0.0016 0.0206 0.0603

kn250_3 3262.8 1621.4 436.0 1206.0 - 0.0044 0.0134 0.0153 -

kn500_3 5747.6 2866.6 971.0 1910.0 - 0.0074 0.0104 0.0214 -

kn750_3 7355.6 3375.8 1392.2 2374.2 213.4 0.0070 0.0089 0.0210 0.0844

kn250_4 7952.4 3709.8 1000.8 3241.8 - 0.0195 0.0240 0.0207 -

kn500_4 12895.0 5505.4 2048.2 5341.4 - 0.0182 0.0210 0.0270 -

kn750_4 16955.4 7155.8 2968.0 6561.0 270.6 0.0283 0.0282 0.0308 0.1437

Vianna, D. S. et al.
Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013 485

The results show that when the number of
reference solutions (NRS) is compared, the MILS
algorithm generates a larger number of reference
solutions on 8 instances from a total of 9 instances.
When the average distance, Davg, is compared, the
MILS algorithm has a smaller average distance on 8
instances from a total of 9 instances. When the time
consumed is compared, similar results are obtained
by both algorithms.

Figure 7. Solution obtained by MILS, MOTGA, MOGLS and
SPEAII.

to each instance. Each run finished after N_iter = 1000
iterations. Table 5 presents comparative results for the
fourth experiment. In the second column we have the
number |R| of reference solutions. In the following
columns are presented, for each algorithm (MGRASP
and MILS) and for each instance, the number of
reference solutions (NRS), the average distance (Davg)
and the time consumed in seconds. The best results
are highlighted in bold.

Figure 6. Solution obtained by MGRASP, MOTGA, MOGLS
and SPEAII.

Table 5. Comparison of MILS and MGRASP.

Instance |R|
NRS Davg Time (s)

MILS MGRASP MILS MGRASP MILS MGRASP

Kn250_2 305.6 281.6 36.4 0.0001 0.0027 12.2 10.9

Kn500_2 549.2 540.8 8.8 0.0001 0.0032 70.8 62.8

Kn750_2 764.4 735.4 29.2 0.0001 0.0023 217.1 189.3

Kn250_3 8831.0 5011.2 3828.0 0.0006 0.0035 81.1 67.7

Kn500_3 11963.0 6746.2 5217.0 0.0006 0.0012 336.8 319.1

Kn750_3 33359.0 17151.4 16207.6 0.0019 0.0024 711.4 675.5

Kn250_4 34876.4 18229.4 16647.8 0.0044 0.0058 299.7 251.4

Kn500_4 74492.6 33676.4 40816.4 0.0085 0.0048 1042.2 987.6

Kn750_4 105150.0 58121.4 47029.0 0.0042 0.0112 2252.8 2179.5

486
Vianna, D. S. et al.

Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013

compared, the MGRASP algorithm obtained a smaller
average distance on 7 instances from a total of 9
instances. The MILS algorithm obtained a smaller
average distance for all instances. It was also noted
that the solutions sets obtained by MGRASP and
MILS algorithms are better distributed than the ones
obtained by the others algorithms.

When the proposed algorithms are compared,
it is concluded that the MILS performs better than
MGRASP. When the number of reference solution
(NRS) is compared, the MILS algorithm generates a
larger number of reference solutions on 8 instances
from a total of 9 instances. When the average distance
(Davg) is compared, the MILS algorithm obtained a
smaller average distance on 8 instances from a total
of 9 instances. Similar times consumed are obtained
by both algorithms.

Based on the obtained results, it is concluded
that the proposed algorithms, MGRASP and MILS,
are very robust, outperforming three efficient genetic

6. Conclusion

In this paper, we have proposed local search
based algorithms, MGRASP and MILS, to generate a
good approximation of the set of efficient or Pareto
optimal solutions of a multiobjective combinatorial
optimization problem. They are applied for solving
the knapsack problem with r objectives and they are
compared with MOTGA algorithm, proposed by Alves
and Almeida (2007), MOGLS algorithm, proposed by
Jaskiewicz (2002), and SPEAII algorithm, proposed
by Zitzler, Laumanns and Thiele (2002).

In the experiments comparing the proposed
algorithms with MOTGA, MOGLS and SPEAII
algorithms, when the number of reference solution
(NRS) is compared, the MGRASP algorithm generates
a larger number of reference solutions on 7 instances
from a total of 9 instances. The MILS algorithm
generates a larger number of reference solutions
for all instances. When the average distance (Davg) is

Figure 8. Strict coverage comparison between MILS and MGRASP algorithm.

