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Abstract
Nonparametric procedures are used to add flexibility to models. Three nonparametric item response models have been 
proposed, but not directly compared: the Kernel smoothing (KS-IRT); the Davidian-Curve (DC-IRT); and the Bayesian semi-
parametric Rasch model (SP-Rasch). The main aim of  the present study is to compare the performance of  these procedures 
in recovering simulated true scores, using sum scores as benchmarks. The secondary aim is to compare their performances in 
terms of  practical equivalence with real data. Overall, the results show that, apart from the DC-IRT, which is the model that 
performs the worse, all the other models give results quite similar to those when sum scores are used. These results are followed 
by a discussion with practical implications and recommendations for future studies. 
Keywords: Nonparametric item response model; Bayesian modeling; Monte Carlo simulation.

Modelos de Resposta ao Item Não-Paramétricos:  
Comparando a Recuperação de Escores Verdadeiros

Resumo
Procedimentos não paramétricos são usados para adicionar flexibilidade aos modelos. Três modelos não paramétricos de res-
posta ao item foram propostos, mas não comparados diretamente: o Kernel smoothing (KS-IRT); a Curva Davidiana (DC-IRT); 
e o modelo semiparamétrico Rasch Bayesiano (SP-Rasch). O objetivo principal do presente estudo é comparar o desempenho 
desses procedimentos na recuperação de escores verdadeiros simulados, utilizando escores de soma como benchmarks. O obje-
tivo secundário é comparar seus desempenhos em termos de equivalência prática com dados reais. De forma geral, os resultados 
mostram que, além do DC-IRT, que é o modelo que apresenta o pior desempenho, todos os outros modelos apresentam resulta-
dos bastante semelhantes aos de quando se usam somatórios. Esses resultados são seguidos de uma discussão com implicações 
práticas e recomendações para estudos futuros.
Palavras-chave: Modelo de resposta ao item não paramétrica; Modelagem Bayesiana; Simulação Monte Carlo.

Modelos De Respuesta al Item No-Paramétricos:  
Comparando la Recuperación de Puntuaciones Verdaderas

Resumen
Se utilizan procedimientos no paramétricos para agregar flexibilidad a los modelos. Se propusieron tres modelos de respuesta 
al ítem no paramétricos, pero no se compararon directamente: Kernel smoothing (KS-IRT); la curva davidiana (DC-IRT); y el 
modelo bayesiano de Rasch semiparamétrico (SP-Rasch). El objetivo principal del presente estudio es comparar el desempeño 
de estos procedimientos en la recuperación de puntajes verdaderos simulados, utilizando puntajes de suma como puntos de 
referencia. El objetivo secundario es comparar su desempeño en términos de equivalencia práctica con datos reales. En general, 
los resultados muestran que, a excepción de DC-IRT, que es el modelo con peor desempeño, todos los otros modelos presentan 
resultados bastante similares a los obtenidos cuando se utilizan sumatorios. Estos resultados son seguidos por una discusión con 
implicaciones prácticas y recomendaciones para estudios futuros.
Palabras clave: Modelo de respuesta de ítem no paramétrico; Modelado bayesiano; simulación del Monte Carlo.

Nonparametric item response models (NIRMs) 
have been proposed as alternatives to traditional para-
metric item response theory (IRT) models. NIRMs 
can relax any of  the pragmatic assumptions (i.e., nor-
mal density and logistic link function; Franco et  al., 
2022) without affecting the general assumptions (i.e., 
unidimensionality, latent monotonicity and local 

independence) of  IRT. Several different procedures can 
be considered as NIRMs, such as Mokken scale analysis 
(Sijtsma & van der Ark, 2017); Bayesian semiparametric 
models (Falk & Cai, 2016) and nonparametric mod-
els (Karabatsos & Sheu, 2004); kernel based (Ramsay, 
1991) and spline based (Ramsay & Wiberg, 2017) 
smooth estimate for item response functions (IRFs); 
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and others. However, several of  these procedures have 
never been directly compared on their effectiveness in 
recovering true scores.

