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A series of cyclic energetic derivatives based on nitroguanidine and 1,1-diamino-2,2-dinitroethene were theoretically designed. The 
spatial structures, infrared spectrometry, heats of formation, electronic structures, detonation properties, and thermal stabilities of these 
designed compounds were fully investigated by density functional theory. It is found that all the designed compounds have moderate 
stabilities (bond dissociation energies range from 11.3 to 99.0 kJ mol-1), high crystal densities (from 1.9589 to 2.00188 g cm-3), high 
positive heats of formation (from 649.6 to 1060.8 kJ mol-1) and high positive heats of detonation (from 1074.77 to 1332.06 cal g-1) 
which lead to the excellent detonation properties (detonation velocities range from 8.71 to 9.05 km s-1 while detonation pressures range 
from 35.47 to 38.55 GPa). Electronic structures such as electrostatic potentials on the surface, electronic densities, highest occupied 
molecular orbitals, lowest unoccupied molecular orbitals and their energy gaps were also simulated to give a better understanding 
of chemical and physical properties of these compounds. All the data may shine lights on the explosive searching and synthesis.
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INTRODUCTION

High energy density materials have been receiving a continuous 
interests due to their high positive heats of formation (HOFs), 
excellent detonation properties and acceptable thermal stabilities 
which lead to the wide applications both in military and civilian.1-5 
For instance, hexahydro-1,3,5-trinitro-1,3,5-triazine (Figure 1, RDX) 
and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (Figure 1, HMX) 
are of this type of energetic materials with positive heats of formation 
(HOF, 79  kJ  mol-1 and 102.4  kJ  mol-1, respectively),6 acceptable 
impact sensitivities (h50, 26 cm and 29 cm, respectively),7 excellent 
detonation velocities (D, 8.75 km s-1 and 9.10 km s-1, respectively) 
and detonation pressures (P, 34.0 GPa and 39.0 GPa, respectively)6. 
The main reasons were summarized as follows: (1) There exists a 
large amount of C—N or N—N chemical bonds in the molecule. (2) 
The cyclic structure will also release lots of energy due to the ring-
opening reaction. (3) The high nitrogen content. All these described 
reasons will make great contribution to the energetic properties during 
the thermal decomposition or detonation process of these explosives. 

Not surprisingly, 1,1-diaminoethene and guanidine (Figure 2) 
consist of this type of structure with high nitrogen content of 48.23% 
and 71.14% respectively, and exist a large amount of C—N or N—N 
chemical bonds. To our knowledge, 1,1-diaminoethene and guanidine 

as energetic materials were mainly expressed in the following 
form: 1,1-diamino-2,2-dinitroethene,8,9 1,2,3-triaminoguanidine,10 
1,2-dinitroguanidine,11 energetic salts12-17 and 1,1-diamino-2,2-
dinitroethene or guanidine based individual explosives (Figure 2).18,19 

Although there are many species of 1,1-diaminoethene or guanidine 
based energetic materials, each has different advantages and 
disadvantages with respect to the stabilities and detonation properties. 
For example, 1,2-dinitroguanidine, whose detonation properties 
were superior to RDX, was a strong acid which in turn limited 
its applications. This is because the hydrogen atom located in —
NHNO2 group was easily to be dissociated due to the strong electron 
withdrawing effect of nitro group.20 

Since cyclic structure may release lots of energy due to the ring-
opening reaction during the thermal decomposition or detonation 
process of an explosive, it led to the idea of designing a series of 
guanidine based cyclic energetic parent compounds (Figure  3, 
compounds 1-5 and 1’-5’). Till now, little research was done on 
cyclic energetic materials based on nitroguanidine and 1,1-diamino-
2,2-dinitroethene.21,22 On the other hand, it was also found that the 
increasing number of nitro groups into the cyclic compound can lead 
to an increase in mass densities, heats of formation and detonation 
properties. And finally, aiming at looking for new high energy density 
materials with better detonation properties, some cyclic nitroamines 
were designed (Figure 4, A1-A5 and B1-B5). 

