Acessibilidade / Reportar erro

Streptococcus lutetiensis and Streptococcus equinus as potential emerging bovine mastitis pathogens

Streptococcus lutetiensis e Streptococcus equinus como potenciais patógenos emergentes da mastite bovina

ABSTRACT:

The current study characterizes the genetic distribution of virulence and antimicrobial resistance of Streptococcus lutetiensis and Streptococcus equinus isolated from cows with clinical mastitis using whole genome sequencing (WGS). Although they are not the protagonist species within the genus Streptococcus, recent studies have isolated these species associated with bovine mastitis. In addition, these species are reported and isolated from humans and other animals. A total of four strains of S. lutetiensis and one of S. equinus were isolated from five cows with identified cases of clinical mastitis at a dairy farm near Ithaca, New York. Nineteen genes associated with antimicrobial resistance and 20 genes associated with virulence were identified in the analyzed strains. All strains presented genes associated with resistance: alr, ddl, gdpD, kasA, murA, lsa(E), msr(D), mef(A), gidB, and LiaF. Resistance genes associated with several different classes of antibiotics have also been reported. Sixteen virulence-associated genes were identified in all strains. Based on our findings, we conclude that the studied species have the potential to cause mastitis in cattle, and further studies are important to elucidate their role.

INDEX TERMS:
Streptococcus lutetiensis; Streptococcus equinus; mastitis; resistance genes; virulence genes; whole genome sequencing

RESUMO:

O presente estudo caracteriza a distribuição genética de virulência e resistência antimicrobiana de Streptococcus lutetiensis e Streptococcus equinus isolados de vacas com mastite clínica usando sequenciamento completo do genoma. Apesar de não serem as espécies protagonistas dentro do gênero Streptococcus, estudos recentes têm isolado essas espécies associadas à mastite bovina. Além disso, essas espécies são relatadas e isoladas de humanos e outros animais. Um total de quatro cepas de S. lutetiensis e uma de S. equinus foram isoladas de cinco vacas com casos identificados de mastite clínica em uma fazenda leiteira perto de Ithaca, Nova York. Dezenove genes associados à resistência antimicrobiana e 20 genes associados à virulência foram identificados nas cepas analisadas. Todas as linhagens apresentaram genes associados à resistência: alr, ddl, gdpD, kasA, murA, lsa(E), msr(D), mef(A), gidB e LiaF. Genes de resistência associados a várias classes diferentes de antibióticos também foram relatados. Dezesseis genes associados à virulência foram identificados em todas as cepas. Com base em nossos achados, concluímos que as espécies estudadas têm potencial para causar mastite em bovinos e mais estudos são importantes para elucidar seu papel.

TERMOS DE INDEXAÇÃO:
Streptococcus lutetiensis; Streptocccus equinus; mastite; genes de resistência; genes de virulência; sequenciamento completo do genoma

Introduction

Bovine mastitis causes economic losses, and several microorganisms are considered responsible for mastitis. However, the main genera involved are Streptococcus, Staphylococcus, and the family Enterobacteriaceae (Ishihara et al. 2020Ishihara K., Sunagawa C., Haneishi T., Miyaguchi N., Endo N. & Tanaka T. 2020. Comparison of antimicrobial susceptibilities of bacterial isolates between cured and uncured cases of bovine mastitis. J. Vet. Med. Sci. 82(7):903-907. <https://dx.doi.org/10.1292/jvms.19-0692> <PMid:32378520>
https://doi.org/https://dx.doi.org/10.12...
). Among the Streptococcus spp., the main mastitis pathogens are Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus agalactiae (Gao et al. 2017Gao J., Barkema H.W., Zhang L., Liu G., Deng Z., Cai L., Shan R., Zhang S., Zou J., Kastelic J.P. & Han B. 2017. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci. 100(6):4797-4806. <https://dx.doi.org/10.3168/jds.2016-12334> <PMid:28434736>
https://doi.org/https://dx.doi.org/10.31...
, Zhang et al. 2018Zhang S., Piepers S., Shan R., Cai L., Mao S., Zou J., Ali T., De Vliegher S. & Han B. 2018. Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J. Dairy Sci. 101(4):3344-3355. <https://dx.doi.org/10.3168/jds.2017-14031> <PMid:29397161>
https://doi.org/https://dx.doi.org/10.31...
).

Despite having few reports in the literature where Streptococcus lutetiensis is associated with bovine mastitis, recent studies show the isolation of this microorganism (Chen et al. 2021Chen P., Qiu Y., Liu G., Li X., Cheng J., Liu K., Qu W., Zhu C., Kastelic J.P., Han B. & Gao J. 2021. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J. Dairy Sci. 104(1):702-714. <https://dx.doi.org/10.3168/jds.2020-18347> <PMid:33162075>
https://doi.org/https://dx.doi.org/10.31...
, Kabelitz et al. 2021Kabelitz T., Aubry E., van Vorst K., Amon T. & Fulde M. 2021. The role of Streptococcus spp. in bovine mastitis. Microorganisms 9(7):1497. <https://dx.doi.org/10.3390/microorganisms9071497> <PMid:34361932>
https://doi.org/https://dx.doi.org/10.33...
). Although not frequent, Streptococcus equinus has also been reported as a causal agent of bovine mastitis and isolated from cattle intramammary infections (Kabelitz et al. 2021Kabelitz T., Aubry E., van Vorst K., Amon T. & Fulde M. 2021. The role of Streptococcus spp. in bovine mastitis. Microorganisms 9(7):1497. <https://dx.doi.org/10.3390/microorganisms9071497> <PMid:34361932>
https://doi.org/https://dx.doi.org/10.33...
).