Nonparametric regression (Barlow & Brunk, 
1972), nonparametric density estimation (Izenman, 
1991) and the general nonparametric Bayesian pro-
cedure known as Dirichlet Process (DP; Ferguson, 
1973) are some procedures that could be used to fit 
NIRMs. In general, these procedures aim at adding 
flexibility to the estimates, reducing underfitting while 
also compensating for overfitting of  the data (Müller 
et  al., 2015; Tsybakov, 2009). Applying these proce-
dures to IRT promotes at least two advantages. First, 
the possibility of  estimating latent IRFs that are more 
flexible than any parametric model. Secondly, non-
parametric density estimation can aid in the estimation 
of  true scores when skewed or multimodal distribu-
tions can be expected.

Three NIRMs are evaluated in the present 
study. The first is Kernel smoothing IRT (KS-IRT; 
Ramsay, 1991), which uses B-spline basis to estimate 
non-decreasing monotonic item characteristic curves 
(ICCs), but assumes a parametric form for the true 
scores. Another procedure is the Davidian curve IRT 
(DC-IRT; Woods & Lin, 2009), which uses B-spline 
basis to smooth the distribution of  the estimated 
true scores, but assumes a parametric IRF. Finally, the 
semiparametric Bayesian Rasch model (SP-Rasch; San 
Martín et  al., 2011) uses a Dirichlet Process mixture 
that originates smooth estimates for both ICCs and 
true scores. The main reason for choosing these spe-
cific procedures is due to previous results showing 
that they can outperform other nonparametric (Lee, 
2007; Woods & Lin, 2009) and parametric (Duncan 
& MacEachern, 2008; Miyazaki & Hoshino, 2009) 
procedures on recovering true scores. Still, these 
models have not been compared previously. Each 
procedure relaxes different assumptions (i.e., para-
metric IRF or normal distribution for the true scores) 
about the item response process, so comparing them 
can help achieve further understanding about which 
or even if  any parametric assumption improves the 
true scores’ estimation.

The primary purpose of  this study is to compare 
the three described NIRMs for dichotomous data on 
several simulated conditions for their effectiveness in 
recovering latent true scores, defined in terms of  their 
bias, magnitude of  average residuals and correlations 
with the known simulated true scores. The second pur-
pose is to compare their practical equivalence (i.e., if  

conclusions from real data can change) using real data 
from a college admissions test. The rest of  this paper 
is structured as follows. In the next three sections we 
present the three procedures—KS-IRT, DC-IRT, and 
SP-Rasch, respectively. In the fifth section, simulated 
and real data are used to compare the procedures. The 
paper ends with a discussion and some concluding 
remarks regarding mainly practical implications.

Kernel smoothing IRT (KS-IRT)
The basic idea of  the KS-IRT (Douglas 1997; 

Ramsay, 1991) is to obtain a nonparametric estimate of  
the ICCs by taking a (local) weighted average (i.e., curve 
smoothing) of  the probability of  response Pr(θ) of  the 
N respondents’ xij responses to item i:

, (1)

where θj is the true score of  the respondent j, θ is the 
vector of  true scores estimates for the respondents, and 
the weights wj (θ - θj ) are defined by a kernel function 
K(∙) which imposes three conditions to these weights. 
They must be nonnegative; they must reach their maxi-
mum when θ = θj ; and they will approach or equal 
zero as |θ - θj | increases. To assure interpretability 
of  the weights, two extra conditions are to be met: 
wj (θ - θj  ≥ 0) and ∑j wj (θ - θj  = 1). The normalizing 
function proposed by Nadaraya (1964) and Watson 
(1964) are a commonly used alternative to assure these 
two extra conditions:

, (2)

where b is the bandwidth parameter, which deter-
mines the degree of  smoothing. When b is small, the 
bias (i.e., underfitting) is also small, but variance (i.e., 
overfitting) is larger. 

Another requirement for using the KS-IRT is—
due to the fact that θj  is not observable—to use an 
estimate for the true score, denoted . A default pro-
cedure (Ramsay, 1991) is to rank the sum scores and 
define F(θ) as the normal cumulative distribution func-
tion (CDF), which finally leads to

. (3)

The ICCs estimated by the KS-IRT procedure will also 
be monotonically related to the latent scores, but with 
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no particular parametric function defined. Some ICCs 
are more similar to a logistic IRF, but quite different 
curves can be estimated. The densities, on the other 
hand, will always conform to the defined CDF, which 
can be the CDF of  any continuous distribution.