In this work, a series of nitramines were designed based on the 
structures of nitroguanidine and 1,1-diamino-2,2-dinitroethene. 
The related properties such as heats of formation (HOFs), energetic 
properties, bond dissociation energies (BDE) and electronic structures 
were fully investigated. All the presented research may provide useful 
information for the laboratory synthesis of these designed molecules.

COMPUTATIONAL APPROACH

The optimized structures and vibrational analyses of the designed 
molecules were carried out by Gaussian 03 software23 combined with 
B3LYP method at 6-31G (d,p) level of density functional theory 

Figure 1. Molecular structure of RDX and HMX
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(DFT) which have demonstrated as a reliable way to calculate the 
accurate energy.24-27 The optimizations were performed without any 
symmetry restrictions using the default convergence criteria in the 
Gaussian program. All of the optimized structures were characterized 
to be true local energy minima on the potential energy surfaces 
without imaginary frequencies.

Heat of formation (HOF), which means the energy release during 
the decomposition of an energetic material, is of an essential data 
to predict the heat of detonation, detonation velocity and detonation 
pressure. Consequently, isodesmic reactions were employed to 
calculate the accurate heats of formation of the designed compounds 
in this work. It has demonstrated that this is a convenient and reliable 
method since the electronic circumstances of the related reactants and 
products in the isodesmic reactions are very similar which in turn 
will reduce the errors of the calculated HOF greatly.28 The designed 
isodesmic reactions (Figure 5) and related equations (Equation 1-2) 
were expressed in the following form:

	 	 (1)

	 	 (2)

where n means the number of the energetic groups, ∆Hf,p means the 
HOFs of products; ∆Hf,R means the HOFs of reactants, ΔE0 means 
the energy changes between products and reactants, ΔZPE means 
the difference between the zero-point energy (ZPE) of products and 
reactants, ΔHT means the thermal correction from 0 to298 K, ∆(PV) 
equals to ∆nRT in the reaction. 

It is found that HOFs of NH3 and NH2NO2 can be obtained 
either from CRC Handbook of Chemistry and Physics or references. 
However, accurate HOFs of compounds 1-5 were unavailable and 
thus, atomization reaction CaHbNc→aC(g)+bH(g)+cN(g) combined 
with CBS-Q method were employed to predict the accurate HOFs 
of these unknown compounds.29 

It should be also noted that heats of formation obtained via 

Figure 2. Some guanidine based explosives

Figure 3. Guanidine based cyclic energetic parent compound
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isodesmic reactions were in gas-phase rather than solid-phase while 
most of the energetic materials exist as solid state instead of gas 
state. Therefore, solid-phase heats of formation were determined 
using the gas-phase heats of formation and heat of phase transition 
according to Hess’ law.30 The related equations were expressed in 
the following form:

	 	 (3)

where ΔHsub means the heat of sublimation proposed by Politzer 
et. al:31

	 	 (4)

where A means the surface area of the 0.001 e bohr-31 isosurface 
of electronic density of the molecule, ν means for the degree of 
balance between positive and negative potential on the isosurface,  
means the measure of variability of the electrostatic potential on the 
molecular surface which can be performed on Multiwfn program,32 
a, b and c are coefficients from reference.33

Empirical Kamlet-Jacob equations (5-6) 34 which were widely 
employed to calculated the energetic properties were also used in 
this work to predict the detonation velocity and detonation pressure 
of the designed compounds.

	 	 (5)

	 	 (6)

Figure 4. Structures of the designed compounds

Figure 5. Isodesmic reactions for the designed compounds
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where N means the moles of detonation gases per-gram explosive 
(mol  g-1),  means the average molecular weight of these gases 
(g mol-1), Q means the heat of detonation (cal g-1), D means the 
detonation velocity (km s-1), P is the detonation pressure (GPa), ρ 
means the calculated density (g cm-3).

