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The structure of food webs is a fundamental attribute of ecosystems, and their characterization provides an intrinsic knowledge of 
the trophic interactions among organisms and of nutrient and energy transfer within ecosystems. Over the last few decades, several 
chemical and biogeochemical approaches have been proposed to explore different aspects of food webs. In this sense, this study 
reviews the application of stable isotopes and mercury as main auxiliary tools to the characterization and modeling of aquatic food 
webs, including analytical and modeling advances, strengths and limitations. The metanalysis performed showed that the most used 
tools for trophic ecology studies are stable isotopes, and that they can provide better results when combined with mercury and specific 
chemical molecules such as amino and fatty acids. In addition, the statistical methods applied in the interpretation of results, such as 
isotope mixing models, have witnessed significant advances in the last two decades. All approaches have premises and limitations 
when applied to aquatic ecosystems, which must be well understood prior to results interpretation. The use of multiple tracers in 
trophic studies provides complementary information and in many cases is an appropriate alternative to overcome some limitations, 
allowing to expand the knowledge of the food webs.
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INTRODUCTION

Food webs are networks of interactions between consumers and 
their nutritional sources, encompassing models of flow of nutrients, 
matter, and energy through ecosystems.1 They include populations, 
groups of organisms, or trophic units, which constitute the primary 
bases for the development and advancement of ecological studies.2,3 
Since the initial studies of food chains, important concepts have been 
introduced, allowing a better understanding of energy flow, estimates 
of primary production, and trophic relationships.4,5 A historical 
summary of major studies on the ecology of food webs can be found 
in Layman et al.3

The current knowledge about the energy flow in ecosystems 
benefited from using new tools like stable isotope analysis.6,7 
Stable isotopes are non-radioactive nuclides of the same chemical 
element (same number of protons) but with a different number of 
neutrons, resulting in different mass numbers.8-10 Stable isotope 
analysis (SIA) has a wide range of applications in geochemistry 
and biogeochemistry,11-14 and has become a highly effective tool for 
tracing the putative food sources in complex food webs (e.g., habitats, 
types of resources) and determining the consumer’s trophic position. 
Moreover, it provides in time and space integrated information on the 
complex interactions between organisms, permitting the development 
of models to represent the structure of trophic webs in nature.7,15

The isotope ratios most commonly used as tracers in food webs 
are carbon (13C/12C) and nitrogen (15N/14N).9,10 Additionally, isotope 
ratios of sulfur (34S /32S) are increasingly being used in trophic 
studies.16-18 In combination with SIA, quantifying mercury (Hg) 
concentrations, an element that suffers enrichment through the 
food chain, a processes called biomagnification, helped model food 
webs.19,20 Another promising approach is associating SIA of specific 

components with studies of amino acids and fatty acids to expand the 
possible applications to the field of trophic ecology.7,21-23

In the past three decades, many researchers have shifted from 
the qualitative focus of the pioneer isotopic applications to more 
quantitative data analyses to improve the knowledge on food 
webs.7,24,25 These advances have given rise to the need for improved 
statistical analysis and of modelling to enable a more robust study 
of SIA.7,25-29 

The development of new approaches for analyzing isotope ratios 
has prompted questions about which method or model is most suitable 
for a particular purpose. This entails recognizing the strengths and 
uncertainties of each method and its applications depending on the 
circumstances and specific questions addressed by a given study. 
Therefore, this review has two objectives: (i) describe the use of stable 
isotopes as well as mercury as the main accessory tools used to model 
aquatic food webs and their applications; and (ii) summarize the recent 
advances of the main statistical models employed in studies of trophic 
ecology, identifying their strength, limitations, and future perspectives.

STABLE ISOTOPES 

Isotope ratios express the difference between the number of 
neutrons in the nucleus of heavier and lighter stable isotopes of the 
same element. For example, the atomic species 13C has one more 
neutron in its nucleus than its more abundant form, 12C. These are 
called heavy and light carbon isotopes in the literature.6,9,10 The isotope 
values are generally reported by the delta (δ) notation where δ13C 
denotes the ratio of the heavy and light carbon isotopes of the sample 
compared to an international standard: Vienna Pee Dee Belemnite 
(VPDB), according to the following Equation 1: 
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where X is the chemical element to be analyzed, m is the mass of 
the heaviest isotope and R is the ratio between the heaviest and 
lightest isotope, both in the sample and the standard. The final value 
is expressed in parts per thousand (‰).6,9