Based on its phenotypic and genotypic characteristics, the Streptococcus bovis/Streptococcus equinus complex (SBSEC) was redefined and divided into three biotypes: type I, which includes Streptococcus gallolyticus subsp. gallolyticus (formerly S. bovis bio-type I); type II/1, which includes S. lutetiensis and Streptococcus infantarius (formerly S. infantarius subsp. coli); and type II/2, which includes Streptococcus gallolyticus subsp. pasteurianus (formerly S. bovis biotype II/2) (Almuzara et al. 2013Almuzara M., Bonofiglio L., Cittadini R., Ocampo C.V., Montilla A., Del Castillo M., Ramirez M.S., Mollerach M. & Vay C. 2013. First case of Streptococcus lutetiensis bacteremia involving a clindamycin-resistant isolate carrying the lnuB gene. J. Clin. Microbiol. 51(12):4259-4261. <https://dx.doi.org/10.1128/JCM.01774-13> <PMid:24048528>
https://doi.org/https://dx.doi.org/10.11...
). The complex also includes S. equinus and Streptococcus alactolyticus, plus one more subspecies of the S. gallolyticus clade, named S. gallolyticus subsp. macedonicus (Pompilio et al. 2019Pompilio A., Di Bonaventura G. & Gherardi G. 2019. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 20(3):480. <https://dx.doi.org/10.3390/ijms20030480> <PMid:30678042>
https://doi.org/https://dx.doi.org/10.33...
).

As these species are rare in bovine mastitis, reservoirs, virulence, and resistance factors are few known. However, there is a possibility that these microorganisms become more prevalent in mastitis once S. lutetiensis has the potential to spread through dairy herds and can adapt to bovine mammary cells or tissue (Chen et al. 2021Chen P., Qiu Y., Liu G., Li X., Cheng J., Liu K., Qu W., Zhu C., Kastelic J.P., Han B. & Gao J. 2021. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J. Dairy Sci. 104(1):702-714. <https://dx.doi.org/10.3168/jds.2020-18347> <PMid:33162075>
https://doi.org/https://dx.doi.org/10.31...
).

In general, whole-genome sequencing (WGS) virulence-associated and antimicrobial resistance genes can be detected. Furthermore, by providing a high level of information, WGS allows to investigate and compare genomes between different pathogens from different populations (Vélez et al. 2017Vélez J.R., Cameron M., Rodríguez-Lecompte J.C., Xia F., Heider L.C., Saab M., Trenton McClure J. & Sánchez J. 2017. Whole-genome sequence analysis of antimicrobial resistance genes in Streptococcus uberis and Streptococcus dysgalactiae isolates from Canadian dairy herds. Front. Vet. Sci. 4:63. <https://dx.doi.org/10.3389/fvets.2017.00063> <PMid:28589129>
https://doi.org/https://dx.doi.org/10.33...
).

This study described the virulence and resistance profile of S. lutetiensis and S. equinus isolated from cows with clinical mastitis using whole-genome sequencing.

Materials and Methods

Animal Ethics.The isolates analyzed in these studies were isolated by Tomazi et al. (2021)Tomazi T., Sumnicht M., Tomazi A.C.C.H., Silva J.C.C., Bringhenti L., Duarte L.M., Silva M.M.M., Rodrigues M.X. & Bicalho R.C. 2021. Negatively controlled, randomized clinical trial comparing different antimicrobial interventions for treatment of clinical mastitis caused by gram-positive pathogens. J. Dairy Sci. 104(3):3364-3385. <https://dx.doi.org/10.3168/jds.2020-18830> <PMid:33358798>
https://doi.org/https://dx.doi.org/10.31...
, and this research was conducted in full compliance with the guidelines outlined in The Animal Welfare Act of 1985 (P.L. 99-198). The study protocol underwent thorough review and received approval from the Institutional Animal Care and Use Committee at Cornell University (protocol number 2018-0097).

Origin of isolates. The isolates belong to a bacterial collection of the Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA. The strains were previously isolated from clinical mastitis cases identified in a large commercial dairy farm near Ithaca/NY. The farm milked approximately 4,100 Holstein cows three times daily in a 100-stall rotary milking parlor. The isolation followed the same method of preview study (Silva et al. 2021Silva N.C.C., Yang Y., Rodrigues M.X., Tomazi T. & Bicalho R.C. 2021. Whole-genome sequencing reveals high genetic diversity of Streptococcus uberis isolated from cows with mastitis. BMC Vet. Res. 17:321. <https://dx.doi.org/10.1186/s12917-021-03031-4> <PMid:34620161>
https://doi.org/https://dx.doi.org/10.11...
). Briefly, an analysis of the total Gram-positive bacteria count was performed using the technique of Agar droplets using a selective and differential culture medium (Accutreat®, FERA Diagnostics, and Biologicals, Ithaca/NY). A single colony was selected from the aforementioned culture plate and streaked onto a CHROMagar Streptococcus base (CHROMagar, France) plate, followed by incubation overnight at 37°C. Then, the isolates with Streptococcus sp. characteristics were selected for identification by the 16S gene sequencing. In addition to the species isolated and analyzed in this study, other species isolated from clinical mastitis cases were also analyzed (Tomazi et al. 2021Tomazi T., Sumnicht M., Tomazi A.C.C.H., Silva J.C.C., Bringhenti L., Duarte L.M., Silva M.M.M., Rodrigues M.X. & Bicalho R.C. 2021. Negatively controlled, randomized clinical trial comparing different antimicrobial interventions for treatment of clinical mastitis caused by gram-positive pathogens. J. Dairy Sci. 104(3):3364-3385. <https://dx.doi.org/10.3168/jds.2020-18830> <PMid:33358798>
https://doi.org/https://dx.doi.org/10.31...
, Silva et al. 2021Silva N.C.C., Yang Y., Rodrigues M.X., Tomazi T. & Bicalho R.C. 2021. Whole-genome sequencing reveals high genetic diversity of Streptococcus uberis isolated from cows with mastitis. BMC Vet. Res. 17:321. <https://dx.doi.org/10.1186/s12917-021-03031-4> <PMid:34620161>
https://doi.org/https://dx.doi.org/10.11...
, Crippa et al. 2023Crippa B.L., Rodrigues M.X., Tomazi T., Yang Y., Rocha L.O., Bicalho R.C. & Silva N.C.C. 2023. Virulence factors, antimicrobial resistance and phylogeny of bovine mastitis-associated Streptococcus dysgalactiae. J. Dairy Res. 90(2):152-157. <https://dx.doi.org/10.1017/S0022029923000195> <PMid:37042313>
https://doi.org/https://dx.doi.org/10.10...
).

