Acessibilidade / Reportar erro

Co2 in the oxidative dehydrogenation of ethylbenzene using catalysts composed of iron oxide and aluminum oxide

Materials containing aluminum and iron oxide were synthesized through the preparation of hybrid spheres and tested in the dehydrogenation of ethylbenzene in the presence of CO2. The catalytic results suggest that the high initial ethylbenzene conversion is due to the contribution of basic sites. These results also point to a competitive process between CO2 adsorption and the oxidative dehydrogenation of ethylbenzene for the basic sites (lattice oxygen). In spite of the coke deposition is originating from ethylbenzene and CO2, the amount of carbonaceous deposits was smaller with the presence of CO2, if compared with the dehydrogenation in the absence of CO2.

carbon dioxide; ethylbenzene; styrene


Sociedade Brasileira de Química Instituto de Química, Universidade Estadual de Campinas (Unicamp), CP6154, 13083-0970 - Campinas - SP - Brazil
E-mail: quimicanova@sbq.org.br