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The paper presents a simple method of determining iteratively the progression curve asymptote for first and pseudo-first order 
reactions. For selected student exercises, thus obtained results were compared (see Supplementary Material) with those found by 
means of the method of determining asymptotes experimentally. A nonlinear fitting method was additionally employed to assess 
the accuracy.
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INTRODUCTION

The problem of teaching chemical kinetics has been discussed in 
many works on teaching approaches.1 However, one must not forget 
about the role of the experiment.2 It is only the laboratory practice 
that really allows to understand the complex problems of kinetics 
associated with the choice and optimisation of the conditions of an 
experiment, the interpretation of results as well as the perception 
of potential and actual sources of errors at the stage of experiment 
and at the stage of data analysis. In the following paragraphs, we 
will describe those aspects by taking as an example the hydrolysis 
reactions defined by a simple mathematical model (see equation 1).

As part of their laboratory class on chemical kinetics, students 
analyse, inter alia, reactions consistent with first and pseudo-first 
order mechanisms, e.g. the kinetics of acidic and base hydrolysis 
of esters as well as the inversion of sucrose (hydrolysis). This last 
example and the progression curves analysis were described, for 
instance, in the work of M. J. J. Holt and A. C. Norris.3 Those reactions 
are relatively slow and thus can be scrutinised using classical methods. 
For such cases, the following equation (1) is used to describe the 
progression curve of a reaction:4

 C = C0×e–kt (1) 

or, after linearisation:

 ln C = ln C0 – k × t (2)

where: C0 – concentration of substrate at the start of measurement 
(t = 0); C – instantaneous concentration of substrate in time t.

Given that many measured physicochemical parameters of a 
reacting system are directly proportional to the concentration, they 
can be directly used in the equation (2), without the need to calculate 
instantaneous values of concentration (e.g. using a calibration 
curve).5,6 This makes it possible to avoid the additional source of 
errors, the observed rate constant (the estimated parameter in this 
equation) being expressed in the correct unit (1/s). However, some 
of the measured physicochemical parameters are additive and do not 
change in the range (Y0, 0) if the loss of substrate is being examined 
or (0, Ymax) – if the increase of product is tracked during the reaction 
time. The said parameters change in the range (Y0, Y∞) respectively. 

From this it follows that once the proportionality of changes of the 
measured parameter with regard to the concentration has been taken 
into account, the equations (1,2) will each respectively take the 
following forms:

 (Y – Y∞) = (Y0 – Y∞) × e–kt  (3)

or a more commonly used form of:

 ln (Y – Y∞) = ln (Y0 – Y∞) – k × t (4)

where: Y – measured parameter of a reacting system, proportional 
to the concentration; Y∞ – limit value (asymptote) of the measured 
parameter of a reacting system.

While the measurement of value of Y does not pose a problem 
– it is simply the instantaneous value of the parameter measured in 
time t, the determination of value of Y∞ is not so straightforward. 
Textbooks and publications that consider the above-shown type of 
reaction usually provide methods of determining Y∞ experimentally.5,7 
Nevertheless, as our experience shows, this is associated with a risk 
of multiple errors that significantly affect the end result obtained. 
It is not always the case that inexperienced students notice this. Yet 
another difficulty is that in order to determine Y∞ experimentally, 
some reactions would have to be tracked for several days, which 
is hard to achieve in a laboratory class. In the literature, one finds 
both a number of methods for determining Y∞ mathematically as 
well as proposed methods for calculating the rate constant without 
the need to calculate or determine Y∞ and Y0.8,9 Given that computer 
software is widely available (spreadsheets), some of those historical 
methods are rather outdated, for instance, those based on graphical 
determination of the slope of tangents to the progression curves.8 
However, it should be noted that this approach does have some 
didactic value. Other proposed solutions seem to be too difficult for 
undergraduate students.10

Below, on the basis of selected progression curves, we will prove 
that, given the experiment has been conducted carefully, the needed 
value of Y∞ can be found iteratively, thus obtaining better accuracy at 
considerably reduced experiment duration. In addition, sometimes it 
seems to be the only reliable method. For this purpose, the equation 
(3) may be used, after it has been rearranged to arrive at the following:

 Y = Y∞ + (Y0 – Y∞) × e–kt (5)
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The use of a nonlinear fitting method (e.g. Levenberg–Marquard 
algorithm) makes the experimental relationship Y=f(t) sufficient 
to calculate the value of a rate constant, with the experimental 
determination of Y∞ becoming unnecessary. 

