Combinação de etilenoglicol com sacarose aumenta a taxa de sobrevivência após a vitrificação de tecido somático de catetos (Pecari tajacu Linnaeus, 1758)
pvb
Pesquisa Veterinária Brasileira
Pesq. Vet. Bras.
0100-736X
1678-5150
Colégio Brasileiro de Patologia Animal - CBPA. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
RESUMO:
A criopreservação de tecido somático em catetos promove uma fonte alternativa de material genético nesta espécie. A vitrificação em superfície sólida (VSS) é uma ótima opção para a conservação do tecido; contudo, a otimização dos requerimentos da VSS é necessária, especialmente quanto aos crioprotetores que irão compor a solução de vitrificação. Portanto, o objetivo foi avaliar o efeito da presença de 0,25 M de sacarose em adição com diferentes combinações (individual ou associação) e concentrações (1,5 M ou 3,0 M) de etilenoglicol (EG) e/ou dimetilsulfóxido (DMSO) na vitrificação de tecido somático de catetos. Subsequentemente, nós testamos seis combinações de crioprotetores com ou sem sacarose em meio de Eagle modificado por Dulbecco (DMEM) acrescido de 10% de soro fetal bovino (SFB). Assim, 3,0 M de EG com sacarose foi capaz de manter as características normais do tecido comparado com o não vitrificado (controle), especialmente para a proporção volumétrica da epiderme (61,2 vs. 58,7%) e derme (34,5 vs. 36,6%), número de fibroblastos (90,3 vs. 127,0), razão da região argirófila organizadora de nucléolo (AgNOR) (0,09 vs. 0,17%) e área do núcleo (15,4vs.14,5 μm2), respectivamente. Em conclusão, 3,0 M de EG com 0,25 M de sacarose e 10% de SFB resultaram na melhor composição de crioprotetores na VSS para tecido somático de catetos.
Introduction
The conservation of somatic tissue of collared peccaries is an alternative tool in the biodiversity maintenance and can be applied in the reproductive biotechnologies, both for the preservation and the breeding management (Machado et al. 2016). The sampling of animals for the cryopreservation is a procedure that can be used for the transportation and storage after collection of the genetic material, maintaining high quality of the tissues and being applied for different purposes (Wong et al. 2012), as the formation of biological resource banks (León-Quinto et al. 2014) and use in somatic cell nuclear transfer (Folch et al. 2009).
In particular, the collared peccary can be used as an experimental model due to phylogenetic proximity to white-lipped peccary (Tayassu peccary Link, 1795) that according to International Union for Conservation of Nature (2016) was listed as vulnerable, having few specimens of this population. Thus, the obtaining of samples of collared peccary, classified as a species least concern and greater accessibility, could be proposed. Additionally, in some situations, the somatic tissue is the only sample of genetic material which possible to collect, to cryopreserve, and notably skin fragments are easy to access (Singh & Ma 2014).
In general, the cryopreservation is a strategy for genetic conservation of animals, domestic or wild (Benkeddache et al. 2012) and vitrification procedures are superior to conventional cryopreservation by freezing (Brockbank et al. 2010). In the vitrification, the solution is rapidly cooled and transformed into a glassy, vitrified state, not by ice crystallization, but because of extreme elevation in viscosity during cooling (Amorim et al. 2011). The choice of the vitrification is due to the shorter time consumed to perform the technique; it is more economical and easy to be performed in any laboratory (Ting et al. 2013). For optimum conditions, a small volume and high concentration of the vitrification solution that is in contact with the tissue cryopreserved is required. Thus, the solid-surface vitrification (SSV) provides the use of a small amount of a cryoprotectant consisting of direct exposure of the tissue to a pre-cooled solid surface (Carvalho et al. 2011). In previous study, we demonstrated that the SSV was more able to preserve somatic tissue of collared peccary than conventional vitrification using cryovials (Borges et al. 2017b).
Although cell cryopreservation methodologies are applied to tissues, an adaptation of protocols is necessary in order to adjust the requirements of the tissue (Zieger et al. 1996) due to the complexity of many cell types causing water permeability variation in different tissue types (Gandolfi et al. 2006). In collared peccaries, we observed that the peripheral ear integumentary system possessed some important variations compared to other mammals (Borges et al. 2017a) and, therefore, there is the need for development of species-specific protocols of cryopreservation (Agca et al. 2005). The vitrification protocols may improve by varying the composition and concentration of cryoprotectants, which will prevent the rate of formation of ice crystals. Thus, it is necessary to study the effects of different cryoprotectants in somatic tissue of collared peccaries, since the vitrification protocol for somatic tissue of this species is not well established.
Several requirements are specific to different components in the cryopreservation medium; being among these specifications the action mechanism of cryoprotectants that may be intracellular (permeable) or extracellular (non-permeable) (Da-Croce et al. 2013). The permeable cryoprotectants as ethylene glycol (EG) and dimethyl sulfoxide (DMSO) are small molecules that enter the cell and bind with water molecules, limiting the amount of intracellular and extracellular water which protect intracellular organelles (Prentice & Anzar 2011). Moreover, the permeable cryoprotectants are used in combination with non-permeable cryoprotectants and they are divided in groups: disaccharides (sucrose) and proteins (fetal serum bovine, FBS). These non-permeable cryoprotectants cause cellular dehydration because they do not penetrate the membranes and collaborate for increased osmolality (Sieme et al. 2016). Based on this information, this study aimed to evaluate the effect of the presence of the non-permeable cryoprotectant (sucrose) with different combinations and concentrations of permeable cryoprotectants (EG and/or DMSO) on the somatic tissue vitrification of collared peccaries.
Materials and Methods
The reagents, media, and solutions were obtained from Sigma-Aldrich (St. Louis, MO, USA), Gibco-BRL (Carlsbad, CA, USA), and Labimpex (São Paulo, SP, Brazil).
Animal ethics and care. The study protocol was approved by the Animal Ethics Committee (CEUA/UFERSA; no. 23091.001072/2015-92) and the Chico Mendes Institute for Biodiversity Conservation (ICMBio; no. 48633-2). Eight animals (3-6 months) obtained from the Centre for Wild Animals Multiplication (CEMAS/UFERSA, no. 1478912) were used.
Skin biopsy and experimental design. Initially, in the management of systems of the collared peccaries, their identification is recorded by ear sections and these fragments (1-2cm2) were recovered for the experiment. Then, skin tissues were transported to the laboratory in Dulbecco modified Eagle medium (DMEM) with 2.2g/L sodium bicarbonate and 2% antibiotic-antimycotic solution at 37°C for 30 min, according to Santos et al. (2016). At the laboratory, the tissue fragments were washed in 70% ethanol and DMEM. Subsequently, 28 fragments derived from each animal were distributed equally into seven groups among non-vitrified (control) and vitrification solutions, which resulted in four fragments per group of each animal that were divided equally for histological analysis.
The skin tissues were cryopreserved using vitrification solution proposed by Santos et al. (2007), Borges et al. (2009) and Lunardi et al. (2012) with some modifications. Thus, DMEM composed of 2.2g/L sodium bicarbonate and 10% FBS (DMEM+) was supplemented with sucrose, EG, and/or DMSO to produce the following six vitrification solutions (VS): EG (DMEM+ +3.0 M EG +10% FBS), EG-SUC (DMEM+ +3.0 M EG +0.25 M sucrose +10% FBS), DMSO (DMEM+ +3.0 M DMSO +10% FBS), DMSO-SUC (DMEM+ +3.0 M DMSO +0.25 M sucrose +10% FBS), EG-DMSO (DMEM+ +1.5 M EG +1.5 M DMSO +10% FBS), and EG-DMSO-SUC (DMEM+ +1.5 M EG +1.5 M DMSO +0.25 M sucrose + 10% FBS). After 2 weeks, fragments were warmed and evaluated by integrity analysis, as described in the following.