For properly fitting a KS-IRT, an adequate level 
of  the bandwidth parameter, b, must be chosen. The 
selection of  the bandwidth is a complex procedure and 
demands an optimal choice criterion. For selecting the 
bandwidth, one can use a cross-validation procedure 
(Wong, 1983) with the form

, (4)

where Pri
- j is the vector of  estimated probabilities of  

response after removing . This procedure relays on 
minimization algorithms, being the value of  bi that 
minimizes CV considered the best one for avoiding 
under or overfitting. 

Davidian curve IRT (DC-IRT)
The Davidian curve IRT (DC-IRT) was proposed 

by Woods and Lin (2009) as a procedure for fitting item 
response models in which the distribution of  the ran-
dom latent variable is estimated simultaneously with 
the item parameters. The DC-IRT combines traditional 
logistic IRF models, like the two-parameter logistic 
(2PL) model, with a density estimation method known 
as Davidian curves (DCs; Zhang & Davidian, 2001). 
DCs are defined by: 

, (5)

where Pk is a polynomial of  order k and ϕ(θ) is 
the standard normal density function. Pk is de-
fined as:

,
(6)

where λ is a nonnegative integer and m
λ
 are the weight 

coefficients for the θλ polynomial transformations. 
Two other constraints are also necessary. First, Woods 
and Lin (2009) used a polar coordinate transformation 
which assures that corrections in the estimation steps 
have identical density as the originally estimated θ. This 
assures that DC(θ), which is a probability density func-
tion, integrates to 1. The second constraint is to fix the 
mean and standard deviation of  the initial latent density 
to 0 and 1, respectively, so the model is identifiable.

For effective implementation of  this proce-
dure, Woods and Lin (2009) propose an expectation 

maximization (EM) algorithm with two iteration steps. 
In the first step (E-step) random initial values for the 
latent scores and the item parameters are used to esti-
mate the number of  people expected to give a specific 
response to each item. In the second step (M-step) 
parameters of  the DC are estimated by maximizing the 
following likelihood

(7)

where q is each specific quadrature point, Q is the 
total quadrature points, N(θq) is the number of  people 
expected to give a specific response on the quadrature 
q, and DC(θq) is the DC estimate for the quadrature q.

As DC-IRT models with different k parameters 
should be compared to achieve the best model, model 
selection is carried out using the Hannan–Quinn (HQ) 
criterion (Hannan, 1987). The HQ criterion is similar to 
the Akaike and to the Bayesian information criterions, 
although defined slightly differently

(8)
where p is the number of  estimated parameters. Woods 
and Lin (2009) use this criterion as it has shown good 
performance with DCs (Davidian & Gallant, 1993; 
Zhang & Davidian, 2001) and Ramsay curves IRT (RC-
IRT; Woods, 2006, 2007).

Semiparametric Bayesian Rasch model
In Bayesian semiparametric and nonparametric 

model, it is common for researchers to use the Dirich-
let Process (DP; Ferguson, 1973). DP is defined as a 
probability distribution which the domain is a set of  
probability distributions, with parameters M0 and α, 
representing the base distribution and a scaling parame-
ter, respectively. The base distribution parameter can be 
interpreted as the expected value of  the process, while 
the scale parameter is how similar is the realizations to 
the base distribution; in the limit a → ∞, the realization 
follows the same distribution as the base distribution.

The DP is typically used for estimating non reg-
ular densities (Müller & Quintana, 2004). However, it 
is also possible to use DPs to sample from functions 
(Müller et  al., 2015), resulting in estimates of  nonlin-
ear and nonparametric functions. San Martín et  al. 
(2011) proposed to use the DP to give flexibility to 
the parametric Rasch model. Let µ represent means, σ² 
represent variances, the estimates of  true scores are θ, 
and the estimates of  difficulties are δ; San Martín et al. 
(2011) model is then represented as
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(9)

where ~ is read as “is distributed as”, and T rep-
resents a truncation.