Vianna, D. S. et al.
Local search-based heuristics ... multidimensional knapsack problem. Produção, v. 23, n. 3, p. 478-487, jul./set. 2013 487

via genetic algorithms and discrete event simulation.
Pesquisa Operacional, v. 29, n. 1, p. 43-66, 2009. http://
dx.doi.org/10.1590/S0101-74382009000100003

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated
local search. In: GLOVER, F.; KOCHENBERGER, G. (Eds.).
Handbook of Metaheuristics. Kluwer, 2002. p. 321-353.

MAURI, G. R.; LORENA, L. A. N. Uma nova abordagem
para o problema dial-a-ride. Produção, v. 19, n. 1,
p. 41-54, 2009. http://dx.doi.org/10.1590/S0103-
65132009000100004

MURATA, T.; ISHIBUCHI, H.; GEN, M. Specification
of genetic Search directions in cellular multi-
objective genetic algorithms. In: INTERNATIONAL
CONFERENCE ON EVOLUTIONARY MULTI-CRITERION
OPTIMIZATION, 2001, Zurich. Proceedings... Zurich:
Springer, 2001. v. 1, p. 82-95.

RESENDE, M. G. C.; RIBEIRO, C. C. Greedy randomized
adaptive search procedures. In: GLOVER, F.;
KOCHENBERGER, G. (Eds.). Handbook of Metaheuristics.
Boston: Kluwer, 2003. p. 219-249.

RIBEIRO, C. C. et al. A hybrid heuristic for a multi-objective
real-life car sequencing problem with painting and
assembly line constraints. European Journal of
Operational Research, v. 191, p. 981-992, 2008. http://
dx.doi.org/10.1016/j.ejor.2007.04.034

ULUNGU, E. L.; TEGHEM, J. The two phases method: An
efficient procedure to solve bi-objective combinatorial
optimization problems. Foundations of Computing and
Decision Sciences, v. 20, n. 2, p. 149-165, 1995.

ULUNGU, E. L.; TEGHEM, J.; OST, C. Efficiency of interactive
multi-objective simulated annealing through a case
study. Journal of the Operational Research Society, v. 49,
p. 1044-1050, 1998.

VAN VELDHUIZEN D. A.; LAMONT, G. B. Multiobjective
evolutionary algorithms: Analyzing the state-of art.
Evolutionary Computation, v. 8, n. 2, p. 125-147, 2000.
http://dx.doi.org/10.1162/106365600568158

VIANNA, D. S. et al. Parallel strategies for a multi-criteria
GRASP algorithm. Produção, v. 17, p. 1-12, 2007. http://
dx.doi.org/10.1590/S0103-65132007000100006

VISÉE, M. et al. Two-Phases Method and Branch and Bound
Procedures to solve the Bi-objectives knapsack Problem.
Journal of Global Optimization, v. 12, p. 139-155, 1998.
http://dx.doi.org/10.1023/A:1008258310679

ZITZLER, E.; THIELE, L. Multiobjective evolutionary
algorithms: A comparative case study and the strength
pareto approach. IEEE Transactions on Evolutionary
Computation, v. 3, n. 4, p. 257–271, 1999. http://dx.doi.
org/10.1109/4235.797969

ZITZLER, E.; LAUMANNS, M.; THIELE, L. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. In:
GIANNAKOGLOU, K. et al. (Eds.). Evolutionary Methods
for Design, Optimization and Control with Applications
to Industrial Problems. Athens, 2002. p. 95-100.

Acknowledgements

This work was finantiated by: Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq);
Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro (FAPERJ); Parque de Alta Tecnologia do Norte
Fluminense (TECNORTE); and Fundação Estadual do
Norte Fluminense (FENORTE).

algorithms from the literature: MOTGA, MOGLS and
SPEAII. We can also conclude that the MILS algorithms
performs better than the MGRASP algorithm.

New researches will be done to incorporate memory
mechanisms in the MILS and MGRASP algorithms,
trying to achieve better results using in each iteration,
information obtained in previous iterations.