Bacterial identification. DNA was extracted from each bacterial isolate using the DNeasy PowerFood Microbial Kit (Qiagen, Valencia/CA, USA), following the manufacturer’s instructions. The 16S ribosomal DNA gene was then amplified through PCR, and the PCR products were purified using Gel/PCR Fragments Extraction Kit (IBI Scientific, Peosta/IA) following the manufacturer’s instructions. The purified DNA samples were submitted to the Cornell University Institute of Biotechnology for Sanger sequencing using 8pmol of primer fD1 and 300ng PCR products (Wood et al. 2019Wood D.E., Lu J. & Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20:257. <https://dx.doi.org/10.1186/s13059-019-1891-0> <PMid:31779668>
https://doi.org/https://dx.doi.org/10.11...
). For species identification, FASTA sequences were compared with the sequences stored available in GenBank, using the BLAST algorithm4 4 Available at <http://blast.ncbi.nlm.nih.gov/Blast.cgi> Accessed on May 24, 2021. .

Whole-genome sequencing (WGS). The concentration of total gDNA of the samples was determined using a Qubit fluorometer (Thermo Fisher Scientific, Waltham/MA). Then, DNA samples were diluted with ultrapure water (Invitrogen, Waltham/MA) to 0.2ng/μL. After standardization, samples were used as input for the Nextera® XT DNA Library Prep Kit (Illumina Inc., USA). Library preparation was carried out according to the manufacturer’s protocol, the Nextera® DNA Library Prep Reference Guide. Pair-end sequencing was performed using a MiSeq Reagent Kit v3 (600 cycles) through the MiSeq Platform (Illumina Inc., San Diego/CA).

Genome sequence analysis. The quality of the raw reads was evaluated using FASTQC. Potential contamination of the sequences was checked using Kraken2 (Wood et al. 2019Wood D.E., Lu J. & Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20:257. <https://dx.doi.org/10.1186/s13059-019-1891-0> <PMid:31779668>
https://doi.org/https://dx.doi.org/10.11...
). Sequencing reads were submitted to the comprehensive genome analysis service using the Pathosystems Resource Integration Center (PATRIC). The genomes were annotated using the Rast tool kit found in PATRIC (PATRIC 3.2.96) (Wattam et al. 2017Wattam A.R., Davis J.J., Assaf R., Boisvert S., Brettin T., Bun C., Conrad N., Dietrich E.M., Disz T., Gabbard J.L., Gerdes S., Henry C.S., Kenyon R.W., Machi D., Mao C., Nordberg E.K., Olsen G.J., Murphy-Olson D.E., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Vonstein V., Warren A., Xia F., Yoo H. & Stevens R.L. 2017. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 45:D535-D542. <https://dx.doi.org/10.1093/nar/gkw1017> <PMid:27899627>
https://doi.org/https://dx.doi.org/10.10...
), which is part of the all-bacteria Bioinformatics Resource Center available online (Brettin et al. 2015Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Thomason J.A., Stevens R., Vonstein V., Wattam A.R. & Xia F. 2015. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5:8365. <https://dx.doi.org/10.1038/srep08365> <PMid:25666585>
https://doi.org/https://dx.doi.org/10.10...
).

Results

Four isolates of Streptococcus lutetiensis and one Streptococcus equinus isolate were recovered from clinical mastitis cases at a large commercial dairy farm near Ithaca, New York. The strains were isolated from five different cows. Nineteen antimicrobial resistance genes and sixteen virulence genes were identified in the strains studied using whole-genome sequencing. In addition to the species isolated and analyzed in this study, other species isolated from cases of clinical mastitis were also analyzed, and these results are available in Silva et al. (2021)Silva N.C.C., Yang Y., Rodrigues M.X., Tomazi T. & Bicalho R.C. 2021. Whole-genome sequencing reveals high genetic diversity of Streptococcus uberis isolated from cows with mastitis. BMC Vet. Res. 17:321. <https://dx.doi.org/10.1186/s12917-021-03031-4> <PMid:34620161>
https://doi.org/https://dx.doi.org/10.11...
and Crippa et al. (2023)Crippa B.L., Rodrigues M.X., Tomazi T., Yang Y., Rocha L.O., Bicalho R.C. & Silva N.C.C. 2023. Virulence factors, antimicrobial resistance and phylogeny of bovine mastitis-associated Streptococcus dysgalactiae. J. Dairy Res. 90(2):152-157. <https://dx.doi.org/10.1017/S0022029923000195> <PMid:37042313>
https://doi.org/https://dx.doi.org/10.10...
.

Resistance factors

The WGS of these isolates showed a wide variety of resistance genes associated with different classes of antimicrobials. All strains exhibited ten resistance genes: alr, ddl, gdpD, kasA, murA, lsa(E), msr(D), mef(A), gidB, and liaF. Two genes were present only in S. lutetiensis, fabK, and lnu(B), while four were present in S. equinus: dxr, mtrA, fabL-like, and rho. The most prevalent classes of antibiotics associated with the resistance genes found in this study were peptide antibiotics, triclosan, and macrolides. The distribution of antimicrobial classes and their respective products are shown in Table 1.

Table 1.
Distribution of genes associated with resistance, product and antimicrobial class among Streptococcus lutetiensis and Streptococcus equinus isolated from cows with clinical mastitis

Virulence factors

Sixteen virulence-associated genes were observed in all strains. These were: purN, clpP, cpsY, pepC, glnA, rpoE, fba, leuS, SPy_1633, vicK, purH, purL, luxS, purB, guaA and lepA. As with the distribution of resistance genes, some virulence genes were only present in one species. The ciaR and ccpA genes were present only in S. lutetiensis, while the lsp and carB genes were present only in S. equinus. The distribution of the main virulence-associated genes and their respective products is presented in Table 2.