The semiparametric Bayesian Rasch (SP-Rasch) 
model can be labelled as a hierarchical mixed model, 
which complexity implies that the posterior distri-
bution of  the parameters cannot be found in closed 
form (Kruschke, 2015, chapter 6). A common alterna-
tive Bayesian procedure for fitting this type of  model 
is through the Markov Chain Monte Carlo (MCMC; 
Kruschke, 2015, chapter 7) method. MCMC samples 
estimates of  the posterior distribution (which is not 
directly accessible) from the unnormalized posterior. 
Due to the descriptive and sometimes exploratory char-
acteristic of  measurement models, non-informative 
priors (Kruschke, 2015, chapter 10) for the parameters 
are usually preferred (e.g., Duncan & MacEachern, 
2008). Following these procedures, irregular densities 
and nonparametric ICCs can be properly estimated.

Procedures’ performance and hypotheses
Previous studies (Guo & Sinharay, 2011; Lee, 

2007) found that KS-IRT is one of  the best procedures 
based on smoothing of  the ICCs for recovering both 
items and respondents’ latent variables values. The for-
mal structure of  this procedure was also extended for 
applications in nonparametric test equating (De Ayala 
et al., 2018), and item selection for computerized adap-
tive testing (Xu & Douglas, 2006). As stated before, one 
of  its limitations is the need to define a parametric form 
to F(θ). We are not aware of  any study which compared 
the KS-IRT with other procedures that use more flex-
ible distributions for the estimated true scores.

DC-IRT was proposed as a more efficient version 
of  the Ramsay curve IRT (RC-IRT; Woods & Thissen, 
2006), which uses B-spline-based densities estimates 
for the latent scores. Woods and Lin (2009) present 

at least two advantages of  DC-IRT over RC-IRT. The 
first is the number of  tuning parameters. RC-IRT uses 
three tuning parameters (the number of  knots, the 
order of  the splines, and the standard deviation of  the 
prior distribution), DC-IRT uses only one (k). In this 
case, needing fewer tuning parameters is an advantage 
because one optimal model can be selected amongst 10 
models for DC-IRT, while for RC-IRT it is one over 25 
possible models. The second advantage is that DC-IRT 
will perform at least as well as RC-IRT in several con-
ditions, but better when the true distribution of  latent 
scores is skewed. This is particularly interesting as the 
RC-IRT has been previously shown to perform bet-
ter—in a number of  conditions—than parametric and 
other nonparametric procedures (Woods, 2006, 2007).

The SP-Rasch has not yet been directly compared 
to other models. Even so, similar models have shown 
good performance when compared to parametric mod-
els (e.g., Duncan & MacEachern, 2008). An extension 
of  the SP-Rasch using a three-parameter logistic instead 
of  a Rasch model as the base distribution has also shown 
good performance when compared to parametric mod-
els (Duncan & MacEachern, 2013). Another extension, 
proposed by Arenson and Karabatsos (2018), which 
uses no specific parametric function as base distribu-
tion, was able to perform better than the parametric 
2PL model, especially when symmetric priors, as the 
ones used in the present study, are used. Finally, these 
models can all be compared to sum scores, which can 
be considered as lower bound benchmarks for the per-
formance of  the models (Wiberg, et al., 2018).

Simulation study

Method

Following Woods and Lin (2009), we used the 2PL 
model as the true IRF for data generation. Random 
draws of  1,000 simulated respondents and 25 items 
were iterated 800 times. Discriminations were drawn 
from a truncated normal distribution with mean equals 
to 1.7, standard deviation equals to .8 and bottom 
truncation equals to .5. Difficulties were drawn from a 
normal distribution with mean equals to 0 and standard 
deviation equals to 1.2. 

Our three conditions were based on the densi-
ties used to generate the latent true scores, with values 
set as suggested by Woods and Lin (2009): a stan-
dard normal distribution; a skewed distribution; and 
a bimodal distribution. Woods and Lin (2009) used a 



Franco, V. R. & cols.  True Scores Comparison with NIRTs

Psico-USF, Bragança Paulista, v. 28, n. 4, p. 685-696, out./dez. 2023

689

mixture of  normal distributions for both the skewed 
and the bimodal distributions, where the one used for 
the bimodal distribution was unequal in the mixtures’ 
standard deviations. To better represent a bimodal and 
a skewed distribution, we used different, but equiva-
lent, procedures for simulating both conditions. For the 
skewed distribution, we used Azzalini’s (1985) skewed 
normal distribution with parameters equal to: skew-
ness  =  1.57, mean  =  0, and standard deviation  =  1. 
For the bimodal distribution, we used a mixture of  
normal distributions, but with equal standard devia-
tions and with means equally distant from the standard 
mean: N(-1,.5) + N(1,.5). The three conditions are 
presented in Figure 1.