Vitrification and warming.Somatic tissues were cryopreserved by SSV according to Borges et al. (2017b) and Carvalho et al. (2011) for collared peccary somatic and caprine ovarian tissues, respectively. Thus, fragments were dissected into dimensions of 9.0mm3 and randomly allocated for each group. Briefly, four fragments were exposed to 1.8 mL VS for 5 min, tissues were then dried. Thus, the fragments were individually placed on a cubic metal surface partially in liquid nitrogen (LN2) (>10.000 oC/min), transferred to cryovials, and stored in LN2. Posteriorly, the cryovials were maintained for 1min at 25°C and immersed in a water bath at 37°C for 30 sec. For removal of cryoprotectants, all fragments were washed three times for 5 min in DMEM+ with sucrose at 0.50 M, 0.25 M, and no sucrose, in order to reduce the osmotic shock.
Morphometric analysis. Samples were fixed in 4% paraformaldehyde and processed for embedding in paraffin. Sections of 5.0μm thickness were stained with hematoxylin-eosin and Gomori Trichrome dyes. The histological analysis and morphometry were analyzed using the ImageJ software (US National Institutes of Health, Bethesda, MD, USA) and calculated as the following: the volumetric ratio of the epidermis and dermis, to evaluate if there was any change in tissue size, turgidity or retraction, calculated by: [(number of overlapping structure (dermis or epidermis) to points/total tissue points) ×100] (Mota et al. 2014); and quantified the number of fibroblast and perinuclear halos, to analyze if there is decrease of the cellular population and apoptosis, respectively.
AgNOR and quantification. To evaluate the proliferative activity, the histochemical staining of argyrophilic nucleolar organizer region (AgNOR) in the slides was performed in silver solution prepared in 1 part of 2% gelatin in 1% aqueous formic acid and 2 parts of 50% aqueous silver nitrate solution and the slides were exposed in a dark room for 30 min. Subsequently, the slides were washed in 5% thiosulfate solution for 10 min (Jaafari-Ashkavandi & Fatemi 2013). For analyses of each slide (animal/group), AgNOR dots were counted in 100 fibroblasts by ImageJ software in 1000× magnification. The quantification of AgNOR was performed as: AgNOR area/cell, AgNOR number/cell, nucleus area, and AgNOR ratio (AgNOR area/cell divided by the nucleus area) in accordance to Yang et al. (2013).
Statistical analyses. Data of eight animals were expressed as mean ± standard error (one animal/one repetition) and analyzed using the GraphPad Prisma 6.0 software (Graph-Pad Software Incorporation; La Jolla, CA, USA) to a significance of P <0.05. All values were verified for normality by the Shapiro-Wilk test and homoscedasticity by Levene’s test. Subsequently, when necessary, an arcsine transformation was performed for percentage data. The data of morphometric analysis by volumetric ratio was analyzed by ANOVA (multiple comparisons) followed by Tukey test. Already the results of AgNOR quantification, fibroblast and perinuclear halo numbers were analyzed by Kruskal-Wallis and Dunn (multiple comparisons) tests.
Results
The morphological features in non-vitrified somatic tissue (control) or after vitrification using six different solutions are shown in Figure 1. For the volumetric ratio of epidermis and dermis (Fig.2), the vitrified fragments in solutions composed of EG without (EG: epidermis: 34.0±9.2%; dermis: 58.9±9.3%) and with sucrose (EG-SUC: epidermis: 34.5±9.0%; dermis: 61.2±9.1%) and DMSO without sucrose (DMSO: epidermis: 33.8±8.7%; dermis: 61.6±9.2%) were similar (P>0.05) to control (epidermis: 36.6 ± 10.5%; dermis: 58.7±10.7%). The other groups DMSO with sucrose (DMSO-SUC: epidermis: 32.1±9.8%; dermis: 62.5±9.8%) and EG-DMSO without (EG-DMSO: epidermis: 33.4±10.0%; dermis: 62.9±9.6%) and with sucrose (EG-DMSO-SUC: epidermis: 32.7±9.2%; dermis: 62.3±8.7%) differed from the non-vitrified group (P<0.05).
Fig.1.
Skin histological sections using hematoxylin-eosin (A-G) and (A’-G’) Gomori’s Trichrome, and showing epidermis layers and dermis superficial and deep. Letters indicate, A = control, B = EG, C = EG-SUC, D = DMSO, E = DMSO-SUC, F = EG-DMSO, and G = EG-DMSO-SUC. Bars indicate epidermal area in hematoxylin-eosin and dermal area in Gomori’s Trichrome; halos (arrow) and (triangle) fibroblast. Scale bars = 50μm.
Fig.2.
Volumetric ratios of epidermis and dermis at different combination of permeable cryoprotectants and sucrose. Control, EG, EG-SUC, DMSO, DMSO-SUC, EG-DMSO and EG-DMSO-SUC. Bars indicate standard error. a,b Different (P<0.05) in the same skin layer (epidermis or dermis).
Likewise, none of the vitrified fragments in different solutions were able to maintain the number of fibroblasts similar to non-vitrified fragments (Table 1). Additionally, tissues vitrified in solution composed of EG with and without sucrose, DMSO with sucrose and EG-DMSO without sucrose were those that presented a greater number of fibroblasts. In relation to the number of perinuclear halos (Table 1), vitrified fragments with EG-DMSO-SUC presented least apoptotic characteristics of epidermal cells when compared to other groups (P<0.05); however, this group did not maintain fibroblast number. On the other hand, the EG-SUC group had a reduced number of perinuclear halos when compared to EG without sucrose (29.3±3.7 vs. 37.8±3.7, P<0.05) respectively. Additionally, EG-SUC, DMSO-SUC and EG-DMSO groups showed a good number of fibroblasts and a reduced amount of perinuclear halos.
Table 1.
Mean number fibroblasts and perinuclear halos of ear skin tissue derived collared peccaries after SSV using different solutions
Solutions
Number of fibroblast
Number of perinuclear halos
Mean ± S.E.
Range
Mean ± S.E.
Range
Control (non-vitrified)
127.0 ± 9.2a
93-151.5
14.8 ± 2.2a
7-21
EG
85.7 ± 5.1b
59-84
37.8 ± 3.7b
24-51
EG-SUC
90.3 ± 5.5b
72-106
29.3 ± 3.7c
17-37
DMSO
70.9 ± 3.9c
68-101
30.5 ± 4.1c
18-40
DMSO-SUC
88.2 ± 5.6b
69-104
32.3 ± 4.9c
12-48
EG-DMSO
88.3 ± 5.1b
73-104
28.6 ± 4.4c
15-38.5
EG-DMSO-SUC
78.6 ± 5.3c
63-92
20.5 ± 4.2d
7-28
a,b,c,d
Different (P<0.05) in the same column.
For the number of AgNOR number/cell, only the vitrified fragments with EG-DMSO-SUC were similar to the control (Table 2). The higher values of the core area were in the groups of combination of cryoprotectants either in the absence or presence of sucrose (EG-DMSO and EG-DMSO-SUC). For AgNOR ratio, only the EG group differed from the control; however, the EG-SUC showed a great result which highlights the benefit of sucrose addition.