DeNiro and Epstein8 were the first to show that the isotopic 
values of consumers reflected the isotopic composition of the 
ingested food item, discounting eventual small isotopic discrimination 
between sources and consumers. Since then, isotopes have been 
used as chemical markers in biological tissues to determine not only 
the ingested food but, more importantly, the portion of it finally 
assimilated.9 This supplies information about trophic interactions, 
energy transfer, and food web complexity, as well as identifying 
temporal or spatial alterations of major resources and consumers’ 
diets.7,25

Based on isotopic data alone, a clear constrain of this approach 
is the incapacity to identify the food items ingested with the same 
accuracy obtained by analyzing the stomach contents or the direct 
observation of the foraging behavior.30 Additionally, estimating 
the biomass of items consumed only by differentiating the feeding 
pattern and the trophic level is impossible.7 This approach also needs 
previous knowledge of the life history of the target species,31,32 and 
of the isotopic baseline values of food items consumed; the frequent 
lack of such information is a serious shortcoming for estimation 
of the ecosystem’s trophic structure. Thus, isotopic tools can be 
complementary to the information acquired via traditional observation 
methods mentioned.9

In the past two decades, studies associating stable isotopes 
with organisms’ diets, trophic relations, and aquatic food webs 
significantly increased (Figure 1), and various previous reviews 
have also reported a same trend of an increasing number of studies 
associating isotopic analysis with organisms’ diets, trophic relations, 
and the food web.7,25,33

Some premises should be considered to enable the proper 
application of isotope ratios in trophic ecology studies, such as 
(i)  the groups of primary producers considered as baseline food 
sources for any food web (e.g., phytoplankton, algae, plant material) 
typically have distinct isotope values, permitting tracing the origin 
of the carbon quantified in higher trophic levels; (ii) the buildup 
of the tissues of the consumers reflects the isotopic composition 
of their diets; and (iii) the conservative character of isotopes ratios 

allows identifying a constant and predictable variation of their values 
among the different components of the food web, a process known as 
isotopic fractionation or the trophic enrichment factor (TEF).10,34,35 A 
noteworthy caveat regards the second premise, since many factors can 
affect the isotopic assimilation of a particular food item in the tissues 
of organisms. Boecklen et al.35 listed biotic and abiotic factors that are 
sources of variation in the isotopic composition of organisms, ranging 
from the properties of consumers (e.g., types of tissue, life histories, 
physiological conditions), properties of the ingested food (e.g., lipids 
and proteins contents, elemental concentration), environmental 
properties (e.g., biome and habitat type) and analytical properties 
(e.g., capacity of lipids extraction, precision and reproducibility of 
methods). Indeed, TEF is one of the central matters for adequate 
interpretation of the energy flow, inter-relationships, and complexity 
of the food web.9,27,33

The δ13C isotopic composition allows identifying which primary 
producers or organic sources form the baseline of a given consumer 
since the isotopic composition of producers is assimilated in the tissue 
of consumers with a TEF generally of ≤ 1‰ at each trophic level, 
the so-called fractionation.15,36 Conversely, the isotopes of δ15N allow 
evaluation of an organism’s trophic position in the food chain. Each 
advance of the trophic level generally involves losses of the lightest 
isotope (14N) and retention of the heaviest one (15N), resulting in an 
increase in the value of δ15N along the trophic chain.6,37 Therefore, 
their ratios can be used to estimate the food chain’s length.2 Each 
change in the trophic level is associated with an average increase of 
~ 3‰ of δ15N. However, this value can vary significantly in function 
of the species, tissue analyzed, and temporal and spatial variations, 
with values ranging from ~ 2 to 5‰.7,15,38 The potential applications 
of δ 13C and δ 15N are diverse, and consequently, numerous studies 
focused on trophic ecology have been conducted. These studies 
include determining the origin of fishing stocks,39 comparing trophic 
niches and positions,40 investigating trophic links and feeding areas,41 
tracing individual niche trajectories by analyzing isotopic assessments 
of various body tissues,42 and identifying the sources of organic matter 
on the continental shelf, among others.43 

The isotopic composition of sulfur, expressed as δ34S, is another 
tool increasingly applied in trophic studies.16,18,44,45 In aquatic 
ecosystems, the different chemical forms of S (e.g., sulfate in the water 
column, sulfides in the sediment) tend to have different values of δ34S. 
The reduction of aqueous SO4