References

ALVES, M. J.; ALMEIDA, M. M. A multiobjective Tchebycheff
based genetic algorithm for the multidimensional
knapsack problem. Computers & Operations Research,
v. 34, p. 3458-3470, 2007. http://dx.doi.org/10.1016/j.
cor.2006.02.008

ARROYO, J. E. C.; VIEIRA, P. S.; VIANNA, D. S. A GRASP
algorithm for the multi-criteria minimum spanning
tree problem. Annals of Operations Research, v. 159,
p. 125‑133, 2008. http://dx.doi.org/10.1007/s10479-
007-0263-4

COELLO, C. A. C. An updated survey of GA-based
multiobjective optimization techniques. ACM Computing
Surveys, v. 32, n. 2, p. 109-143, 2000. http://dx.doi.
org/10.1145/358923.358929

CZYZAK, P.; JASZKIEWICZ, A. Pareto simulated annealing – a
metaheuristic technique for multiple objective
combinatorial optimization. Journal of Multi-Criteria
Decision Analysis, v. 7, p. 34-47, 1998. http://dx.doi.
org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-
MCDA161>3.0.CO;2-6

DEB, K. Multi-objective optimization using evolutionary
algorithms. England: John Wiley & Sons Ltd., 2004.

EHRGOTT, M.; GANDIBLEUX, X. A survey and annotated
bibliography of multiobjective combinatorial
optimization. OR Spektrum, v. 22, p. 425-460, 2000.
http://dx.doi.org/10.1007/s002910000046

EPPRECHT, E. K.; LEIRAS, A. Otimização conjunta de gráficos
de X-barra-S ou X-barra-R: um procedimento de fácil
implementação. Produção, v. 17, n. 3, p. 520-535, 2007.

FEO, T. A.; RESENDE, M. G. C. Greedy randomized adaptive
search procedures. Journal of Global Optimization,
v. 6, p. 109-133, 1995. http://dx.doi.org/10.1007/
BF01096763

GANDIBLEUX, X.; FRÉVILLE, A. Tabu search based
procedure for solving the 0-1 multiobjective
knapsack problem: The two objectives case. Journal
of Heuristics, v. 6, p. 361‑383, 2000. http://dx.doi.
org/10.1023/A:1009682532542

HANSEN, P. Tabu search for multiobjective optimization:
MOTS. Technical Report. Technical University of
Denmark. In: INTERNATIONAL CONFERENCE ON
MULTIPLE CRITERIA DECISION MAKING, 13., 1997,
Cape Town. Proceedings... Cape Town, 1997.

JASKIEWICZ, A. On the performance of multiple objective
genetic local search on the 0/1 knapsack problem:
A comparative experiment. IEEE Transaction on
Evolutionary Computation, v. 6, n. 4, p. 402-412, 2002.
http://dx.doi.org/10.1109/TEVC.2002.802873

JONES, D. F.; MIRRAZAVI, S. K.; TAMIZ, M. Multi-objective
metaheuristics: An overview of the current state-of-
art. European Journal of Operational Research, v. 137,
p. 1-19, 2002. http://dx.doi.org/10.1016/S0377-
2217(01)00123-0

LINS, I. D.; DROGUETT, E. L. Multiobjective optimization
of availability and cost in repairable systems design

http://dx.doi.org/10.1590/S0101-74382009000100003
http://dx.doi.org/10.1590/S0101-74382009000100003
http://dx.doi.org/10.1590/S0103-65132009000100004
http://dx.doi.org/10.1590/S0103-65132009000100004
http://dx.doi.org/10.1016/j.ejor.2007.04.034
http://dx.doi.org/10.1016/j.ejor.2007.04.034
http://dx.doi.org/10.1162/106365600568158
http://dx.doi.org/10.1590/S0103-65132007000100006
http://dx.doi.org/10.1590/S0103-65132007000100006
http://dx.doi.org/10.1023/A:1008258310679
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1016/j.cor.2006.02.008
http://dx.doi.org/10.1016/j.cor.2006.02.008
http://dx.doi.org/10.1007/s10479-007-0263-4
http://dx.doi.org/10.1007/s10479-007-0263-4
http://dx.doi.org/10.1145/358923.358929
http://dx.doi.org/10.1145/358923.358929
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1007/s002910000046
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1023/A:1009682532542
http://dx.doi.org/10.1023/A:1009682532542
http://dx.doi.org/10.1109/TEVC.2002.802873
http://dx.doi.org/10.1016/S0377-2217(01)00123-0
http://dx.doi.org/10.1016/S0377-2217(01)00123-0