Table 2.
Comparison of the mean values of argyrophilic nucleolar organizer region (AgNOR) in somatic tissue derived from collared peccary after vitrification with different cryoprotectants
Solutions
Index AgNOR, mean ± S.E.
AgNOR area/cell, μm2
AgNOR number/cell
Nucleus area, μm2
AgNOR ratio (%)
Control (non-vitrified)
1.1 ± 0.6a,b
2.5 ± 1.0a
14.5 ± 6.1a
0.17 ± 0.53a
EG
1.0 ± 0.6a
1.7 ± 0.7c
16.8 ± 8.7a
0.07 ± 0.04b
EG-SUC
1.1 ± 0.9a
1.6 ± 0.7c
15.4 ± 8.7a
0.09 ± 0.08a,b
DMSO
1.1 ± 0.6a
1.9 ± 0.8b
14.5 ± 5.5a
0.08 ± 0.06a
DMSO-SUC
1.0 ± 0.7a
2.0 ± 0.7b
15.4 ± 8.5a
0.08 ± 0.05a,b
EG-DMSO
1.5 ± 0.9b
1.8 ± 0.7b
20.9 ± 8.8b
0.08 ± 0.05a,b
EG-DMSO-SUC
1.4 ± 0.8b
2.3 ± 0.9a
20.0 ± 9.1b
0.08 ± 0.04 a,b
a,b,c
Different (P<0.05) in the same column.
In summary, 3.0 M EG with 0.25 M sucrose was able to maintain normal tissue characteristics compared with non-vitrified, especially for the volumetric ratio of epidermis and dermis, number of fibroblast, AgNOR ratio and nucleus area, respectively.
Discussion
The results indicated that the best combination of cryoprotectants was 0.25 M sucrose with 3.0 M EG and 10% FBS for the SSV of the somatic tissue derived from collared peccaries. This vitrification solution was more able for most of the evaluated histological parameters. The EG-SUC combination showed an increase in tissue survival when compared the others vitrification solutions with satisfactory results in terms of volumetric ratio of the dermis and epidermis, AgNOR ratio, nucleus area, preserving fibroblasts and presenting a low amount of perinuclear halos. Thus, the association of a permeable cryoprotectant in lower individual concentrations combined with non-permeable agent can facilitate a reduction of the toxicity of a specific individual cryoprotectant (Amorim et al. 2011). Thereby, the SSV in a mixture of sucrose and EG, followed by washes in medium containing sucrose, has the best results also in caprine preantral follicles (Santos et al. 2007), can influence the properties of the solution, and can reduce the toxicity of EG (Orief et al. 2005).
The DMSO and EG are the most commonly used permeable cryoprotectants (Kagawa et al. 2009). For articular cartilage, DMSO and EG were permeable cryoprotectants among the other tested that showed less damage to the sample with the recovery of chondrocytes using reduced doses of 6.0 M DMSO and 7.0 M EG (Fahmy et al. 2014). In previous study, it was verified that the DMSO induced a higher decrease in the number of fibroblasts in swine ovarian tissue, resulting in DMSO being more toxic than EG (Borges et al. 2009), confirming the data from the volume ratio of epidermis and dermis to the EG-SUC (EG and sucrose) has a greater ability to preserve tissue that DMSO-SUC (DMSO and sucrose). Thus, EG is used more in vitrification due to rapid diffusion into cells and low toxicity (Dhali et al. 2000, Orief et al. 2005). It is one of the reasons that may have caused lower damages to the tissue ensuring optimal values of volume ratio in DMSO absence. Additionally, EG has a low molecular weight than DMSO that allows its rapid influx during equilibration and dilution (Bautista & Kanagawa 1998).
The combination EG, sucrose and FBS improved the vitrification solution for somatic tissue. Corroborating the best result of this work, Lunardi et al. (2012) got best result solid-surface vitrified with 0.25 M sucrose and 10% FBS for ovine ovarian tissue. Positive results can be obtained from the addition of sugars in the vitrification solution which has the property to maintain the structural and functional integrity of the membranes in low water activity (Hotamisligil et al. 1996). Moreover, the most efficient method for vitrifying caprine ovarian tissue was the SSV using 0.25 M sucrose and 10% FBS with EG (Carvalho et al. 2011). Low toxicity is linked to sugars that promote the stable formation of the glassy state at low temperatures, water permeability, and control viscosity increase of the solution and, consequently, require a lower concentration of penetrating cryoprotectants (Bautista & Kanagawa 1998). In this work, the absence of sucrose with EG (EG) compared to its presence (EG-SUC) has been denoted in proliferative activity by AgNOR ratio that sucrose potentialized the EG. Other work using the vitrification solution containing 40% EG, 18% Ficoll, and 0.3 M sucrose demonstrated that vitrification can be applied to cryopreservation of bovine cartilage (Cetinkaya & Arat 2011). Thus, as predicted by Kuleshova et al. (1999), the properties of the solution must be taken into consideration when one wants to develop a solution for a specific tissue, thus the addition of sugar contributes to the general properties of the solution. Also, they can modify the physical properties of the solution by decreasing the cooling rate (Sutton 1992).
In volume ratio, the EG in combination or not with sucrose was the best preserved tissue in this feature and is more appropriate cryoprotectant that increase the cell permeability and reduce osmotic changes directed to cell volume exposure to cryoprotectants in the cooling or warming (Agca et al. 2005). Thus, the benefit generated by the sucrose was due to cell dehydration caused by osmotic pressure, which provides decrease of intracellular ice (Tanpradit et al. 2015). The mixture of permeable cryoprotectants (EG-DMSO and EG-DMSO-SUC) was less efficient in vitrification solution for preservation of the volumetric ratio of epidermis and dermis. Thus, we can say that for other cellular components as in this study, the combination EG and DMSO showed a high level of toxicity. In this study, we used the concentration of 21.2% DMSO when used individually and 10.6% DMSO when applied in combination; these results corroborate Brockbank et al. (2010) that DMSO concentrations of 8-20% were unsatisfactory in penetrating the cells that do not have the formation of intracellular ice. Silvestre et al. (2003) used rabbit and porcine skin samples, vitrified with solution containing 3.58 M (20%) EG and 2.82 M DMSO in F-PBS, as well as the brown bear skin that used the combination of 20% FBS, 20% EG, 20% DMSO; however suggested that vitrification skin still needs more improvement (Caamaño et al. 2008). For monkey ovarian tissue, the use of 18% DMSO and EG increased to degrade the damaged cytoplasmic organelles (Hashimoto et al. 2010).
On the other hand, the combination of DMSO with EG showed a high toxicity which has proposed replacements for a combination by the propylene glycol (PG), which is in replacement of the combination of DMSO and EG, both of EG and PG (Nohalez et al. 2015) as DMSO and PG (Somfai et al. 2015) showed less toxic. Additionally, comparing DMSO, EG only, or combination, EG has been used as a permeable cryoprotectant preferably for its control of the cooling rate (Tsuribe et al. 2009).