To assess effectiveness of  each procedure, three 
measures related to the accuracy of  the estimates and 
one measure related to distributional properties were 
used. The first measure related to accuracy was Spear-
man’s correlation, which was used to assess accuracy 
in ranking simulated respondents. Bias was used to 
assess accuracy on the range of  true scores’ estimates, 
as measured by the residuals of  an additive regression 
between estimated and true scores. The final measure 
of  accuracy was mean absolute error (MAE). MAE was 
preferred over the more common root mean square 
error (RMSE) because the latter increases with the vari-
ance of  the distribution of  error magnitudes (Willmott 
& Matsuura, 2005). MAE is defined as

(10)

The  estimated by DC-IRT and KS-IRT were recov-
ered using the expected a posteriori (EAP) procedure. 
For the SP-Rasch, true scores were recovered using the 
maximum a posteriori (MAP) estimate.

Distributional properties were measured using the 
integrated square error (ISE; Shirahata & Chu, 1992). 
The ISE is defined as

(11)

where ĝ(θ) is the feature scaled density of  the distribu-
tion of  estimates of  the true score θ and g(θ) is the 
feature scaled density of  the real distribution of  true 
scores. Both ĝ(θ) and  g(θ) were calculated using kernel 
density estimates with the number of  equally spaced 
points equal to the sample size and the bandwidth cho-
sen adaptively using Sheather and Jones (1991) method.

All simulations and data analyses were done in 
R (R Core Team, 2019). We used the DC-IRT imple-
mented in the mirt package (Chalmers, 2012). For the 
kernel smoothing IRT, we used the implementation 
in the KernSmoothIRT package (Mazza et  al., 2012). 
For the SP-Rasch model, we used the implementation 
in the DPpackage package (Jara et al., 2011). The ske-
wed distribution was generated using the rsn function 
from the sn package (Azzalini, 2018). The residuals of  
the additive regression for bias were calculated using 
the gam function from the mgcv package (Wood, 
2012). The ISE was calculated using the density inte-
grate.xy function from the sfsmisc package (Meachler, 
2018). The code with the full simulation is available at 
https://osf.io/3ryz2/.

Note. From left to right: the standard normal distribution; the skewed distribution; and the bimodal distribution.
Figure 1. The three real data distributions
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Results

Table 1 presents the overall results and also the 
findings for each condition. Numbers in bold show, 
for a particular condition and performance’s mea-
sure, which procedure performs best. In general, sum 
scores, the scores estimated with KS-IRT and with the 
SP-Rasch are very similar in their performances. The 
DC-IRT procedure performed the worst in every mea-
sure and every condition. The sum scores performed 
the best in all conditions in terms of  MAE. It also 
performed better in terms of  ISE in the bimodal con-
dition. The KS-IRT scores performed the best in all but 
the bimodal condition in terms of  ISE. The SP-Rasch 
scores performed the best in all but the normal condi-
tion in terms of  correlation’s measures.

These results can be complemented with Figure 
2, which includes the estimates of  bias averaged over 
all conditions and for each condition. It is evident that 
all the procedures have similar bias throughout the 

range of  possible values for the true scores throughout 
all the condition. However, when scores are extremely 
low, the SP-Rasch will be more biased than the other 
procedures, especially in the normal and skew condi-
tions. Also, all the procedures will underestimate scores 
below the average true score, and overestimate scores 
above the average true score. This result was somewhat 
expected because of  two reasons. First because all pro-
cedures estimate θ from monotonic transformations of  
sum scores. Second because the simulated true scores 
are denser around 0. Finally, it is also evident that scores 
below average are more biased than scores above aver-
age. This is a likely consequence from the fact that one 
of  the true distributions is skewed, having a higher num-
ber of  scores between 0 and 1 than between 0 and –1.