In order to get the accurate crystal density (ρ) of these designed 
molecules, an improved equation proposed by Politzer et al was 
introduced:35

	 	 (7)

where V means the volume of a molecule, ν means the degree of 
balance between positive and negative potential on the isosurface, 

 means the measure of variability of the electrostatic potential on 
the molecular surface while β1, β2, and β3 are coefficients. 

Bond dissociation energy (BDE), which can be defined as 
the difference between total energies of products and reactants, is 
a fundamental parameter to investigate the thermal stability and 
decomposition mechanism of an energetic material. The related 
equation was written as follows:

	 BDE (A–B)=E0(A·)+E0(B·)–E0(A–B)	 (8)

where BDE(A–B) stands for the bond dissociation energy of the 
neutral molecule, E0(A·) and E0(B·) stand for the energy of the 
product radicals after bond dissociation, E0(A–B) stands for the total 
energy of the neutral molecule

RESULTS AND DISCUSSION

Heat of formation

Table 1 illustrates the total energies (E0), thermal corrections 
(HT), zero point energies (ZPEs), and heats of formation (HOFs) 
of the related compounds that referred in the isodesmic reaction. It 
is seen that all the designed parent compounds have high positive 
heats of formation (from 196.3 to 554.6 kJ mol-1) which in turn will 
make great contribution to the heats of formation of the designed 
compounds. 

Table 2 summarized E0, HT, ZPE, gas-phase heat of formation 
(Hf,gas) and solid-phase heat of formation (Hf,solid) of the designed 
compounds at the B3LYP/6-31G (d,p) level. Obviously, solid-phase 
heat of formation of compounds that substituted by nitro group were 
higher than that of the parent compounds. HOFs of compounds A1-
A5 were from 710.8 (compound A1) to 1060.8 kJ mol-1 (compound 
A5) while compounds B1-B5 were from 581.7 (compound B3) to 
756.7 kJ mol-1 (compound B4). These high positive heats of formation 
may be profited from the large amounts of N–N and C–N bonds and 
the strain energy of the ring in the molecule. 

In order to give an evident variation in solid-phase heat 
of formation, Figure  6 shows the changing trend of heats of 
formation of the designed compounds. It is seen that heats of 
formation of compounds A1-A5 were in the following order: 
A5>A4>A2>A3>A1 while no changing trends were presented for 
compounds B1-B5. The results were consistent well with previous 
reports that the heat of formation of an energetic material will 
increase with the increasing number of nitro groups.37 It also should 
be noted that heat of formation of compound A2 was higher than 
that of compound A3 which was caused by the increasing number 
of N–N chemical bonds in compound A2. It may be concluded 
that N–N chemical bonds may make a higher contribution to heat 
of formation to C–N chemical bonds. Compared series A with B,  
it is found that compounds with the similar parent structure in 

series A have higher heat of formation than series B since C=N 
chemical bond is more effective in improving heat of formation 
of an energetic material than C=C chemical bond. Additionally, 
compound A5 possesses higher heat of formation than that of 
compound B5 though the number of nitro group in compound B5 
is more than that of compound A5. It may lead to the conclusion 
that C=N chemical bonds will make more contribution to heat of 
formation than nitro groups.

Detonation properties

Detonation properties such as heat of detonation (Q), density (ρ), 
detonation velocity (D) and detonation pressure (P) were important 
indicators to reflect the energetic performance of an energetic 
material. These parameters were summarized and listed in Table3.