Since nonlinear methods require good knowledge of mathematics,3 
we suggest a simplified variant of iterative calculations based on the 
linearised equation (4). Undergraduate students are well familiar 
with the subject of linear regression and the relevant functions are 
available in the spreadsheet software. The idea behind the solution 
is based on iterative selection (finding) of such a value of Y∞ that 
will provide the maximum value of the coefficient of determination 
(R2) of a linear equation. A similar approach was put forward by 
M.J.J. Holt and A.C. Norris in their work,3 the only difference being 
that they selected standard deviation as the only criterion for fitting. 
The algorithm developed by us is shown in supplementary material, 
whereas the results are compiled and discussed below.

Any mathematical transformation of variables generates 
transformation errors. The most famous example is the model of 
hyperbolic enzymatic kinetics of Michaelis-Menten. This is where we 
use a weighted fitting. In spreadsheets, however, there are no ready-
made functions/ procedures to analyse this type of regression, so it 
requires writing own, quite complicated (for students) mathematical 
procedures using the matrix calculus. In the case of first-stage 
students, we considered it inadvisable, although they are informed 
about such an option and its advantages. In the case of Lineweaver–
Burk and Dixon linearisation, the weight is Vo

4; however, for the 

first order reaction, it is not so much, because   

and therefore we decided to postpone this issue to further stages of 
education.

It is true that students can use (ready-made) non-linear fitting 
programs, but this programs can also lead to erroneous results if 
students select, for example, an inappropriate data range or a kinetic 
model that does not match the data for the calculation. That fact that 
a variable at infinity seems to be unnecessary here (see equation 3) 
does not mean that there is no variable there and it has no influence 
on the value of the rate constant. In case of too low conversion the 
“0” reaction kinetic model may give better results, which actually 
excludes correct determination of kinetic parameters if the order of 
reaction is different. In our opinion, simultaneous control of model 
correctness as well as Y∞ is important. Despite their imperfections, the 
linearisations illustrate this well and very simply. This is of particular 
importance at an early stage of learning for students who for the first 
time carry out research into the kinetics of reaction.

EXPERIMENTAL

Chemicals

The chemicals used were of analytical grade (NaOH, ethyl 
acetate, POCh, Gliwice). All solutions were prepared in redistilled 
water.

Apparatus

Measurement of the change the conductivity was carried out using 
the multimeter (CX-551, ELMETRON, Poland), magnetic stirrer 
motor ((Alchem Group OMC ENVAG Sp.zo.o) and conductivity 
sensor (EPS-2ZE, k=0,5±0,1). U1 VEB MLW Prüfgeräte-Werk 
(Germany) thermostat was used for temperature control. 

The kinetics of base hydrolysis of an ester procedure

A mixture of NaOH solution in water and ethyl acetate was 
prepared with the following final concentrations: 0.01 mol/L of 
NaOH and 0.01 mol/L of ethyl acetate. While the sample was being 
mixed, the measurement of conductivity begun. The measurements 
were repeated respectively for two, four and eight times higher 
concentrations of ester solution at the same concentration of NaOH. 
Progression curves were recorded conductometrically. Due to  
a relatively high reaction rate and thus the ability to determine the 
asymptote (k∞) without the change of conditions (e.g. heating), 
recording had been performed at a temperature of 25 °C until the 
value of conductivity stabilised.

Data analysis

A spreadsheet has been developed that calculates the parameters 
of a rate equation according to the above algorithm. Using the 
developed spreadsheet requires manual selection and gradual 
narrowing of the range within which Y∞ is being searched for. The 
spreadsheet was intentionally made available to students in this form 
so that they could better understand the way it works. We were hoping 
that this would inspire more ambitious students to write an appropriate 
macro for the spreadsheet without any assistance and thus develop 
its “automated” version, which is not particularly difficult. Such a 
model spreadsheet has been prepared by us. Nonetheless, it is only 
a simplified implementation of the algorithm shown in Figure 1 (in 
Supplementary Material). The simplification consists in manually 
entering the scanning range and fixing the constant step (equal to 
the accuracy).

Nonlinear fitting of the data to the equation (5) on the basis of 
Marquard algorithm was performed using a computer programme 
that we had developed. 