Empirical Example
For an illustrated comparison between the proce-

dures, we used a sample of  5,000 individuals from one 
administration of  the Swedish Scholastic Assessment 

Table 1. 
Average Accuracy and Distributional Properties Estimated

Condition Procedure Correlations MAE ISE
Overall Sum score .904 .253 .831

DC-IRT .846 .301 1.478
KS-IRT .903 .257 .350

SP-Rasch .905 .282 .811

Normal Sum score .916 .259 .887
DC-IRT .860 .303 1.201
KS-IRT .915 .264 .101

SP-Rasch .913 .291 .778

Skewed Sum score .868 .241 .916
DC-IRT .788 .285 1.159
KS-IRT .866 .245 .220

SP-Rasch .869 .264 .638

Bimodal Sum score .927 .259 .688
DC-IRT .891 .315 1.083
KS-IRT .928 .261 .729

SP-Rasch .933 .291 1.017

Note. DC-IRT = Davidian curve model. KS-IRT = Kernel smoothing model. SP-Rasch = Bayesian Semiparametric Rasch model. MAE = Mean 
Absolute Error. ISE = Integrated squared error.
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Test (SweSAT). The SweSAT is a college admissions 
test that is administered twice a year and the scores are 
valid to use when applying to university for five years. 
It consists of  a verbal and a quantitative subtest with 
each containing 80 items. Each subtest is scored, ana-
lyzed, and equated separately. In this example, we used 
the quantitative subtest of  the SweSAT. We choose the 
quantitative test scores because they are more skewed 
than the verbal sum scores. This condition was chosen 
as it should maximize the difference of  performance 
between the tested procedures.

The total sum score is equated and transformed 
to a normed score, which is used in selection to higher 
education in Sweden (Stage, 2003). Therefore, differ-
ences in the order, or ranking, of  the respondents can 
result in different people accessing higher education. 
The estimated nonparametric scores were compared 
to the sum scores using three different measures. First, 

the densities of  the nonparametric estimates were com-
pared to the sum scores’ density using the ISE. Next, 
Kolmogorov-Smirnov d statistic was calculated for the 
distributions of  scores estimated using sum scores and 
the NIRMs. The d statistic simply represents the largest 
distance (in absolute value) between the CDFs of  the 
target distribution (i.e., a normal distribution) and the 
distribution of  the estimated scores. Finally, the Spear-
man’s correlation was used to compare how similar the 
scores rank respondents, using the whole sample and 
the top 5% and 1% performers on the sum scores of  
the quantitative subtest.

Results

From Table 2 it is evident that, by evaluating the 
d statistic, the KS-IRT estimates are more normally 

Note. DC-IRT = Davidian curve model. KS-IRT = Kernel smoothing model. SP-Rasch = Bayesian Semiparametric Rasch model. 

Figure 2. The bias for each procedure at estimating the true score, averaged over all conditions and specific for each 
condition.
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distributed than the other estimates. The SP-Rasch dis-
tribution was shown, by means of  ISE, to be the most 
similar to the sum scores’ distribution.

The values of  d and ISE can also be reflected by 
the densities represented in Figure 3. The SP-Rasch has 
almost the same distribution as the DC-IRT. KS-IRT 
has a normal distribution and the sum scores have a 
positive–asymmetric distribution, with a different peak 
than SP-Rasch and DC-IRT.

The Spearman correlations in Figure 4 show how 
similarly the different procedures rank the respon-
dents. When the whole sample is used, all procedures 
gave almost the same ranking of  participants, with the 
smaller Spearman correlation equals to .98. The rank 
correlation between KS-IRT, SP-Rasch, and the sum 
scores are almost the same when we compare the pro-
cedures using only the top 5% and 1% performers. 
The DC-IRT presents a decrease in its rank correla-
tion with the other procedures. Summing up, using any 

procedure but the DC-IRT will give basically the same 
rank of  top performers.