For AgNOR, it allows to analyze possible changes in the tissue and its ability to ribosome biogenesis indicates in the cells through AgNOR data (Mondal et al. 2015), that was maintained in EG-SUC for AgNOR ratio, but was different for EG. This result, displaying a potentiation of cryoprotectants in the presence of non-permeable cryoprotectants, may be due to the use of permeable cryoprotectants with penetration can cause structural damage to tissue by experimental analysis (Bullen et al. 2014). Although no difference was observed for AgNOR area/cell, AgNOR number/cell and nucleus/area, the AgNOR ratio was better for the EG-SUC when compared to the EG group, evidencing the role of sucrose with EG in the somatic tissue conservation.
The successful vitrification combined with extra and intracellular cryoprotectants may be investigated by two mechanisms, by the permeabilization of the cell and to promote intracellular vitrification or at the withdrawal of intracellular water by osmosis before cooling. In murine oocytes and embryos, the main mechanism involved in the vitrification is water removal, on average 85% of intracellular water allowing to achieve 90% viability after warming (Jin & Mazur 2015). Thus, it can be combined with sucrose addition which stabilizes the lipid membranes and protein during dehydration of the cells by hydrogen bonding to polar residues in the dry macromolecular (Crowe et al. 1998).
Conclusion
The best result for SSV in somatic tissue of Pecari tajacu was the combination of 3.0 M EG and 0.25 M sucrose with 10% FBS that allowed the preservation of several characteristics of the tissue after warming, providing the possibility of using this sample for subsequent reproductive biotechnologies, as nuclear transfer.
Acknowledgements
This study was supported by National Counsel of Technological and Scientific Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES). The authors thank the Centre for Wild Animals Multiplication (CEMAS/UFERSA) for providing the animals.
References
Agca Y., Mullen S., Liu J., Johnson-Ward J., Gould K., Chan A. & Critser J. 2005. Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology 51(1):1-14. PMid:15922321. http://dx.doi.org/10.1016/j.cryobiol.2005.04.004.
Agca
Y.
Mullen
S.
Liu
J.
Johnson-Ward
J.
Gould
K.
Chan
A.
Critser
J.
2005
Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa
Cryobiology
51
1
1
14
15922321
10.1016/j.cryobiol.2005.04.004
Amorim C.A., David A., Van Langendonckt A., Dolmans M.M. & Donnez J. 2011. Vitrification of human ovarian tissue: effect of different solutions and procedures. Fertil. Steril. 95(3):1094-1097. PMid:21168134. http://dx.doi.org/10.1016/j.fertnstert.2010.11.046.
Amorim
C.A.
David
A.
Van Langendonckt
A.
Dolmans
M.M.
Donnez
J.
2011
Vitrification of human ovarian tissue: effect of different solutions and procedures
Fertil. Steril.
95
3
1094
1097
21168134
10.1016/j.fertnstert.2010.11.046
Bautista J.A.N. & Kanagawa H. 1998. Current status of vitrification of embryos and oocytes in domestic animals: ethylene glycol as an emerging cryoprotectant of choice. Jpn. J. Vet. Res. 45(4):183-191. PMid:9553322.
Bautista
J.A.N.
& Kanagawa
H.
1998
Current status of vitrification of embryos and oocytes in domestic animals: ethylene glycol as an emerging cryoprotectant of choice
Jpn. J. Vet. Res.
45
4
183
191
9553322
Benkeddache D., Bodinier P., Joly T., Berchiche M. & Vignon X. 2012. Recovery of viable cells from rabbit skin biopsies after storage at -20°C for up to 10 days. Cell Tissue Bank. 13(3):479-486. PMid:22090095. http://dx.doi.org/10.1007/s10561-011-9280-2.
Benkeddache
D.
Bodinier
P.
Joly
T.
Berchiche
M.
Vignon
X.
2012
Recovery of viable cells from rabbit skin biopsies after storage at -20°C for up to 10 days
Cell Tissue Bank.
13
3
479
486
22090095
10.1007/s10561-011-9280-2
Borges A.A., Bezerra F.V.F., Costa F.N., Queiroz Neta L.B., Santos M.V.O., Oliveira M.F., Silva A.R. & Pereira A.F. 2017a. Histomorphological characterization of collared peccary (Pecari tajacu Linnaeus, 1758) ear integumentary system. Arq. Bras. Med. Vet. Zootec. 69(4):948-954. http://dx.doi.org/10.1590/1678-4162-9344.
Borges
A.A.
Bezerra
F.V.F.
Costa
F.N.
Queiroz Neta
L.B.
Santos
M.V.O.
Oliveira
M.F.
Silva
A.R.
Pereira
A.F.
2017a
Histomorphological characterization of collared peccary (Pecari tajacu Linnaeus, 1758) ear integumentary system
Arq. Bras. Med. Vet. Zootec.
69
4
948
954
10.1590/1678-4162-9344
Borges A.A., Lima G.L., Queiroz Neta L.B., Santos M.V.O., Oliveira M.F., Silva A.R. & Pereira A.F. 2017b. Conservation of somatic tissue derived from collared peccaries (Pecari tajacu Linnaeus, 1758) using direct or solid-surface vitrification techniques. Cytotechnology. 69(4):643-654. PMid:28260212. http://dx.doi.org/10.1007/s10616-017-0074-7.
Borges
A.A.
Lima
G.L.
Queiroz Neta
L.B.
Santos
M.V.O.
Oliveira
M.F.
Silva
A.R.
Pereira
A.F.
2017b
Conservation of somatic tissue derived from collared peccaries (Pecari tajacu Linnaeus, 1758) using direct or solid-surface vitrification techniques
Cytotechnology.
69
4
643
654
28260212
10.1007/s10616-017-0074-7
Borges E.N., Silva R.C., Futino D.O., Rocha-Junior C.M.C., Amorim C.A., Báo S.N. & Lucci C.M. 2009. Cryopreservation of swine ovarian tissue: effect of different cryoprotectants on the structural preservation of preantral follicle oocytes. Cryobiology. 59(2):195-200. PMid:19616533. http://dx.doi.org/10.1016/j.cryobiol.2009.07.003.
Borges
E.N.
Silva
R.C.
Futino
D.O.
Rocha-Junior
C.M.C.
Amorim
C.A.
Báo
S.N.
Lucci
C.M.
2009
Cryopreservation of swine ovarian tissue: effect of different cryoprotectants on the structural preservation of preantral follicle oocytes
Cryobiology.
59
2
195
200
19616533
10.1016/j.cryobiol.2009.07.003
Brockbank K.G., Chen Z.Z. & Song Y.C. 2010. Vitrification of porcine articular cartilage. Cryobiology. 60(2):217-221. PMid:20026102. http://dx.doi.org/10.1016/j.cryobiol.2009.12.003.
Brockbank
K.G.
Chen
Z.Z.
Song
Y.C.
2010
Vitrification of porcine articular cartilage
Cryobiology.
60
2
217
221
20026102
10.1016/j.cryobiol.2009.12.003
Bullen A., Taylor R.R., Kachar B., Moores C., Fleck R.A. & Forge A. 2014. Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods. Hear. Res. 315:49-60. PMid:25016142. http://dx.doi.org/10.1016/j.heares.2014.06.006.
Bullen
A.
Taylor
R.R.
Kachar
B.
Moores
C.
Fleck
R.A.
Forge
A.
2014
Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods
Hear. Res.
315
49
60
25016142
10.1016/j.heares.2014.06.006
Caamaño J.N., Rodriguez A., Salas A., Munoz M., Diez C., Prather R.S. & Gomez E. 2008. Flow cytometric cell cycle analysis of cultured brown bear fibroblast cells. Cell Biol. Int. 32(7):855-859. PMid:18396424. http://dx.doi.org/10.1016/j.cellbi.2008.02.005.