RESULTS AND DISCUSSION

The issue of analysing pseudo-first order reactions

In order to analyse reaction progression curves with the use of 
the proposed method, we need to be certain that it is indeed described 
by the first order kinetic equation. In case of homogeneous first 
order reactions, this is easy to prove. Errors may only arise from 
selecting the wrong data range for analysis (too low conversion). As 
for pseudo-first order reactions, additional issues of experimental 
nature may occur. They revolve around insufficient excess of 
reagents in relation to the desired one, which would allow us to treat 
the reaction as a pseudo-first order reaction. This issue is virtually 
non-existent in the case of acid-catalysed hydrolysis reactions (see: 
Supplementary Materials), where both acid and water concentrations 
may be considered constant (very high excess). It is, however, 
different in the case of alkaline hydrolysis of ester presented below. 
We need to choose the right reagent concentrations. Obviously, it is 
also important to select the right data range for the analysis. Both 
aspects are discussed below.

The effects of the conversion on the results of the progression 
curve analysis

Given the method used to track the progress of reaction, in this 
case, it was possible to analyse the impact of the range of the recorded 
progression curve (conversion) on the value of the calculated rate 
constant and its statistical parameters. This aspect is not brought 
up in the literature on progression curves analysis as it is treated as 
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something obvious perhaps. On the other hand, students generally 
do not realise the significance of the scope of the data analysed. The 
progression curves of alkaline hydrolysis of an ester (AcEth - ethyl 
acetate) were selected for the analysis, since they made it possible 
to record automatically a large amount of data in a wide scope of 
conversion. This method of recording allows one to choose the 
conditions of a reaction in such a manner that it is possible to keep 
track of it until it comes to an end, even in the limited class time. 
Thus, there is no need to complete the reaction by some other means, 
e.g. by heating the mixture. This also gives greater confidence that 
the real, experimental value of the progression curve asymptote will 
be obtained. Subsequently, the results obtained directly from the 
real (experimental) data and iteratively determined asymptotes were 
compared. The detailed analysis is shown below.

For the analysed reaction to be considered a pseudo-first order 
reaction, a sufficient excess of one of the reacting substances is 
necessary. 6,11

Curve a) of Figure 1 shows a second order reaction (equal 
concentration of the substrates), whereas curve d) already describe 
a pseudo-first order reaction (sufficient excess of ester in relation 
to [OH-]). Case curve b) is relatively complex, since the excess of 
ester is insufficient for the reaction to be described by a first order 
equation or a simplified second order equation. Due to the type of 
reaction presented in this paper, curves c) and d) were analysed 
and compared. The aim of the comparison is also to possibly detect 

insufficient substrate (ester) excess in relation to OH- ions in the case 
of curve c). As can be seen, in the case of a pseudo-first order reaction, 
it is important to differentiate between the first order progression 
curve and the nth-order progression curve. Suggestions on how to 
find a solution were provided by Joel Tellinghuisen,12 the simplest 
method consisting in comparing the values of R2 only. Since in this 
case the value of Y∞ may also be needed, it can be determined using 
the iterative procedure proposed by us. Of course, it is necessary to 
choose an relevant progression curve equation. The results of the 
comparison between curves c) and d) progression curve parameters 
for selected conversion ranges are shown in Tables 1 and 2.

The experimental asymptote is determined from the maximum 
number of points that was necessary to obtain the constant value of  Y 
(i.e. Y∞). This value is then used to check the order and calculate the 
rate constant for a variable range of the conversion (i.e. a decreasing 
number of data – a shorter and shorter time interval). As for the 
calculated asymptote, it is calculated for the systematically shortened 
range of the progress curve (of data). This is possible until a certain 
point, but the obtained values differ more and more from the real 
(experimental) values. 

In Table 1, in the case of C0, AcEth = 0.04 mol/L, we can see that 
below the conversion b = 0.71, the calculated asymptote value begins 
to differ significantly from the value determined experimentally. It is 
similar for the observed reaction rate constant, which is additionally 
illustrated by Figure 2A. The cause is insufficient ester excess 
in relation to the base which, nevertheless, grows as the reaction 
progresses. Therefore, in the range of higher conversion, both the 
reaction order and the rate constant become accurate. The higher 
number of points (thus their weight) is also significant in the range 
of higher conversion. By comparing the values presented in Tables 
1 and 2, it is relatively easy to see whether the reagent excess is 
sufficient. If the experimental asymptote is used for calculations, as 
we limit the range of analysed data towards lower conversion, the 
observed value of reaction order decreases. Whereas in the case of the 
iteratively determined asymptote, we can observe a radical change in 
its value – all the way to meaningless values (even negative value at  
t = 180 s). The fact that order 1 shown in the table 1 remains 
unchanged is only due to the use of the calculated asymptote in that 
model. 