Figure 7 illustrates a comparison of the Q, ρ, D and P for the 
designed compounds. It is found that all the designed molecules have 
high densities which range from 1.9589 (compound A3) to 2.0188 g 
cm-3 (compound B5) and obviously, all the values were higher than 
those of RDX (1.82 g cm-3) and HMX (1.91 g cm-3). For each series, 
values of ρ displays an irregular changing trend. However, density 
of compounds with the similar parent structure in series B is higher 
than those in series B. For example, compounds A5 and B5 have the 
similar parent structure, but the density of compound B5 (2.0188 
g cm-3) is higher than that of compound A5 (1.9832 g cm-3). This 
result was in accordance with the previous research that nitro group 
is an effective functional group to improve density of an energetic 
material. Values of D were from 8.71 to 9.05 km s-1 while values of 
P were from 35.47 to 38.55 GPa and all the values were superior to 
that of RDX (D, 8.75 km s-1; P, 34.0 GPa). It also should be pointed 
out that detonation properties of compound A5 have similar values 
to HMX  (D, 9.10 km s-1; P, 39.0 GPa) which may be benefitted by 
the large amount of N–N or C–N chemical bonds and nitro groups. 
In view of Q, values of series B were higher than those of series A 
except compounds B2 since the number of nitro groups in series B 
were larger than those in series A. 

Thermal stability 

Bond dissociation energy (BDE) can provide useful information 
in thermal decomposition process and stabilities of an energetic 
material. In general, the smaller is the energy for breaking a bond, the 
weaker the bond is, and the easier the bond becomes more unstable. 
On the other hand, a consensus has been reached that nitro groups 
attached to the ring often represent as the trigger bonds in thermal 
decomposition process of organic polynitro compounds and thus, 
the weakest C–NO2 and N–NO2 bonds, which were screened based 
on bond order (BO), were selected as the breaking bonds for the 
calculation of the BDEs. Table 4 lists the values of BO and BDE of 
the designed compounds. 

Figure  8 displays the variation in BO and BDE of C–NO2 
and N–NO2 bonds, respectively. It is found that BO of C–NO2 
(range from 0.8742 to 0.8907) is higher than those of N–NO2 
(series A, range from 0.6777 to 0.7981, series B, range from 
0.6239 to 0.7639) and consequently, BDE of C–NO2 (range from 
218.5 to 226.9  kJ  mol-1) is higher than those of N–NO2 (series 
A, range from 45.5 to 0.89.5 kJ mol-1, series B, range from 13.7 
to 99.0 kJ mol-1). It is predicted that N–NO2 bond will be firstly 
dissociated out from the ring rather than C–NO2 bond during the 
decomposition process of these designed compounds. Based on the 
BDE values, the thermal stable order of series A can be defined in 
the order of A5>A3>A2>A1>A4 while series B were in the order 
of B4>B1>B5>B2>B3. 

https://www.baidu.com/link?url=mVFVHEsUskAv65qqyHXX_312HSEMZWdMGsy7qi3VNEpvReaamZ9K_Gb6_AFzeNFd6n8GziBYNUBS6iKudhTHTZEVGSDdY6wI5z32c2LB0X5mLflfV9wYFyXTh9cJzE3D&wd=&eqid=a6d4c55100003d8e000000025b4ea564
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Table 1. Calculated electronic energies (E0), zero-point energies (ZPE), thermal corrections (HT), and heats of formation (HOFs) of the related compounds

Compd. E0 (a.u.)a ZPE (kJ mol-1)a HT (kJ mol-1)a ΔHf,gas (kJ mol-1)

NH2NO2 -261.037824 101.6 11.7 6.7b

NH3 -56.557776 88.6 9.6 -45.9c

CH3NO2 -245.013375 131.4 13.8 -80.8b

CH4 -40.524020 118.2 10.0 -74.6

 

-352.939721 242.9 19.0 293.8d

 

-408.222579 278.0 17.5 493.5d

 

-446.460609 306.0 23.2 196.3d

 

-501.761269 352.5 25.0 357.2d

 

-595.215357 409.7 20.8 327.1d

  

-320.817200 300.3 19.8 496.2d

 

-376.087129 331.4 18.4 554.6d

 

-398.271552 385.5 27.9 260.6d

 

-453.536114 423.9 21.1 493.4d

 

-530.958393 518.2 25.3 367.1d

a, calculated at B3LYP/ 6-31G (d,p) level; b, obtained from Ref. 36; c, obtained from CRC Handbook of Chemistry and Physics; d, calculated values were 
calculated at the CBS-Q level.
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Frontier molecular orbitals

The highest occupied molecular orbitals (HOMOs) and the lowest 
unoccupied molecular orbitals (LUMOs) are two most important 
aspects for frontier molecular orbitals (FMO). The energy of HOMO, 
LUMO and their gap can also supply useful information in the kinetic 
stability, optical polarizability and chemical reactivity of a molecule. 
Therefore, HOMO, LUMO and their energy gap were depicted in 
Figure 9. 