Table 2.
Distribution of virulence-associated genes and their respective products among Streptococcus lutetiensis and Streptococcus equinus strains isolated from mastitis-affected cows

Discussion

Streptococcus lutetiensis and Streptococcus equinus belong to Streptococcus bovis/Streptococcus equinus complex (SBSEC), a non-enterococcal group D Streptococcus spp. complex (Pompilio et al. 2019Pompilio A., Di Bonaventura G. & Gherardi G. 2019. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 20(3):480. <https://dx.doi.org/10.3390/ijms20030480> <PMid:30678042>
https://doi.org/https://dx.doi.org/10.33...
). In clinical sources, the SBSEC has antibiotic resistance genes diffused (Jans et al. 2015Jans C., Meile L., Lacroix C. & Stevens M.J.A. 2015. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Infect. Genet. Evol. 33:419-436. <https://dx.doi.org/10.1016/j.meegid.2014.09.017> <PMid:25233845>
https://doi.org/https://dx.doi.org/10.10...
). Our results showed strains that showed genes associated with resistance to macrolides, lincosamides, and peptide antibiotics, among others.

Considering that these species are not the most important in bovine mastitis, we can consider its importance as a reservoir of resistance genes because of the possibility of transfer to the streptococcal species, which commonly cause infections in humans and animals (Van Hoek et al. 2011Van Hoek A.H.A.M., Mevius D., Guerra B., Mullany P., Roberts A.P. & Aarts H.J.M. 2011. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2:203. <https://dx.doi.org/10.3389/fmicb.2011.00203> <PMid:22046172>
https://doi.org/https://dx.doi.org/10.33...
, Chancey et al. 2012Chancey S.T., Zähner D. & Stephens D.S. 2012. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 7(8):959-978. <https://dx.doi.org/10.2217/fmb.12.63> <PMid:22913355>
https://doi.org/https://dx.doi.org/10.22...
, Jans et al. 2016Jans C., Wouters T., Bonfoh B., Lacroix C., Kaindi D.W.M., Anderegg J., Böck D., Vitali S., Schmid T., Isenring J., Kurt F., Kogi-Makau W. & Meile L. 2016. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme. BMC Microbiol. 16:117. <https://dx.doi.org/10.1186/s12866-016-0735-2> <PMid:27329036>
https://doi.org/https://dx.doi.org/10.11...
, Alves-Barroco et al. 2020Alves-Barroco C., Rivas-García L., Fernandes A.R. & Baptista P.V. 2020. Tackling multidrug resistance in Streptococci - from novel biotherapeutic strategies to nanomedicines. Front. Microbiol. 11:579916. <https://dx.doi.org/10.3389/fmicb.2020.579916> <PMid:33123110>
https://doi.org/https://dx.doi.org/10.33...
, Park et al. 2021Park S.Y., Lee M., Lim S.R., Kwon H., Lee Y.S., Kim J.H. & Seo S. 2021. Diversity and antimicrobial resistance in the Streptococcus bovis/Streptococcus equinus complex (SBSEC) isolated from Korean domestic ruminants. Microorganisms 9(1):98. <https://dx.doi.org/10.3390/microorganisms9010098> <PMid:33406675>
https://doi.org/https://dx.doi.org/10.33...
).

Antimicrobial peptides (AMP) are important in combating infections caused by Gram-positive pathogens. However, it is known that these pathogens can develop mechanisms that block AMP action. Mechanisms such as the ability to modify the cell wall, while virulence factors or surface proteins are also a part of the strategy used by bacteria against AMP actions (Assoni et al. 2020Assoni L., Milani B., Carvalho M.R., Nepomuceno L.N., Waz N.T., Guerra M.E.S., Converso T.R. & Darrieux M. 2020. Resistance mechanisms to antimicrobial peptides in Gram-positive bacteria. Front. Microbiol. 11:593215. <https://dx.doi.org/10.3389/fmicb.2020.593215> <PMid:33193264>
https://doi.org/https://dx.doi.org/10.33...
). Virulence genes associated with biofilm formation (luxS, purN, purL, purH and purB) were found in the strains analyzed in this study. It is known that biofilm formation protects bacteria from the action of antibiotics (Jefferson 2004Jefferson K.K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236(2):163-173. <https://dx.doi.org/10.1016/j.femsle.2004.06.005> <PMid:15251193>
https://doi.org/https://dx.doi.org/10.10...
).

Streptococcus’s mef(A) and erm genes are significant determinants for resistance to macrolides, lincosamides, and streptogramin B (Poole 2005Poole K. 2005. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56(1):20-51. <https://dx.doi.org/10.1093/jac/dki171> <PMid:15914491>
https://doi.org/https://dx.doi.org/10.10...
, Zhou et al. 2019Zhou K., Zhu D., Tao Y., Xie L., Han L., Zhang Y. & Sun J. 2019. New genetic context of lnu(B) composed of two multi-resistance gene clusters in clinical Streptococcus agalactiae ST-19 strains. Antimicrob. Resist. Infect. Control 8:117. <https://dx.doi.org/10.1186/s13756-019-0563-x> <PMid:31346458>
https://doi.org/https://dx.doi.org/10.11...
). Specifically, regarding lincosamide resistance, the genes of the lnu family are the mediators that encode nucleotide transferases and then catalyze the adenylation of lincosamides (Zhou et al. 2019Zhou K., Zhu D., Tao Y., Xie L., Han L., Zhang Y. & Sun J. 2019. New genetic context of lnu(B) composed of two multi-resistance gene clusters in clinical Streptococcus agalactiae ST-19 strains. Antimicrob. Resist. Infect. Control 8:117. <https://dx.doi.org/10.1186/s13756-019-0563-x> <PMid:31346458>
https://doi.org/https://dx.doi.org/10.11...
). Resistance genes associated with different classes of antibiotics were observed in this study, as well as a resistance gene associated with triclosan, which is a biocide. This resistance to various antimicrobials can be mediated by efflux pumps. These mechanisms determining resistance to antimicrobials may be specific and/or multidrug, including antibiotics and biocides (Poole 2005Poole K. 2005. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56(1):20-51. <https://dx.doi.org/10.1093/jac/dki171> <PMid:15914491>
https://doi.org/https://dx.doi.org/10.10...
).