2- by sulfate-reducing bacteria results 
typically in the deposition of sulfide compounds in the sediment, with 
lower values of δ34S. This difference is more pronounced in anoxic 
environments. As a result, primary producers that use sulfates from 
the water column tend to be more enriched in 34S (e.g., microalgae and 
phytoplankton, with average δ34S ~ 18‰). In contrast, those that use 
the sulfides from the sediment are more depleted in 34S (e.g., plants in 
flooded areas, with δ34S between −10‰ and 5‰).44 Since the isotopic 
fractionation of S is usually very low it is frequently disregarded, 
its values permit differentiating benthic and pelagic consumers in 
coastal habitats, according to the sources of primary production in 
the food web. This allows differentiation in environments where 
there is a possible overlap of organic matter sources.44,46 Moreover, 
the tool can also be applied to species that differ regarding habitat 
use, such as identifying movements between shallow and deep water 
or investigating migratory species.16,18

Two critical points should be considered in interpreting stable 
isotopes in organisms. The first is the turnover rate, which refers 
to renewing or synthesizing new biological tissue due to dietary 
alterations. It reflects the period necessary for the consumer to 
integrate the isotopic signal of its prey. Therefore, the isotope ratio 
of the consumer reflects the different feeding periods due to different 
turnover rates associated with the metabolism of each tissue.47,48 For 

Figure 1. Number of papers published in the past (~ 20 years) employing 
stable isotopes in aquatic food webs, cataloged by the CAPES/MEC Journals 
Portal. The keywords used were “isotope”, “aquatic food chain”, “aquatic 
food web”, “diet” and “trophic relationships”
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example, tissues with higher metabolic activity (e.g., liver and blood 
plasma) have faster turnover rates, allowing detection of the recent 
diet (e.g., few days or hours) or in short experiments. Alternatively, 
tissues that have slower turnover rates, like muscles and bones, are 
better suited for research on medium and long-term effects.7,35 The 
turnover rate is also influenced by inherent developmental variations 
that impact metabolism, such as periods of rapid growth or food 
restriction that slow it down.49 When designing a sampling approach, 
it is crucial to collect consumers and their food sources at appropriate 
temporal and spatial scales aligning with the isotopic signal in their 
tissues. Typically, sources are collected before their corresponding 
consumers.7,25 

The second point to be considered involves one of the premises 
of SIA, the trophic isotopic fractionation. Questions about the 
generalized use of the values widely applied in trophic ecology 
studies have been raised.8,15 Studies indicated that these values can 
vary significantly according to some physiological and environmental 
aspects, such as the type of ecosystem, type of tissue, diet, trophic 
position, taxonomic group, the form of excretion (ammonia, urea or 
uric acid) and treatment of samples (e.g., extraction of lipids).25,46,50 
Therefore, the best choice is to apply, site-specific situation, 
generating more precise estimates for small groups of organisms or 
specific consumers (e.g., taxon, tissue, diet).25 The ideal design is to 
create values near the real ones in each case through brief experiments 
or observations. However, this alternative is only available on some 
occasions. In these cases, seeking more robust estimates in meta-
analysis studies is possible, which use mathematical correction factors 
to minimize the inherent errors in fractionation values.33,38,46,51 Some 
studies have indicated the need for new advances and experimental 
studies seeking to understand the nature of the variations observed 
in TEF.7,25,52

MERCURY 

Mercury (Hg) is a metal with high toxic potential and considered 
a global contaminant due to atmospheric circulation and deposition.53 
High Hg levels cause adverse effects in ecosystems and the 
associated food webs, generating risks to human health.37,54 In aquatic 
environments, emissions of Hg that are buried in surface sediments 
into the water column can be a significant source of the metal for 
organisms.55 The bioavailability through methylation56-59 is one of 
the determinants of Hg contamination in coastal food webs. In the 
biota, methylmercury is the predominant form, possibly varying 
from ~ 80 to 90% of the total Hg in organisms, whereas in other 
components of food webs contains less proportions (sediments < 1%,  
suspended particulate matter ~ < 5%, seston ~ < 10%).60 Some 
inherent characteristics of this mercury species favor its retention in 
biological tissues, such as high permeability through cell membranes, 
an affinity for the sulfhydryl group of proteins, high gastrointestinal 
absorption, stability, lipid solubility, and slow excretion rate (taking 
~ 2.8 times longer than the inorganic form).54,61 