Table 3. Predicted densities (ρ), heats of detonation (Q), detonation velocities 
(D) and detonation pressures (P) for the title compounds

Compound Q (cal g-1) ρ0 (g cm-3) ρ (g cm-3) D (km s-1) P (GPa)

A1 1104.88 2.0483 1.9887 8.75 35.98 

A2 1074.77 2.0647 2.0014 8.76 36.17 

A3 1219.59 2.0375 1.9589 8.83 36.35 

A4 1116.88 2.0623 1.9717 8.71 35.47 

A5 1192.67 2.0691 1.9832 8.86 36.84 

B1 1323.53 2.0767 1.9963 9.05 38.55 

B2 1175.03 2.0850 1.9914 8.81 36.48 

B3 1332.06 2.0820 1.9953 9.00 38.16 

B4 1267.26 2.1042 2.0143 8.99 38.26 

B5 1289.28 2.1243 2.0188 9.01 38.43

Table 2. Calculated total energies (E0, au), thermal corrections (HT, kJ mol-1), zero point energies (ZPE, kJ mol-1 ), ΔH (kJ mol-1) for the title compounds

Compd. E0 ZPE HT ΔHf,gas ΔHsub ΔHf,solid

A1 -1375.227386 261.5 53.2 829.8 119.0 710.8

A2 -1635.014365 308.2 63.5 1027.1 87.3 939.8

A3 -1673.148952 322.8 66.4 985.3 145.1 840.2

A4 -1932.933942 369.4 76.2 1108.5 158.1 950.4

A5 -2230.853532 432.6 90.0 1250.1 189.3 1060.8

B1 -1752.116245 334.8 67.5 853.2 145.7 707.5

B2 -2011.897886 380.9 78.3 913.5 166.6 746.5

B3 -2238.481484 433.2 87.6 778.0 196.3 581.7

B4 -2498.266476 481.7 97.0 968.6 211.9 756.7

B5 -2984.637469 581.1 115.1 893.7 244.1 649.6

Figure 6. HOFs of the designed compounds

From the figure, it is clear that the distribution of the HOMO 
and LUMO varies from different compounds: LUMOs and HOMOs 
of compounds A1, A3, A4, A5, B1, B3, B4 and B5 were mostly 
localized on the nitro groups while compounds A2 and B2 were 
localized both on the ring and nitro groups. In addition, the values 
of LUMO of these designed compounds range from -5.23 to -3.96 
eV while values of HOMO range from -9.12 to -8.82eV. In view of 
the energy gap between HOMO and LUMO, the values range from 
3.74 (compound B4) to 4.92 eV (compound A4) which means that 
compound A4 has the worst chemical reactivity while compound B4 
will be easily reacted with other reagents under given conditions. 
Again, the reactivity of all the designed compounds can be drawn 
in the following order: B4>B5>B3>B1>B2>A3>A1>A5>A2>A4. 
Obviously, the reactivity of series B were higher than that of series 
A which may be due to the increasing number of nitro groups. Take 
compounds A1 (∆E=4.49 eV) and B1 (∆E=4.32 eV) for example, 
though they have similar parent chemical structure, compound B1 
was more active than compound A1 since more nitro groups were 
located in compound B1. This phenomenon was consistent with 
the effect that the increasing number of nitro group will improve 
energetic properties effectively while it will decrease the stability of 
a compound evidently.38