The virulence factors are important for bacteria during infection, where they act to nullify the host defense mechanisms. These virulence factors can include toxins and enzymes that overcome effective non-specific host defense measures and structural components (Calvinho et al. 1998Calvinho L.F., Almeida R.A. & Oliver S.P. 1998. Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet. Microbiol. 61(1/2):93-110. <https://dx.doi.org/10.1016/S0378-1135(98)00172-2> <PMid:9646469>
https://doi.org/https://dx.doi.org/10.10...
).

Chen et al. (2021)Chen P., Qiu Y., Liu G., Li X., Cheng J., Liu K., Qu W., Zhu C., Kastelic J.P., Han B. & Gao J. 2021. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J. Dairy Sci. 104(1):702-714. <https://dx.doi.org/10.3168/jds.2020-18347> <PMid:33162075>
https://doi.org/https://dx.doi.org/10.31...
studied S. lutetiensis isolated from cases of bovine clinical mastitis and, through PCR analysis, determined that the most prevalent virulence genes were bca, speG, hly, scpB, and ssa (Chen et al. 2021Chen P., Qiu Y., Liu G., Li X., Cheng J., Liu K., Qu W., Zhu C., Kastelic J.P., Han B. & Gao J. 2021. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J. Dairy Sci. 104(1):702-714. <https://dx.doi.org/10.3168/jds.2020-18347> <PMid:33162075>
https://doi.org/https://dx.doi.org/10.31...
). None of these genes identified in the study by Chen et al. (2021)Chen P., Qiu Y., Liu G., Li X., Cheng J., Liu K., Qu W., Zhu C., Kastelic J.P., Han B. & Gao J. 2021. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J. Dairy Sci. 104(1):702-714. <https://dx.doi.org/10.3168/jds.2020-18347> <PMid:33162075>
https://doi.org/https://dx.doi.org/10.31...
were found in the samples from our study. The difference in the pathogenicity of the isolates can explain this.

In our study, both the S. lutetiensis and the S. equinus isolates presented a wide variety of genes associated with virulence. This demonstrates the ability of these species to cause infections and negatively affect animal health.

In many Gram-negative and Gram-positive bacteria, the luxS gene is highly conserved, and luxS was determined in all isolates of this study. The enzyme S-ribosyl-homocysteine-lyase (luxS) produces chemical signals called autoinducers (AIs). These signals are responsible for the method of communication between bacteria, called quorum sensing (QS). In biofilm formation, bacteria regulate their gene expression in response to changes in cell population through QS (He et al. 2015He Z., Liang J., Tang Z., Ma R., Peng H. & Huang Z. 2015. Role of the luxs gene in initial biofilm formation by streptococcus mutans. J. Mol. Microbiol. Biotechnol. 25(1):60-68. <https://dx.doi.org/10.1159/000371816> <PMid:25766758>
https://doi.org/https://dx.doi.org/10.11...
).

The purN, purL, purH and purB genes were identified from the two Streptococcus species analyzed in this study. These genes are involved in purine (pur) biosynthesis and have been considered essential for motility in other bacterial species (Blaschke et al. 2021Blaschke U., Skiebe E. & Wilharm G. 2021. Novel genes required for surface-associated motility in Acinetobacter baumannii. Curr. Microbiol. 78(4):1509-1528. <https://dx.doi.org/10.1007/s00284-021-02407-x> <PMid:33666749>
https://doi.org/https://dx.doi.org/10.10...
). In addition, pur genes have also been shown to be essential for biofilm formation in Bacillus cereus and several other species; De novo purine biosynthesis (DNPB) has also been shown to be necessary for virulent species (Blaschke et al. 2021Blaschke U., Skiebe E. & Wilharm G. 2021. Novel genes required for surface-associated motility in Acinetobacter baumannii. Curr. Microbiol. 78(4):1509-1528. <https://dx.doi.org/10.1007/s00284-021-02407-x> <PMid:33666749>
https://doi.org/https://dx.doi.org/10.10...
).

A study investigated the role of the clpP gene in another species of the genus Streptococcus and demonstrated that this gene was associated with thermotolerance. Furthermore, the presence of this gene was indispensable for the survival of the strains under stress conditions (Ibrahim et al. 2005Ibrahim Y.M., Kerr A.R., Silva N.A. & Mitchell T.J. 2005. Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect. Immun. 73(2):730-740. <https://dx.doi.org/10.1128/IAI.73.2.730-740.2005> <PMid:15664911>
https://doi.org/https://dx.doi.org/10.11...
).

Other studies also report that these species have been isolated from human, animal and food sources (Table 3). These studies show the potential of these species to cause diseases in humans and animals, in addition to offering resistance to antimicrobials (Choi et al. 2003Choi S.-S., Lee J.W., Kang B.-Y. & Ha N.-J. 2003. Antimicrobial resistance patterns of vancomycin-resistant Streptococcus equinus isolated from animal foods and epidemiological typing of resistant S. equinus by microbial uniprimer kit. Arch. Pharm. Res. 26(8):638-643. <https://dx.doi.org/10.1007/BF02976713> <PMid:12967199>
https://doi.org/https://dx.doi.org/10.10...
, Park et al. 2021Park S.Y., Lee M., Lim S.R., Kwon H., Lee Y.S., Kim J.H. & Seo S. 2021. Diversity and antimicrobial resistance in the Streptococcus bovis/Streptococcus equinus complex (SBSEC) isolated from Korean domestic ruminants. Microorganisms 9(1):98. <https://dx.doi.org/10.3390/microorganisms9010098> <PMid:33406675>
https://doi.org/https://dx.doi.org/10.33...
). However, there is an extremely low number of results on the analysis of the genetic profile of resistance and virulence of S. lutetiensis and S. equinus, which makes it difficult to compare results with other studies.