Caamaño
J.N.
Rodriguez
A.
Salas
A.
Munoz
M.
Diez
C.
Prather
R.S.
Gomez
E.
2008
Flow cytometric cell cycle analysis of cultured brown bear fibroblast cells
Cell Biol. Int.
32
7
855
859
18396424
10.1016/j.cellbi.2008.02.005
Carvalho A.A., Faustino L.R., Silva C.M.G., Castro S.V., Luz H.K.M., Rossetto R., Lopes C.A.P., Campello C.C., Figueiredo J.R., Rodrigues A.P.R. & Costa A.P.R. 2011. Influence of vitrification techniques and solutions on themorphilogy and survival of preantral follicles after in vitro culture of caprine ovarian tissue. Theriogenology. 76(5):933-941. PMid:21719087. http://dx.doi.org/10.1016/j.theriogenology.2011.04.024.
Carvalho
A.A.
Faustino
L.R.
Silva
C.M.G.
Castro
S.V.
Luz
H.K.M.
Rossetto
R.
Lopes
C.A.P.
Campello
C.C.
Figueiredo
J.R.
Rodrigues
A.P.R.
Costa
A.P.R.
2011
Influence of vitrification techniques and solutions on themorphilogy and survival of preantral follicles after in vitro culture of caprine ovarian tissue
Theriogenology.
76
5
933
941
21719087
10.1016/j.theriogenology.2011.04.024
Cetinkaya G. & Arat S. 2011. Cryopreservation of cartilage cell and tissue for biobanking. Cryobiology. 63(3):292-297. PMid:22020192. http://dx.doi.org/10.1016/j.cryobiol.2011.09.143.
Cetinkaya
G.
Arat
S.
2011
Cryopreservation of cartilage cell and tissue for biobanking
Cryobiology.
63
3
292
297
22020192
10.1016/j.cryobiol.2011.09.143
Crowe J.H., Carpenter J.F. & Crowe L.M. 1998. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60(1):73-103. PMid:9558455. http://dx.doi.org/10.1146/annurev.physiol.60.1.73.
Crowe
J.H.
Carpenter
J.F.
Crowe
L.M.
1998
The role of vitrification in anhydrobiosis
Annu. Rev. Physiol.
60
1
73
103
9558455
10.1146/annurev.physiol.60.1.73
Da-Croce L., Gambarini-Paiva G.H.R., Angelo P.C., Bambirra E.A., Cabral A.C.V. & Godard A.L.B. 2013. Comparison of vitrification and slow cooling for umbilical tissues. Cell Tissue Bank. 14(1):65-76. PMid:22782369. http://dx.doi.org/10.1007/s10561-012-9301-9.
Da-Croce
L.
Gambarini-Paiva
G.H.R.
Angelo
P.C.
Bambirra
E.A.
Cabral
A.C.V.
Godard
A.L.B.
2013
Comparison of vitrification and slow cooling for umbilical tissues
Cell Tissue Bank.
22782369
10.1007/s10561-012-9301-9
Dhali A., Manik R.S., Das S.K., Singla S.K. & Palta P. 2000. Post-vitrification survival and in vitro maturation rate of buffalo (Bubalus bubalis) oocytes: effect of ethylene glycol concentration and exposure time. Anim. Reprod. Sci. 63(3-4):159-165. PMid:10989226. http://dx.doi.org/10.1016/S0378-4320(00)00170-6.
Dhali
A.
Manik
R.S.
Das
S.K.
Singla
S.K.
Palta
P.
2000
Post-vitrification survival and in vitro maturation rate of buffalo (Bubalus bubalis) oocytes: effect of ethylene glycol concentration and exposure time
Anim. Reprod. Sci.
63
3-4
159
165
10989226
10.1016/S0378-4320(00)00170-6
Fahmy M.D., Almansoori K.A., Laouar L., Prasad V., McGann L.E., Elliott J.A.W. & Jomha N.M. 2014. Dose-injury relationships for cryoprotective agent injury to human chondrocytes. Cryobiology. 68(1):50-56. PMid:24269869. http://dx.doi.org/10.1016/j.cryobiol.2013.11.006.
Fahmy
M.D.
Almansoori
K.A.
Laouar
L.
Prasad
V.
McGann
L.E.
Elliott
J.A.W.
Jomha
N.M.
2014
Dose-injury relationships for cryoprotective agent injury to human chondrocytes
Cryobiology.
68
1
50
56
24269869
10.1016/j.cryobiol.2013.11.006
Folch J., Cocero M.J., Chesné P., Alabart J.L., Domínguez V., Cognié Y., Roche A., Fernández-Árias A., Martí J.I., Sánchez P., Echegoyen E., Beckers J.F., Bonastre A.S. & Vignon X. 2009. First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology. 71(6):1026-1034. PMid:19167744. http://dx.doi.org/10.1016/j.theriogenology.2008.11.005.
Folch
J.
Cocero
M.J.
Chesné
P.
Alabart
J.L.
Domínguez
V.
Cognié
Y.
Roche
A.
Fernández-Árias
A.
Martí
J.I.
Sánchez
P.
Echegoyen
E.
Beckers
J.F.
Bonastre
A.S.
Vignon
X.
2009
First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning
Theriogenology.
71
6
1026
1034
19167744
10.1016/j.theriogenology.2008.11.005
Gandolfi F., Paffoni A., Papassobrambilla E., Bonetti S., Brevini T. & Ragni G. 2006. Efficiency of equilibrium cooling and vitrification procedures for the cryopreservation of ovarian tissue: comparative analysis between human and animal models. Fertil. Steril. 85(suppl. 1):1150-1156. PMid:16616087. http://dx.doi.org/10.1016/j.fertnstert.2005.08.062.
Gandolfi
F.
Paffoni
A.
Papassobrambilla
E.
Bonetti
S.
Brevini
T.
Ragni
G.
2006
Efficiency of equilibrium cooling and vitrification procedures for the cryopreservation of ovarian tissue: comparative analysis between human and animal models
Fertil. Steril.
85
suppl. 1
1150
1156
16616087
10.1016/j.fertnstert.2005.08.062
Hashimoto S., Suzuki N., Yamanaka M., Hosoi Y., Ishizuka B. & Morimoto Y. 2010. Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissues. Reprod. Biomed. Online 21(4):501-509. PMid:20817609. http://dx.doi.org/10.1016/j.rbmo.2010.04.029.
Hashimoto
S.
Suzuki
N.
Yamanaka
M.
Hosoi
Y.
Ishizuka
B.
Morimoto
Y.
2010
Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissues
Reprod. Biomed. Online
21
4
501
509
20817609
10.1016/j.rbmo.2010.04.029
Hotamisligil S., Toner M. & Powers R.D. 1996. Changes in membrane integrity, cytoskeletal structure, and developmental potential of murine oocytes after vitrification in ethylene glycol. Biol. Reprod. 55(1):161-168. PMid:8793071. http://dx.doi.org/10.1095/biolreprod55.1.161.
Hotamisligil
S.
Toner
M.
Powers
R.D.
1996
Changes in membrane integrity, cytoskeletal structure, and developmental potential of murine oocytes after vitrification in ethylene glycol
Biol. Reprod.
55
1
161
168
8793071
10.1095/biolreprod55.1.161
International Union for Conservation of Nature 2016. IUCN Red List of Threatened Species. Version 2015.4. Available in <Available in http://www.iucnredlist.org/
> Access March, 2016.