In the case of C0, AcEth = 0.08 mol/L (Table 2), we only observe 
such unfavourable changes when b is below 0.4. With the growing 
conversion, the ratio of ester concentration to base concentration 
increases favourably and thus the values of the calculated parameters 
become stabilised (Table 2 and Figure 2B). The ratio of the observed 
reaction rate constants reaches approximately 2 (Figure 2C), so it 
corresponds to the proportion of ester concentration in both cases 

Figure 1. The influence of ester concentration on the evolution of the pro-
gression curve of hydrolysis reaction, C0, OH- = 0.01 mol/L; C0, AcEth: a) 0.01, 
b) 0.02, c) 0.04, d) 0.08 mol/L, respectively

Table 1. The calculated parameters of the progression curve as a function of the maximum conversion b for the asymptote determined experimentally and 
calculated iteratively, for selected time range. Substrate concentration: C0, OH- = 0.01 mol L-1; C0, AcEth = 0.04 mol L-1

Data range Results obtained using experimental asymptote Results obtained using calculated asymptote

t.s points b Y∞_exp n k [1/s] SD R2
max Y∞_calc n k [1/s] SD R2

max

1500 51 1 0.911356 1 0.00416 1.25E-05 1 0.911 1 0.00411 1.30E-05 1

540 19 0.89 0.911356 1 0.00432 2.86E-05 0.999 0.938 1 0.0046 2.06E-05 0.9997

390 14 0.81 0.911356 1 0.00442 3.70E-05 0.999 0.933 1 0.00461 3.73E-05 0.9992

300 11 0.71 0.911356 0.9 - 1 0.00446 5.82E-05 0.998 0.893 1 0.00436 5.66E-05 0.9984

210 8 0.58 0.911356 0.7-0.8 0.00445 1.12E-04 0.996 0.513 1 0.0032 6.82E-05 0.9972

180 7 0.52 0.911356 0.5 0.00441 1.48E-04 0.994 -0.212 1 0.00218 5.46E-05 0.997

120 6 0.36 0.911356 0         

90 4 0.27 0.911356 0        
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Table 2. The calculated parameters of the progression curve as a function of the maximum conversion b for the asymptote determined experimentally and 
calculated iteratively, for selected time range. Substrate concentration: C0, OH- = 0.01 mol L-1; C0, AcEth = 0.08 mol L-1

Data range Results obtained using experimental asymptote Results obtained using calculated asymptote

t.s points b Y∞_exp n k [1/s] SD R2
max Y∞_calc n k [1/s] SD R2

max

705 48 1 0.83825 1 0.00778 2.79E-05 0.9994 0.839 1 0.00792 2.69E-05 0.9995

285 20 0.9 0.83825 1 0.00815 3.58E-05 0.9996 0.853 1 0.00846 2.89E-05 0.9998

210 15 0.81 0.83825 1 0.00828 3.30E-05 0.99987 0.871 1 0.00877 8.82E-06 0.9999

150 11 0.7 0.83825 1 0.008396 2.35E-05 0.9999 0.868 1 0.00873 1.35E-05 0.9999

105 8 0.57 0.83825 1 0.008468 2.70E-05 0.99994 0.865 1 0.00871 2.45E-05 0.9999

90 9 0.51 0.83825 1 0.008481 3.47E-05 0.99991 0.872 1 0.00871 3.28E-05 0.9999

60 5 0.37 0.83825 0.9 0.00854 5.31E-05 0.99998 0.65 1 0.00736 1.22E-05 1

45 4 0.28 0.83825 0.8 0.00847 6.24E-05 0.99989 0.568 1 0.00698 1.29E-05 1

where: n – determined reaction order (on the basis of the maximum R2 value); b – the maximum range of analysis of progression curve data (conversion);  
k – observed pseudo-first order reaction rate constant; SD – standard deviation from the reaction rate constant value; Italics- the range where the analysis breaks 
down. The values of reaction rate constant and deviations were calculated in each case using equation (4).