Table 3.
Streptococcus lutetiensis and Streptococcus equinus isolated from human, animal and food samples

Pompilio et al. (2019)Pompilio A., Di Bonaventura G. & Gherardi G. 2019. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 20(3):480. <https://dx.doi.org/10.3390/ijms20030480> <PMid:30678042>
https://doi.org/https://dx.doi.org/10.33...
analyzed manuscripts published from the 2000s to 2019 and found only 16 manuscripts dealing with the study of antibiotic resistance among SBSEC isolates. For the virulence profile, the same difficulty occurs. Thus, the results presented in this study contribute to filling this gap about the resistance and virulence profile of these two species. Also, according to Pompilio et al. (2019)Pompilio A., Di Bonaventura G. & Gherardi G. 2019. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 20(3):480. <https://dx.doi.org/10.3390/ijms20030480> <PMid:30678042>
https://doi.org/https://dx.doi.org/10.33...
, tetracycline, erythromycin, and clindamycin were the antimicrobials that showed the highest resistance rates. S. lutetiensis showed higher rates of resistance to erythromycin, and when compared to our study, our strains of S. lutetiensis also showed genes responsible for conferring resistance to erythromycin. In the study by Almuzara et al. (2013)Almuzara M., Bonofiglio L., Cittadini R., Ocampo C.V., Montilla A., Del Castillo M., Ramirez M.S., Mollerach M. & Vay C. 2013. First case of Streptococcus lutetiensis bacteremia involving a clindamycin-resistant isolate carrying the lnuB gene. J. Clin. Microbiol. 51(12):4259-4261. <https://dx.doi.org/10.1128/JCM.01774-13> <PMid:24048528>
https://doi.org/https://dx.doi.org/10.11...
, S. lutetiensis was 60% resistant to erythromycin and clindamycin.

In the same work by Pompilio et al. (2019)Pompilio A., Di Bonaventura G. & Gherardi G. 2019. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 20(3):480. <https://dx.doi.org/10.3390/ijms20030480> <PMid:30678042>
https://doi.org/https://dx.doi.org/10.33...
cited above, the authors also reinforce the importance of whole genome studies, as these are useful to improve the accuracy of identification and identify specific virulence factors associated with specific diseases. Thus, the results of this study can contribute to the studies of these SBSEC.

Conclusion

Although Streptococcus lutetiensis and Streptococcus equinus are not species commonly related to mastitis in cattle, they possess several virulence and resistance genes, mainly resistance genes associated with antibiotics used to treat mastitis caused by the genus Streptococcus. In addition, understanding the genetic profile of these isolates can contribute to future studies, providing information about the possible role of these species as pathogens that cause mastitis and other diseases, whether in humans or animals. The ease with which these genes can arise, whether by mutation or acquisition, is worrying. Therefore, further studies are needed to elucidate the role of these species in causing bovine mastitis.

Acknowledgments

This study was supported by “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP), grant #2018/24191-3.