Discussion

The main aim of  the present study was to compare 
the performance of  DC-IRT, KS-IRT and SP-Rasch 
in recovering simulated true scores, using sum scores 
as benchmarks. The secondary aim was to compare 
their performances in terms of  practical equivalence 
with real data. Our results support the claim that the 
estimated distribution of  θ is arbitrary (Ramsay, 1991) 
and, therefore, nonparametric density estimation adds 
little to the effectiveness of  IRMs. This follows from 
the fact that using an arbitrary parametric distribution 
for the true scores and a nonparametric procedure 
for ICC estimation resulted in better estimates. Using 
parametric IRFs and nonparametric estimation of  the 
density of  the true score, by means of  DC-IRT, had 

Table 2. 
Distributional Properties of  the Estimated Scores

Measure Sum score DC-IRT KS-IRT SP-Rasch
d .9999 .0847 .0002 .310

ISE — 9.605 8.624 7.319

Note. Distance to a Normal Distribution (d) and Difference from the Sum Score’s Distribution (ISE). DC-IRT = Davidian curve model. KS-
-IRT = Kernel smoothing model. SP-Rasch = Bayesian Semiparametric Rasch model.

Note. DC-IRT = Davidian curve model. KS-IRT = Kernel smoothing model. SP-Rasch = Bayesian Semiparametric Rasch model. 
Figure 3. Densities of  the estimated scores
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the least accurate performance. As expected, the KS-
IRT and the SP-Rasch outperformed the sum score 
estimates, due to their flexibility in fitting noisy data. 
For ranking participants, in terms of  estimates of  true 
scores, sum scores, KS-IRT, and SP-Rasch are equally 
effective procedures. These results seem to support 
the view that the parametric assumptions about the 
IRFs are less relevant, or even more restricting, for 
estimating true scores.

One of  the limitations of  the present study is 
the fact that the non-normal distribution’s conditions 
seemed to not cause much differences in the per-
formances as expected. Despite following what was 
recommended by Woods and Lin (2009) for setting 
these conditions, our results show that more expres-
sive deviations from normality are probably necessary 
for observing relevant differences in performance. 
Future studies could, for instance, test the effect of  
the presence of  outliers (e.g., using the t distribution), 
the effect of  bounded scales for the latent variables 
(e.g., using the beta distribution), or even a mixture 
of  these alternatives (e.g., with mixture distributions 
for the latent scores).

In terms of  practical implications, our results 
suggest that even if  there are some deviations from 
parametric models of  the true data generating process, 
the KS-IRT and the SP-Rasch are likely to perform 
similarly. This is particularly true if  the aim is to rank 
respondents by means of  estimates of  true scores. 
Our empirical example showed that rank correlations 
between KS-IRT, SP-Rasch and the sum scores are 
very high for top performers. However, future stud-
ies, focusing on applications of  these models where 

extreme scores on both ends of  the scales are relevant, 
should compare how similar the methods are in ranking 
individuals with lower scores.

In terms of  implementations of  NIRMs, because 
the KS-IRT can be implemented using the CDF of  
any continuous distribution, future studies could test 
how changing this aspect of  the model could impact 
the performance. Also, other techniques and methods 
of  Bayesian modeling can be used for further extend 
the SP-Rasch model. For instance, differently from 
MLE procedures, Bayesian IRMs do not require the 
specification of  a distribution for the sample scores, 
but only for the prior of  possible scores (Fox, 2010). 
This naturally results in a more flexible distribution 
for the estimates of  the sample true scores, somewhat 
similar to the DC-IRT. This can be used to extend 
the SP-Rasch so it relies less on both the empirical 
distribution of  scores and the strong imposition of  
having a parametric, Rasch, item response function 
(Wiberg et al, 2018).

NIRMs have outperformed parametric IRMs in 
a set of  different conditions on previous studies. Our 
research is one of  few (e.g., Lee, 2007; Woods & Lin, 
2009) to compare the effectiveness of  different NIRMs 
in recovering true scores and the first, that we are aware 
of, to compare the SP-Rasch with other nonparamet-
ric procedures. From a theoretical point of  view, our 
findings support that IRMs can be more efficient on 
recovering true scores if  their ICCs are nonparametric, 
but show little to no improvement in allowing for asym-
metric distributions on the estimates of  the sample true 
scores. This means that we agree with Wiberg et  al. 
(2019) that the logistic assumption of  IRFs can actually 

Whole sample Top 5% performers Top 1% performers

Note. DC = Davidian curve model. KS = Kernel smoothing model. SP = Bayesian Semiparametric Rasch model. SS = Sum score.

Figure 4. Correlation between scores given the whole sample, the top 1% and the top 5% performers
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be a limitation for psychometric models which requires 
further understanding and changes in current research 
and testing practices.
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