International Union for Conservation of Nature
2016
IUCN Red List of Threatened Species
Version 2015.4.
Available in http://www.iucnredlist.org/
March, 2016
Jaafari-Ashkavandi Z. & Fatemi F.-S. 2013. Evaluation of proliferation activity in and nondysplastic oral lichen planus through the analysis of nucleolar organizer regions. J. Craniofac. Surg. 24(3):788-791. PMid:23714881. http://dx.doi.org/10.1097/SCS.0b013e31828b6e0e.
Jaafari-Ashkavandi
Z.
Fatemi
F.-S.
2013
Evaluation of proliferation activity in and nondysplastic oral lichen planus through the analysis of nucleolar organizer regions
J. Craniofac. Surg.
24
3
788
791
23714881
10.1097/SCS.0b013e31828b6e0e
Jin B. & Mazur P. 2015. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci. Rep. 5:9271. PMid:25786677.
Jin
B.
Mazur
P.
2015
High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse
Sci. Rep.
5
9271
9271
25786677
Kagawa N., Silber S. & Kuwayama M. 2009. Successful vitrification of bovine and human ovarian tissue. Reprod. Biomed. Online 18(4):568-577. PMid:19401001. http://dx.doi.org/10.1016/S1472-6483(10)60136-8.
Kagawa
N.
Silber
S.
Kuwayama
M.
2009
Successful vitrification of bovine and human ovarian tissue
Reprod. Biomed. Online
18
4
568
577
19401001
10.1016/S1472-6483(10)60136-8
Kuleshova L.L., MacFarlane D.R., Trounson A.O. & Shaw J.M. 1999. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology. 38(2):119-130. PMid:10191035. http://dx.doi.org/10.1006/cryo.1999.2153.
Kuleshova
L.L.
MacFarlane
D.R.
Trounson
A.O.
Shaw
J.M.
1999
Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes
Cryobiology.
38
2
119
130
10191035
10.1006/cryo.1999.2153
León-Quinto T., Simón M.A., Cadenas R., Martínez Á. & Serna A. 2014. Different cryopreservation requirements in foetal versus adult skin cells from an endangered mammal, the Iberian lynx (Lynx pardinus). Cryobiology. 68(2):227-233. PMid:24530371. http://dx.doi.org/10.1016/j.cryobiol.2014.02.001.
León-Quinto
T.
Simón
M.A.
Cadenas
R.
Martínez
Á.
Serna
A.
2014
Different cryopreservation requirements in foetal versus adult skin cells from an endangered mammal, the Iberian lynx (Lynx pardinus)
Cryobiology.
68
2
227
233
24530371
10.1016/j.cryobiol.2014.02.001
Lunardi F.O., Araújo V.R., Faustino L.R., Carvalho A.A., Gonçalves R.F.B., Bass C.S., Báo S.N., Name K.P.O., Campello C.C., Figueiredo J.R. & Rodrigues A.P.R. 2012. Morphologic, viability and ultrastructural analysis of vitrified sheep preantral follicles enclosed in ovarian tissue. Small Rumin. Res. 107(2-3):121-130. http://dx.doi.org/10.1016/j.smallrumres.2012.04.009.
Lunardi
F.O.
Araújo
V.R.
Faustino
L.R.
Carvalho
A.A.
Gonçalves
R.F.B.
Bass
C.S.
Báo
S.N.
Name
K.P.O.
Campello
C.C.
Figueiredo
J.R.
Rodrigues
A.P.R.
2012
Morphologic, viability and ultrastructural analysis of vitrified sheep preantral follicles enclosed in ovarian tissue
Small Rumin. Res.
107
2-3
121
130
10.1016/j.smallrumres.2012.04.009
Machado L.C., Oliveira V.C., Paraventi M.D., Cardoso R.N.R., Martins D.S. & Ambrósio C.E. 2016. Maintenance of brazilian biodiversity by germplasm bank. Pesq. Vet. Bras. 36(1):62-66. http://dx.doi.org/10.1590/S0100-736X2016000100010.
Machado
L.C.
Oliveira
V.C.
Paraventi
M.D.
Cardoso
R.N.R.
Martins
D.S.
Ambrósio
C.E.
2016
Maintenance of brazilian biodiversity by germplasm bank
Pesq. Vet. Bras.
36
1
62
66
10.1590/S0100-736X2016000100010
Mondal N.K., Roychoudhury S. & Ray M.R. 2015. Higher AgNOR expression in metaplastic and dysplastic airway epithelial cells predicts the risk of developing lung cancer in women chronically exposed to biomass smoke. J. Environ. Pathol. Toxicol. Oncol. 34(1):35-51. PMid:25746830. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2015010708.
Mondal
N.K.
Roychoudhury
S.
Ray
M.R.
2015
Higher AgNOR expression in metaplastic and dysplastic airway epithelial cells predicts the risk of developing lung cancer in women chronically exposed to biomass smoke
J. Environ. Pathol. Toxicol. Oncol.
34
1
35
51
25746830
10.1615/JEnvironPatholToxicolOncol.2015010708
Mota C.A., Leão R.A.C., Xavier P.R. & Marques Júnior A. 2014. Volumetric proportions of placentome structural components of the crossbred Holstein-Zebu according to the delivery order. Revta Bras. Reprod. Anim. 38:165-169.
Mota
C.A.
Leão
R.A.C.
Xavier
P.R.
Marques
A.
Júnior
2014
Volumetric proportions of placentome structural components of the crossbred Holstein-Zebu according to the delivery order
Revta Bras. Reprod. Anim.
38
Nohalez A., Martinez C.A., Gil M.A., Almiñana C., Roca J., Martinez E.A. & Cuello C. 2015. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes. Theriogenology 84(4):545-552. PMid:25998270. http://dx.doi.org/10.1016/j.theriogenology.2015.04.004.
Nohalez
A.
Martinez
C.A.
Gil
M.A.
Almiñana
C.
Roca
J.
Martinez
E.A.
Cuello
C.
2015
Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes
Theriogenology
84
4
545
552
25998270
10.1016/j.theriogenology.2015.04.004
Orief Y., Schultze-Mosgau A., Dafopoulos K. & Al-Hasani S. 2005. Vitrification: will it replace the conventional gamete cryopreservation techniques? Middle East Fertil. Soc. J. 10:171-184.
Orief
Y.
Schultze-Mosgau
A.
Dafopoulos
K.
Al-Hasani
S.
2005
Vitrification: will it replace the conventional gamete cryopreservation techniques?
Middle East Fertil. Soc. J.
10
171
184
Prentice J.R. & Anzar M. 2011. Cryopreservation of mammalian oocyte for conservation of animal genetics. Vet. Med. Int. 2011:1-11. (Article ID 146405)
Prentice
J.R.
Anzar
M.
2011
Cryopreservation of mammalian oocyte for conservation of animal genetics
Vet. Med. Int.
2011
1
11
Article ID 146405
Santos M.L.T., Borges A.A., Queiroz Neta L.B., Santos M.V.O., Oliveira M.F., Silva A.R. & Pereira A.F. 2016. In vitro culture of somatic cells derived from ear tissue of collared peccary (Pecari tajacu Linnaeus, 1758) in medium with different requirements. Pesq. Vet. Bras. 36(12):1194-1202. http://dx.doi.org/10.1590/s0100-736x2016001200010.