References

  • Almuzara M., Bonofiglio L., Cittadini R., Ocampo C.V., Montilla A., Del Castillo M., Ramirez M.S., Mollerach M. & Vay C. 2013. First case of Streptococcus lutetiensis bacteremia involving a clindamycin-resistant isolate carrying the lnuB gene. J. Clin. Microbiol. 51(12):4259-4261. <https://dx.doi.org/10.1128/JCM.01774-13> <PMid:24048528>
    » https://doi.org/https://dx.doi.org/10.1128/JCM.01774-13
  • Alves-Barroco C., Rivas-García L., Fernandes A.R. & Baptista P.V. 2020. Tackling multidrug resistance in Streptococci - from novel biotherapeutic strategies to nanomedicines. Front. Microbiol. 11:579916. <https://dx.doi.org/10.3389/fmicb.2020.579916> <PMid:33123110>
    » https://doi.org/https://dx.doi.org/10.3389/fmicb.2020.579916
  • Assoni L., Milani B., Carvalho M.R., Nepomuceno L.N., Waz N.T., Guerra M.E.S., Converso T.R. & Darrieux M. 2020. Resistance mechanisms to antimicrobial peptides in Gram-positive bacteria. Front. Microbiol. 11:593215. <https://dx.doi.org/10.3389/fmicb.2020.593215> <PMid:33193264>
    » https://doi.org/https://dx.doi.org/10.3389/fmicb.2020.593215
  • Blaschke U., Skiebe E. & Wilharm G. 2021. Novel genes required for surface-associated motility in Acinetobacter baumannii Curr. Microbiol. 78(4):1509-1528. <https://dx.doi.org/10.1007/s00284-021-02407-x> <PMid:33666749>
    » https://doi.org/https://dx.doi.org/10.1007/s00284-021-02407-x
  • Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Thomason J.A., Stevens R., Vonstein V., Wattam A.R. & Xia F. 2015. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5:8365. <https://dx.doi.org/10.1038/srep08365> <PMid:25666585>
    » https://doi.org/https://dx.doi.org/10.1038/srep08365
  • Calvinho L.F., Almeida R.A. & Oliver S.P. 1998. Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet. Microbiol. 61(1/2):93-110. <https://dx.doi.org/10.1016/S0378-1135(98)00172-2> <PMid:9646469>
    » https://doi.org/https://dx.doi.org/10.1016/S0378-1135(98)00172-2
  • Chancey S.T., Zähner D. & Stephens D.S. 2012. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 7(8):959-978. <https://dx.doi.org/10.2217/fmb.12.63> <PMid:22913355>
    » https://doi.org/https://dx.doi.org/10.2217/fmb.12.63
  • Chen P., Qiu Y., Liu G., Li X., Cheng J., Liu K., Qu W., Zhu C., Kastelic J.P., Han B. & Gao J. 2021. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J. Dairy Sci. 104(1):702-714. <https://dx.doi.org/10.3168/jds.2020-18347> <PMid:33162075>
    » https://doi.org/https://dx.doi.org/10.3168/jds.2020-18347
  • Choi S.-S., Lee J.W., Kang B.-Y. & Ha N.-J. 2003. Antimicrobial resistance patterns of vancomycin-resistant Streptococcus equinus isolated from animal foods and epidemiological typing of resistant S. equinus by microbial uniprimer kit. Arch. Pharm. Res. 26(8):638-643. <https://dx.doi.org/10.1007/BF02976713> <PMid:12967199>
    » https://doi.org/https://dx.doi.org/10.1007/BF02976713
  • Chongprasertpon N., Cusack R., Coughlan J.J., Chung W.T., Leung C.H. & Kiernan T.J. 2019. Streptococcus bovis endocarditis post colonic polypectomy. Eur. J. Case Rep. Intern. Med. 6(5):001110. <https://dx.doi.org/10.12890/2019_001110> <PMid:31157186>
    » https://doi.org/https://dx.doi.org/10.12890/2019_001110
  • Corredoira J., Coira A., Iñiguez I., Pita J., Varela J. & Alonso M.P. 2013. Advanced intestinal cancer associated with Streptococcus infantarius (former S. bovis II/1) sepsis. Int. J. Clin. Pract. 67(12):1358-1359. <https://dx.doi.org/10.1111/IJCP.12190> <PMid:24246215>
    » https://doi.org/https://dx.doi.org/10.1111/IJCP.12190
  • Crippa B.L., Rodrigues M.X., Tomazi T., Yang Y., Rocha L.O., Bicalho R.C. & Silva N.C.C. 2023. Virulence factors, antimicrobial resistance and phylogeny of bovine mastitis-associated Streptococcus dysgalactiae. J. Dairy Res. 90(2):152-157. <https://dx.doi.org/10.1017/S0022029923000195> <PMid:37042313>
    » https://doi.org/https://dx.doi.org/10.1017/S0022029923000195
  • De Sousa B.L., Azevedo A.C., Oliveira I.M.F., Bento C.B.P., Santana M.F., Bazzolli D.M.S. & Mantovani H.C. 2021. PCR screening reveals abundance of bovicin-like bacteriocins among ruminal Streptococcus spp. isolated from beef and dairy cattle. J. Appl. Microbiol. 131(4):1695-1709. <https://dx.doi.org/10.1111/JAM.15069> <PMid:33714234>
    » https://doi.org/https://dx.doi.org/10.1111/JAM.15069
  • Gao J., Barkema H.W., Zhang L., Liu G., Deng Z., Cai L., Shan R., Zhang S., Zou J., Kastelic J.P. & Han B. 2017. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci. 100(6):4797-4806. <https://dx.doi.org/10.3168/jds.2016-12334> <PMid:28434736>
    » https://doi.org/https://dx.doi.org/10.3168/jds.2016-12334
  • He Z., Liang J., Tang Z., Ma R., Peng H. & Huang Z. 2015. Role of the luxs gene in initial biofilm formation by streptococcus mutans. J. Mol. Microbiol. Biotechnol. 25(1):60-68. <https://dx.doi.org/10.1159/000371816> <PMid:25766758>
    » https://doi.org/https://dx.doi.org/10.1159/000371816
  • Ibrahim Y.M., Kerr A.R., Silva N.A. & Mitchell T.J. 2005. Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae Infect. Immun. 73(2):730-740. <https://dx.doi.org/10.1128/IAI.73.2.730-740.2005> <PMid:15664911>
    » https://doi.org/https://dx.doi.org/10.1128/IAI.73.2.730-740.2005
  • Ishihara K., Sunagawa C., Haneishi T., Miyaguchi N., Endo N. & Tanaka T. 2020. Comparison of antimicrobial susceptibilities of bacterial isolates between cured and uncured cases of bovine mastitis. J. Vet. Med. Sci. 82(7):903-907. <https://dx.doi.org/10.1292/jvms.19-0692> <PMid:32378520>
    » https://doi.org/https://dx.doi.org/10.1292/jvms.19-0692
  • Jans C., Meile L., Lacroix C. & Stevens M.J.A. 2015. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Infect. Genet. Evol. 33:419-436. <https://dx.doi.org/10.1016/j.meegid.2014.09.017> <PMid:25233845>
    » https://doi.org/https://dx.doi.org/10.1016/j.meegid.2014.09.017
  • Jans C., Wouters T., Bonfoh B., Lacroix C., Kaindi D.W.M., Anderegg J., Böck D., Vitali S., Schmid T., Isenring J., Kurt F., Kogi-Makau W. & Meile L. 2016. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme. BMC Microbiol. 16:117. <https://dx.doi.org/10.1186/s12866-016-0735-2> <PMid:27329036>