Figure 2. The calculated value of the 1st Ord. rate constant as a function of the maximum conversion b for the asymptote determined experimentally and calcu-
lated iteratively: A) C0, OH- = 0.01 mol/L; C0, AcEth = 0.04 mol/L; B) C0, OH- = 0.01 mol/L; C0, AcEth = 0.08 mol/L. Figure C) shows calculated values of the observed 
1st Ord. rate constants as a function of the maximum conversion b for the initial ester concentrations of 0.04 mol L-1 and 0.08 mol L-1 respectively. Asymptotes 
were calculated iteratively

(0.08/0.04 = 2). This ratio is a result of the kinetic equation used for 
the case in question. 

By analysing data presented in Tables 1 and 2, we can resolve 
the issue of sufficient component excess (necessary to facilitate the 
adoption of the pseudo-first order reaction model) as well as the issue 
of selecting the data range for analysis. Even sufficient excess does not 
guarantee the correct calculation of reaction rate constant if there is not 
sufficient data available on the range of excessively low conversion.

The relationships show us that the fact of better statistical 
indicators obtained by iterative determination of the value of 
progression curve asymptote should not be overestimated. This 
follows from the method itself whereby this value will be fitted to 
the currently analysed data, even at the expense of departing from 
the actual value.

From the above-shown relationships, it also follows that the 
correct calculation of the reaction rate constant with satisfactory 
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Sometimes this may be difficult to achieve in the average laboratory 
class time of 2.5 hours during which, when using classical analysis 
methods (titration, non-automatic reading the angle of rotation of 
polarized light), it is possible to analyse a reaction in the range of 
lower conversion. The condition is sufficient initial substrate excess. 
The excess may also be a result of the nature of the reaction (i.e. 
one of the substrates being a solvent). For the pseudo-first order 
reactions accounted for in this paper, the possible use of automatic 
recording (as in the third experiment: see Supplementary Material) 
should allow such a selection of parameters (e.g. concentrations of 
substrates, catalyst, temperature) in order for the reaction to be faster 
and reach earlier sufficient conversions without significantly reducing 
the number of measurements. 

SUPPLEMENTARY MATERIAL

Supplementary Material include:
·	 The algorithm (flowchart) of iterative selection of limit value of 

Y∞ of the measured parameter. 
·	 Experimental procedures and results of the three student experi-

ments. 
·	 Implementation of the algorithm in Excel spreadsheet.
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statistical characteristics requires an analysis of the progression curve 
data obtained under the conditions of sufficient excess of ester (chosen 
substrate). However, the excess does not need to be significant from 
the very start of the reaction because as the reaction progresses the 
ratio of the ester concentration to the OH- ion concentration increases, 
which defines the pseudo-first order reaction (see Supplementary 
Material). In such a case, it is sufficient to select data for calculations 
which include a wide conversion range, as described above. The 
values obtained on the basis of the experimental and the calculated 
asymptotes are then consistent with one another. Of course, the data 
recorded after the reaction has completed should not be used, since 
this leads to deterioration of the statistical characteristics (see: Table 2, 
the value b > 0.9). This is probably the effect of decreasing role of 
variation resulting from the progress of reaction in relation to random 
variation (measurement errors). Therefore, the optimum conversion 
range for the progression curve analysis is 0.7–0.9.

CONCLUSIONS

The results obtained confirm the usefulness of the proposed 
iterative method. Its accuracy is just as good as that of the nonlinear 
matching method. Due to the simplicity of this solution and the fact 
that students can implement it unassisted, the proposed approach has, 
in our opinion, great educational value. It teaches how to optimise the 
parameters of an experiment, asses the progression curve and apply 
a simple numerical method in the form of iteration. 

As we have observed, the experimental procedures described in 
laboratory class textbooks entail the risk of major errors. Sources of 
these errors, even if they can be predicted, may be hard to eliminate. 
For instance, as a result of heating a mixture in order to complete a 
reaction, its composition may change due to partial evaporation of 
components. Careless heating of a mixture of sugars may in turn 
cause them to undergo caramelisation. 

The proposed method makes it possible to avoid determining 
experimentally the limit value of the measured parameter, which 
also means that time is saved that otherwise would be needed to 
determine it. 

It is to be noted, however, that regardless of the selected way 
of determining the asymptote, the progression curve range should 
include sufficient conversion range, preferably between 0.7 and 0.9. 

This is an open-access article distributed under the terms of the Creative Commons Attribution License.