Santos
M.L.T.
Borges
A.A.
Queiroz Neta
L.B.
Santos
M.V.O.
Oliveira
M.F.
Silva
A.R.
Pereira
A.F.
2016
In vitro culture of somatic cells derived from ear tissue of collared peccary (Pecari tajacu Linnaeus, 1758) in medium with different requirements
Pesq. Vet. Bras.
36
12
1194
1202
10.1590/s0100-736x2016001200010
Santos R.R., Tharasanit T., Van Haeften T., Figueiredo J.R., Silva J.R.V. & Van den Hurk R. 2007. Vitrification of goat preantral follicles enclosed in ovarian tissue by using conventional and solid-surface vitrification methods. Cell Tissue Res. 327(1):167-176. PMid:16937112. http://dx.doi.org/10.1007/s00441-006-0240-2.
Santos
R.R.
Tharasanit
T.
Van Haeften
T.
Figueiredo
J.R.
Silva
J.R.V.
Van den Hurk
R.
2007
Vitrification of goat preantral follicles enclosed in ovarian tissue by using conventional and solid-surface vitrification methods
Cell Tissue Res.
327
1
167
176
16937112
10.1007/s00441-006-0240-2
Sieme H., Oldenhof H. & Wolkers W.F. 2016. Mode of action of cryoprotectants for sperm preservation. Anim. Reprod. Sci. 169:2-5. PMid:26936658. http://dx.doi.org/10.1016/j.anireprosci.2016.02.004.
Sieme
H.
Oldenhof
H.
Wolkers
W.F.
2016
Mode of action of cryoprotectants for sperm preservation
Anim. Reprod. Sci.
169
2
5
26936658
10.1016/j.anireprosci.2016.02.004
Silvestre M.A., Saeed A.M., Cervera R.P., Escriba M.J. & García-Ximénez F. 2003. Rabbit and pig ear skin sample cryobanking: effects of storage time and temperature of the whole ear extirpated immediately after death. Theriogenology. 59(5-6):1469-1477. PMid:12527093. http://dx.doi.org/10.1016/S0093-691X(02)01185-8.
Silvestre
M.A.
Saeed
A.M.
Cervera
R.P.
Escriba
M.J.
García-Ximénez
F.
2003
Rabbit and pig ear skin sample cryobanking: effects of storage time and temperature of the whole ear extirpated immediately after death
Theriogenology.
59
5-6
1469
1477
12527093
10.1016/S0093-691X(02)01185-8
Singh M. & Ma X. 2014. In vitro culture of fibroblast-like cells from sheep ear skin stored at 25-26°C for 10 days after animal death. Int. J. Biol. 6(4):96-102. http://dx.doi.org/10.5539/ijb.v6n4p96.
Singh
M.
Ma
X.
2014
In vitro culture of fibroblast-like cells from sheep ear skin stored at 25-26°C for 10 days after animal death
Int. J. Biol.
6
4
96
102
10.5539/ijb.v6n4p96
Somfai T., Men N.T., Kaneko H., Noguchi J., Haraguchi S., Nagai T. & Kikuchi K. 2015. Comparison of sugars, combinations of permeable cryoprotectants, and equilibration regimens for the solid surface vitrification of immature porcine oocytes. Reprod. Fertil. Dev. 27(1):124-124. http://dx.doi.org/10.1071/RDv27n1Ab62.
Somfai
T.
Men
N.T.
Kaneko
H.
Noguchi
J.
Haraguchi
S.
Nagai
T.
Kikuchi
K.
2015
Comparison of sugars, combinations of permeable cryoprotectants, and equilibration regimens for the solid surface vitrification of immature porcine oocytes
Reprod. Fertil. Dev.
27
1
124
124
10.1071/RDv27n1Ab62
Sutton R.L. 1992. Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides. Cryobiology. 29(5):585-598. PMid:1424715. http://dx.doi.org/10.1016/0011-2240(92)90063-8.
Sutton
R.L.
1992
Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides
Cryobiology.
29
5
585
598
1424715
10.1016/0011-2240(92)90063-8
Tanpradit N., Comizzoli P., Srisuwatanasagul S. & Chatdarong K. 2015. Positive impact of sucrose supplementation during slow freezing of cat ovarian tissues on cellular viability, follicle morphology, and DNA integrity. Theriogenology. 83(9):1553-1561. PMid:25747194. http://dx.doi.org/10.1016/j.theriogenology.2015.01.035.
Tanpradit
N.
Comizzoli
P.
Srisuwatanasagul
S.
Chatdarong
K.
2015
Positive impact of sucrose supplementation during slow freezing of cat ovarian tissues on cellular viability, follicle morphology, and DNA integrity
Theriogenology.
83
9
1553
1561
25747194
10.1016/j.theriogenology.2015.01.035
Ting A.Y., Yeoman R.R., Campos J.R., Lawson M.S., Mullen S.F., Fahy G.M. & Zelinski M.B. 2013. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum. Reprod. 28(5):1267-1279. PMid:23427232. http://dx.doi.org/10.1093/humrep/det032.
Ting
A.Y.
Yeoman
R.R.
Campos
J.R.
Lawson
M.S.
Mullen
S.F.
Fahy
G.M.
Zelinski
M.B.
2013
Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system
Hum. Reprod.
28
5
1267
1279
23427232
10.1093/humrep/det032
Tsuribe P.M., Gobbo C.A.M. & Landim-Alvarenga F.C. 2009. Viability of primordial follicles derived from cryopreserved ovine ovarian cortex tissue. Fertil. Steril. 91(5, suppl. ):1976-1983. PMid:18555219. http://dx.doi.org/10.1016/j.fertnstert.2008.03.031.
Tsuribe
P.M.
Gobbo
C.A.M.
Landim-Alvarenga
F.C.
2009
Viability of primordial follicles derived from cryopreserved ovine ovarian cortex tissue
Fertil. Steril.
91
5, suppl.
1976
1983
18555219
10.1016/j.fertnstert.2008.03.031
Wong P.B., Wiley E.O., Johnson W.E., Ryder O.A., O’Brien S.J., Haussler D., Koepfli K.P., Houck M.L., Perelman P., Mastromonaco G., Bentley A.C., Venkatesh B., Zhang Y. & Murphy R.W. 2012. Tissue sampling methods and standards for vertebrate genomics. Gigascience. 1(1):8. PMid:23587255. http://dx.doi.org/10.1186/2047-217X-1-8.
Wong
P.B.
Wiley
E.O.
Johnson
W.E.
Ryder
O.A.
O’Brien
S.J.
Haussler
D.
Koepfli
K.P.
Houck
M.L.
Perelman
P.
Mastromonaco
G.
Bentley
A.C.
Venkatesh
B.
Zhang
Y.
Murphy
R.W.
2012
Tissue sampling methods and standards for vertebrate genomics. Gigascience
1
1
8
8
23587255
10.1186/2047-217X-1-8
Yang J.G., Deng Y., Zhou L.X., Li X.Y., Sun P.R. & Sun N.X. 2013. Overexpression of CDKN1B inhibits fibroblast proliferation in a rabbit model of experimental glaucoma filtration surgery. Invest. Ophthalmol. Vis. Sci. 54(1):343-352. PMid:23233251. http://dx.doi.org/10.1167/iovs.12-10176.
Yang
J.G.
Deng
Y.
Zhou
L.X.
Li
X.Y.
Sun
P.R.
Sun
N.X.