Electronic density

Electronic density is a fundamental indicator to express a variety 
of chemical and physical properties of a molecule. Thus, contour 
line map of the electronic density of the designed compounds were 
investigated and illustrated in Figure 10. It is seen from the picture 
that delocalization occurred in the ring (for example, Figure 10, A1, 
region A) and will improve the stability of the ring skeleton which 
in turn will improve the stability of the compound. Oppositely, 
electron densities were found to be concentrated in the bonding area 
(Figure 10, A1, region B) because of electron pair sharing between 
atoms bonded covalently. Also, the electron densities around the 
oxygen and nitrogen atoms were seen higher than those around other 
atoms (Figure 10, A1, region C) due to strong electro negativity. This 
is because high peaks correspond to the nuclear charge of the heavy 
nucleus, which will make great contribution to improve electron 
aggregation and display integral exponential attenuation towards all 
surrounding atoms. Finally, electronic density reduced in region D 
because of the repulsive interactions of lone pair electrons among 
the adjacent atoms. The reduction of repulsion between adjacent lone 
pairs were also found by involving the lone pairs of alternate nitrogen 
atoms in coordinate covalent bonding to carbon atoms which in turn 
will stabilize the designed compounds. For example, compound A5 
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Figure 7. ρ, D, P and Q of the designed compounds

Table 4. Bond order and Bond dissociation energies (BDE, kJ mol− 1) for the 
weakest bonds of the title compounds

Compound

Bond

N—NO2 C—NO2

BO BDE BO BDE

A1 0.6777 54.3 -- --

A2 0.7163 68.8 -- --

A3 0.7123 71.6 -- --

A4 0.7433 45.5 -- --

A5 0.7981 89.5 -- --

B1 0.6807 33 0.8907 219.4

B2 0.6809 13.7 0.8880 223.9

B3 0.6239 11.3 0.8826 226.9

B4 0.7639 99.0 0.8855 220

B5 0.7502 21.4 0.8742 218.5

possesses this type of structure and consequently, it has the highest 
BDE value among series A which means that compound A5 was more 
stable than compounds A1-A4.

Electrostatic potential

Electrostatic potential (ESP) on molecular surface is a 
critical parameter since it can provide meaningful information in 

understanding the charge distributions and molecular reactivity.39,40 
Figure  11 presents the ESP and surface area of these designed 
compounds at the B3LYP/6-31G(d,p) level. It also should be pointed 
out that the red color in the picture denotes the most negative potential 
while the blue color denotes the most positive potential. 

It can be seen from Figure  11 that the positive area was 
mainly focused on the ring while negative potentials were mostly 
distributed on the –NO2, =N–NO2 and =C–NO2 groups due to their 
higher electronegativity. It is to say that nucleophile attack might be 
easier happened in red areas while the blue areas were the primary 
electrophilic sites. On the other hand, positive areas on compounds 
A4,A5, B4 and B5 were more decentralized than compounds A1, A2, 
A3, B1, B2 and B3. It implies that compounds A1, A2, A3, B1, B2 
and B3 will be more stable than compounds A4,A5, B4 and B5 based 
on the result proposed by Klapotke et al.41 electrostatic potential of 
positive areas on the molecular surface which were centralized and 
large enough will make great contribution to improving the stability of 
a molecule. Besides, the ratio of positive and negative area were also 
displayed in the figure. It is found that the area ratio of positive ESP 
appears on compounds A1, A2, A3, B1, B2 and B3 were larger and 
more centralized than those appear on compounds A4, A5, B4 and B5.

Thermal dynamic properties

Thermal dynamic parameters such as standard molar heat capacity 
( ), standard molar entropy ( ) and standard molar enthalpy  
from 200 to 600 K of these designed compounds were investigated 
based on vibrational analysis. It is found that all the parameters fit 
well with the equation  X=a + bT + cT2 (X= ,  and ). The 

https://www.baidu.com/link?url=n-5TT0P3QpYmsQbZF76pEPp4rSoQ2jJ103_Marln_yet-QaGo94Ti9P30RcEQLWO-QaILEmGRGI-4wr151cJyjVVwJ036m7AwNtqI4KxDjG&wd=&eqid=f786d26f000097e8000000025b4fefce
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Figure 8. BO and BDE of the designed compounds