    » https://doi.org/https://dx.doi.org/10.1186/s12866-016-0735-2
  • Jefferson K.K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236(2):163-173. <https://dx.doi.org/10.1016/j.femsle.2004.06.005> <PMid:15251193>
    » https://doi.org/https://dx.doi.org/10.1016/j.femsle.2004.06.005
  • Kabelitz T., Aubry E., van Vorst K., Amon T. & Fulde M. 2021. The role of Streptococcus spp. in bovine mastitis. Microorganisms 9(7):1497. <https://dx.doi.org/10.3390/microorganisms9071497> <PMid:34361932>
    » https://doi.org/https://dx.doi.org/10.3390/microorganisms9071497
  • Oliveira I.M.F., Godoy-Santos F., Oyama L.B., Moreira S.M., Dias R.G., Huws S.A., Creevey C.J. & Mantovani H.C. 2022. Whole-genome sequencing and comparative genomic analysis of antimicrobial producing Streptococcus lutetiensis from the rumen. Microorganisms 10(3):551. <https://dx.doi.org/10.3390/microorganisms10030551> <PMid:35336126>
    » https://doi.org/https://dx.doi.org/10.3390/microorganisms10030551
  • Özkan E.R., Öztürk H.İ., Demirci T. & Akın N. 2021. Detection of biofilm formation, virulence factor genes, antibiotic-resistance, adherence properties, and some beneficial properties of cheese originS. infantarius,S. gallolyticus, and S. lutetiensis strains belonging to the S. bovis/S. equinus complex. LWT 150:112077. <https://dx.doi.org/10.1016/J.LWT.2021.112077>
    » https://doi.org/https://dx.doi.org/10.1016/J.LWT.2021.112077
  • Park S.Y., Lee M., Lim S.R., Kwon H., Lee Y.S., Kim J.H. & Seo S. 2021. Diversity and antimicrobial resistance in the Streptococcus bovis/Streptococcus equinus complex (SBSEC) isolated from Korean domestic ruminants. Microorganisms 9(1):98. <https://dx.doi.org/10.3390/microorganisms9010098> <PMid:33406675>
    » https://doi.org/https://dx.doi.org/10.3390/microorganisms9010098
  • Piva S., Pietra M., Serraino A., Merialdi G., Magarotto J. & Giacometti F. 2019. First description of Streptococcus lutetiensis from a diseased cat. Lett. Appl. Microbiol. 69(2):96-99. <https://dx.doi.org/10.1111/lam.13168> <PMid:31063246>
    » https://doi.org/https://dx.doi.org/10.1111/lam.13168
  • Pompilio A., Di Bonaventura G. & Gherardi G. 2019. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 20(3):480. <https://dx.doi.org/10.3390/ijms20030480> <PMid:30678042>
    » https://doi.org/https://dx.doi.org/10.3390/ijms20030480
  • Poole K. 2005. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56(1):20-51. <https://dx.doi.org/10.1093/jac/dki171> <PMid:15914491>
    » https://doi.org/https://dx.doi.org/10.1093/jac/dki171
  • Silva N.C.C., Yang Y., Rodrigues M.X., Tomazi T. & Bicalho R.C. 2021. Whole-genome sequencing reveals high genetic diversity of Streptococcus uberis isolated from cows with mastitis. BMC Vet. Res. 17:321. <https://dx.doi.org/10.1186/s12917-021-03031-4> <PMid:34620161>
    » https://doi.org/https://dx.doi.org/10.1186/s12917-021-03031-4
  • Tomazi T., Sumnicht M., Tomazi A.C.C.H., Silva J.C.C., Bringhenti L., Duarte L.M., Silva M.M.M., Rodrigues M.X. & Bicalho R.C. 2021. Negatively controlled, randomized clinical trial comparing different antimicrobial interventions for treatment of clinical mastitis caused by gram-positive pathogens. J. Dairy Sci. 104(3):3364-3385. <https://dx.doi.org/10.3168/jds.2020-18830> <PMid:33358798>
    » https://doi.org/https://dx.doi.org/10.3168/jds.2020-18830
  • Van Hoek A.H.A.M., Mevius D., Guerra B., Mullany P., Roberts A.P. & Aarts H.J.M. 2011. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2:203. <https://dx.doi.org/10.3389/fmicb.2011.00203> <PMid:22046172>
    » https://doi.org/https://dx.doi.org/10.3389/fmicb.2011.00203
  • Vélez J.R., Cameron M., Rodríguez-Lecompte J.C., Xia F., Heider L.C., Saab M., Trenton McClure J. & Sánchez J. 2017. Whole-genome sequence analysis of antimicrobial resistance genes in Streptococcus uberis and Streptococcus dysgalactiae isolates from Canadian dairy herds. Front. Vet. Sci. 4:63. <https://dx.doi.org/10.3389/fvets.2017.00063> <PMid:28589129>
    » https://doi.org/https://dx.doi.org/10.3389/fvets.2017.00063
  • Wattam A.R., Davis J.J., Assaf R., Boisvert S., Brettin T., Bun C., Conrad N., Dietrich E.M., Disz T., Gabbard J.L., Gerdes S., Henry C.S., Kenyon R.W., Machi D., Mao C., Nordberg E.K., Olsen G.J., Murphy-Olson D.E., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Vonstein V., Warren A., Xia F., Yoo H. & Stevens R.L. 2017. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 45:D535-D542. <https://dx.doi.org/10.1093/nar/gkw1017> <PMid:27899627>
    » https://doi.org/https://dx.doi.org/10.1093/nar/gkw1017
  • Wood D.E., Lu J. & Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20:257. <https://dx.doi.org/10.1186/s13059-019-1891-0> <PMid:31779668>
    » https://doi.org/https://dx.doi.org/10.1186/s13059-019-1891-0
  • Yu A.T., Shapiro K., Beneri C.A. & Wilks-Gallo L.S. 2021. Streptococcus lutetiensis neonatal meningitis with empyema. Access Microbiol. 3(9):000264. <https://dx.doi.org/10.1099/acmi.0.000264> <PMid:34712909>
    » https://doi.org/https://dx.doi.org/10.1099/acmi.0.000264
  • Zhang S., Piepers S., Shan R., Cai L., Mao S., Zou J., Ali T., De Vliegher S. & Han B. 2018. Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J. Dairy Sci. 101(4):3344-3355. <https://dx.doi.org/10.3168/jds.2017-14031> <PMid:29397161>
    » https://doi.org/https://dx.doi.org/10.3168/jds.2017-14031
  • Zhou K., Zhu D., Tao Y., Xie L., Han L., Zhang Y. & Sun J. 2019. New genetic context of lnu(B) composed of two multi-resistance gene clusters in clinical Streptococcus agalactiae ST-19 strains. Antimicrob. Resist. Infect. Control 8:117. <https://dx.doi.org/10.1186/s13756-019-0563-x> <PMid:31346458>
    » https://doi.org/https://dx.doi.org/10.1186/s13756-019-0563-x

Publication Dates

  • Publication in this collection
    15 Apr 2024
  • Date of issue
    2024

History

  • Received
    20 July 2023
  • Accepted
    03 Oct 2023
Colégio Brasileiro de Patologia Animal - CBPA Pesquisa Veterinária Brasileira, Caixa Postal 74.591, 23890-000 Rio de Janeiro, RJ, Brasil, Tel./Fax: (55 21) 2682-1081 - Rio de Janeiro - RJ - Brazil
E-mail: pvb@pvb.com.br