2013
Overexpression of CDKN1B inhibits fibroblast proliferation in a rabbit model of experimental glaucoma filtration surgery
Invest. Ophthalmol. Vis. Sci.
54
1
343
352
23233251
10.1167/iovs.12-10176
Zieger M.A.J., Tredget E.E. & McGann L.E. 1996. Mechanisms of cryoinjury and cryoprotection in split-thickness skin. Cryobiology. 33(3):376-389. PMid:8689894. http://dx.doi.org/10.1006/cryo.1996.0038.
Zieger
M.A.J.
Tredget
E.E.
McGann
L.E.
1996
Mechanisms of cryoinjury and cryoprotection in split-thickness skin. Cryobiology
33
3
376
389
8689894
10.1006/cryo.1996.0038
Autoria
Alana A. Borges
Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.Universidade Federal Rural do Semi-ÁridoBrazilMossoró, RN, Brazil Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Luiza B. Queiroz Neta
Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.Universidade Federal Rural do Semi-ÁridoBrazilMossoró, RN, Brazil Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Maria V.O. Santos
Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.Universidade Federal Rural do Semi-ÁridoBrazilMossoró, RN, Brazil Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Moacir F. Oliveira
Laboratório de Morfofisiologia Aplicada, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.UFERSABrazilMossoró, RN, Brazil Laboratório de Morfofisiologia Aplicada, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Alexandre R. Silva
Laboratório de Conservação de Germoplasma Animal, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.UFERSABrazilMossoró, RN, Brazil Laboratório de Conservação de Germoplasma Animal, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Alexsandra F. Pereira **Corresponding author: alexsandra.pereira@ufersa.edu.br
Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.Universidade Federal Rural do Semi-ÁridoBrazilMossoró, RN, Brazil Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.Universidade Federal Rural do Semi-ÁridoBrazilMossoró, RN, Brazil Laboratório de Biotecnologia Animal, Universidade Federal Rural do Semi-Árido (UFERSA), BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Laboratório de Morfofisiologia Aplicada, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.UFERSABrazilMossoró, RN, Brazil Laboratório de Morfofisiologia Aplicada, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Laboratório de Conservação de Germoplasma Animal, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.UFERSABrazilMossoró, RN, Brazil Laboratório de Conservação de Germoplasma Animal, UFERSA, BR-110 Km 47, Presidente Costa e Silva, Mossoró, RN 599625-900, Brazil.
Fig.1.
Skin histological sections using hematoxylin-eosin (A-G) and (A’-G’) Gomori’s Trichrome, and showing epidermis layers and dermis superficial and deep. Letters indicate, A = control, B = EG, C = EG-SUC, D = DMSO, E = DMSO-SUC, F = EG-DMSO, and G = EG-DMSO-SUC. Bars indicate epidermal area in hematoxylin-eosin and dermal area in Gomori’s Trichrome; halos (arrow) and (triangle) fibroblast. Scale bars = 50μm.
Fig.2.
Volumetric ratios of epidermis and dermis at different combination of permeable cryoprotectants and sucrose. Control, EG, EG-SUC, DMSO, DMSO-SUC, EG-DMSO and EG-DMSO-SUC. Bars indicate standard error. a,b Different (P<0.05) in the same skin layer (epidermis or dermis).
Table 2.
Comparison of the mean values of argyrophilic nucleolar organizer region (AgNOR) in somatic tissue derived from collared peccary after vitrification with different cryoprotectants
imageFig.1.
Skin histological sections using hematoxylin-eosin (A-G) and (A’-G’) Gomori’s Trichrome, and showing epidermis layers and dermis superficial and deep. Letters indicate, A = control, B = EG, C = EG-SUC, D = DMSO, E = DMSO-SUC, F = EG-DMSO, and G = EG-DMSO-SUC. Bars indicate epidermal area in hematoxylin-eosin and dermal area in Gomori’s Trichrome; halos (arrow) and (triangle) fibroblast. Scale bars = 50μm.
open_in_new
imageFig.2.
Volumetric ratios of epidermis and dermis at different combination of permeable cryoprotectants and sucrose. Control, EG, EG-SUC, DMSO, DMSO-SUC, EG-DMSO and EG-DMSO-SUC. Bars indicate standard error. a,b Different (P<0.05) in the same skin layer (epidermis or dermis).
open_in_new
table_chartTable 1.
Mean number fibroblasts and perinuclear halos of ear skin tissue derived collared peccaries after SSV using different solutions
Solutions
Number of fibroblast
Number of perinuclear halos
Mean ± S.E.
Range
Mean ± S.E.
Range
Control (non-vitrified)
127.0 ± 9.2a
93-151.5
14.8 ± 2.2a
7-21
EG
85.7 ± 5.1b
59-84
37.8 ± 3.7b
24-51
EG-SUC
90.3 ± 5.5b
72-106
29.3 ± 3.7c
17-37
DMSO
70.9 ± 3.9c
68-101
30.5 ± 4.1c
18-40
DMSO-SUC
88.2 ± 5.6b
69-104
32.3 ± 4.9c
12-48
EG-DMSO
88.3 ± 5.1b
73-104
28.6 ± 4.4c
15-38.5
EG-DMSO-SUC
78.6 ± 5.3c
63-92
20.5 ± 4.2d
7-28
table_chartTable 2.
Comparison of the mean values of argyrophilic nucleolar organizer region (AgNOR) in somatic tissue derived from collared peccary after vitrification with different cryoprotectants
Solutions
Index AgNOR, mean ± S.E.
AgNOR area/cell, μm2
AgNOR number/cell
Nucleus area, μm2
AgNOR ratio (%)
Control (non-vitrified)
1.1 ± 0.6a,b
2.5 ± 1.0a
14.5 ± 6.1a
0.17 ± 0.53a
EG
1.0 ± 0.6a
1.7 ± 0.7c
16.8 ± 8.7a
0.07 ± 0.04b
EG-SUC
1.1 ± 0.9a
1.6 ± 0.7c
15.4 ± 8.7a
0.09 ± 0.08a,b
DMSO
1.1 ± 0.6a
1.9 ± 0.8b
14.5 ± 5.5a
0.08 ± 0.06a
DMSO-SUC
1.0 ± 0.7a
2.0 ± 0.7b
15.4 ± 8.5a
0.08 ± 0.05a,b
EG-DMSO
1.5 ± 0.9b
1.8 ± 0.7b
20.9 ± 8.8b
0.08 ± 0.05a,b
EG-DMSO-SUC
1.4 ± 0.8b
2.3 ± 0.9a
20.0 ± 9.1b
0.08 ± 0.04 a,b
Como citar
Borges, Alana A. et al. Combinação de etilenoglicol com sacarose aumenta a taxa de sobrevivência após a vitrificação de tecido somático de catetos (|Pecari tajacuLinnaeus, 1758). Pesquisa Veterinária Brasileira [online]. 2018, v. 38, n. 02 [Acessado 2 Abril 2025], pp. 350-356. Disponível em: <https://doi.org/10.1590/1678-5150-PVB-5193>. ISSN 1678-5150. https://doi.org/10.1590/1678-5150-PVB-5193.
Colégio Brasileiro de Patologia Animal - CBPAPesquisa Veterinária Brasileira, Caixa Postal 74.591, 23890-000 Rio de Janeiro, RJ, Brasil, Tel./Fax: (55 21) 2682-1081 -
Rio de Janeiro -
RJ -
Brazil E-mail: pvb@pvb.com.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.