related constants a, b and c were calculated and summarized in Table 
5. From the table, it is seen that values of ,  and  increased 
evidently as the temperature increasing. However, the growth rates of 

 and  decreased while growth rate of  improved evidently 
as the temperature increased. This is because the translations and 
rotations of chemical bonds were the main influencing factors when 
the temperature is low while vibrational movement occurred and 
intensified at a high temperature. It is also found that values of ,  

 and  increase as the number of nitro groups increasing due 
to the space steric effects and the strong interaction of nitro groups. 
Oppositely, the energy gaps between HOMO and LUMO decrease 
as the number of nitro groups increasing which also may be caused 
by the space steric effects of nitro groups. Take compounds A5 and 

Figure 9. HOMO and LUMO of the designed compounds

B5 for example, ,  and  of compound B5 were higher than 
those of compound A5 whereas the energy gap of compound A5 
(4.5 eV)was higher than that of B5 (3.81 eV). In other words, it is 
the strong space steric effects of nitro groups in compound B5 that 
led to the higher values of , ,  and lower HOMO-LUMO 
energy gap. All the parameters may provide useful information in 
state equation, macroscopic properties and chemical reactions of the 
designed compounds.

CONCLUSIONS

A series of nitroguanidine and 1,1-diamino-2,2-dinitroethene 
based cyclic energetic materials were designed and the spatial 
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Figure 10. Electronic density of the designed compounds

Figure 11. Electrostatic potential of the designed compounds
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Table 5. Thermodynamic properties of the title compounds at different temperatures

R2

a b c×10-4 a b c×10-4 a b c×10-4

A1 65.3 0.89 -5.3 296.5 1.26 -5.1 -10.0 0.15 2.3 0.9999

A2 75.5 1.07 -6.5 328.8 1.50 -6.1 -12.1 0.17 2.7 0.9999

A3 84.9 1.08 -6.5 335.7 1.56 -6.3 -12.2 0.18 2.8 0.9999

A4 94.1 1.27 -7.7 347.5 1.80 -7.3 -14.6 0.21 3.3 0.9999

A5 104.3 1.49 -9.0 344.8 2.08 -8.4 -17.7 0.24 3.8 0.9999

B1 88.6 1.12 -6.7 303.6 1.62 -6.6 -14.2 0.19 1.6 0.9999

B2 102.9 1.29 -7.8 332.1 `1.87 -7.7 -16.3 0.22 3.3 0.9999

B3 118.8 1.43 -8.5 344.1 2.11 -8.6 -18.5 0.25 3.7 0.9999

B4 127.7 1.61 -9.6 356.3 2.34 -9.5 -20.8 0.27 4.2 0.9999

B5 152.5 1.95 -11.7 339.9 2.81 -11.5 -26.6 0.33 5.04 0.9999

structures, infrared spectrometry, heats of formation, electronic 
structures, detonation properties and thermal stabilities of these 
designed compounds were fully investigated by density functional 
theory. It is found that all the designed molecules have high positive 
heats of formation (range from 649.6 to 1060.8 kJ mol-1), high heats 
of detonation (range 1074.77 to 1332.06 cal g-1). Detonation velocities 
and detonation pressures of the designed compounds range from 8.71 
to 9.05 km s-1 and range from 35.47 to 38.55 GPa, respectively. It 
involves that all the designed compounds have superior detonation 
properties to those of RDX. Bond dissociation energy show that 
series B were less stable than those of series A since the former possess 
more nitro groups. In view of frontier molecular orbitals analysis, 
chemical reactivity of the designed compounds were summarized 
in the following order: B4>B5>B3>B1>B2>A3>A1>A5>A2>A4. 
Finally, compounds A1, A2, A3, B1, B2 and B3 will be more stable 
than compounds A4, A5, B4 and B5 based on the electrostatic 
potential analysis. 
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