Once incorporated in the biota, Hg can be bioaccumulated 
(i.e., assimilated and retained in the biological tissues relative 
to the abiotic environment), and biomagnified (i.e., increasing 
concentrations in higher trophic levels of the food chain). Few metals 
have been recognized as able to undergo biomagnification, meaning 
rising concentrations at each trophic level in the food chain (e.g., 
detritivores < herbivores < omnivores < carnivores and piscivores, 
in particular).37,59,61-66

Due to the clear connection between the level of Hg and the 
trophic position of organisms, researchers have sought to integrate 
information about feeding habits and trophic position with 
biomagnification and isotopic levels.19,66-70 Since 15N enrichment 

typically indicates an increase in the trophic level, many authors 
have reported a positive and significant relationship between δ15N 
and Hg.19,20,66,68-70 

Additionally, the δ15N values can also be used to calculate the 
trophic level of consumers, allowing the association of these data with 
the concentrations of Hg and the phenomenon of biomagnification.20,66 
An example of that association is depicted in Figure 2. 

Another multiple application encompasses the concentrations 
of Hg and isotopes of C, N, and S in the trophic context.17,45 The 
variation of δ34S in coastal ecosystems is directly related to the 
activity of sulfate-reducing bacteria, which are considered to be 
mainly responsible for the methylation of Hg.17,56 Hence, multiple 
tracers can be used to estimate the biomagnification magnitude of 
Hg in the aquatic food webs and thus to investigate the anthropogenic 
impacts and the quality of the organisms more frequently consumed 
by humans.62,68,71

In recent decades, significant progress has been made in using 
stable isotopes of Hg to unravel connections between various 
components of aquatic food webs. Mercury possesses naturally 
occurring stable isotopes, each of which can undergo distinct 
fractionation patterns due to chemical, physical, or biological 
reactions, leading to both mass-dependent fractionation (MDF) 
denoted as δ202Hg, and mass-independent fractionations (MIF) 
resulting in odd-MIF represented as Δ199Hg and Δ201Hg, or even-MIF 
represented as Δ200Hg and Δ204Hg. The MDF δ202Hg has been used to 
define Hg sources in the environment due to different fractionation 
patterns imprinted by industrial or atmospheric processes, while 
∆199Hg (MIF) has been used to trace the sources of mercury in 
marine food webs. Odd-MIF commonly results from photochemical 
transformations of Hg and Δ199Hg values are useful for tracking the 
extent of Hg photochemical demthylation or reduction.72-74

Isotopic measurements have been widely applied in environmental 
and ecotoxicological studies focusing on Hg. They have found 
widespread use in food web investigations, helping to identify 
sources and trophic positions, as well as investigating dietary 
sources of methylmercury and its biomagnification.74 Typically, 

Figure 2. Relationship between the Hg concentration and trophic position 
of the organisms of a marine food web in Southeast Brazil (extracted from 
Kehrig et al.20 and reprinted with Criative Commons permission CC BY-
NC 4.0). X. kroyeri: Xiphopenaeus kroyeri (omnivore crustacean), D. plei: 
Doryteuthis plei (carnivore cephalopod), M. liza: Mugil liza (plankton feeder 
fish), S. brasiliensis: Sardinella brasiliensis (plankton feeder fish), M. furnieri: 
Micropogonias furnieri (benthic feeder fish), T. lepturus: Trichiurus lepturus 
(voracious predator fish), and S. frontalis: Stenella frontalis (voracious 
predator cetacean)
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these measurements are combined with light stable isotopes (13C, 
15N, 34S, and D) to resolve food webs in various contexts, such as: 
(i) differentiating between aquatic and terrestrial dietary sources 
in relation to varying Hg levels;75 (ii) estimating trophic positions 
to calculate trophic magnification slopes for methylmercury;37 and 
(iii) distinguishing between freshwater and marine-based food webs 
and their respective Hg levels.76 

Advances have been made when coupling environmental 
ecological applications with food webs. This applications includes: 
(i) coastal and oceanic mixing of dietary with the former has more 
negative Δ199Hg and δ202Hg values, suggesting the influence of 
exported Hg from rivers, the last had more positive values, like 
other oceanic areas, due Hg atmospheric precipitation coupled with 
oceanographic water mass transport;77,78 (ii) vertical profiling of 
animal migration with negative and/or lower Δ199Hg, δ202Hg and δ13C 
values in higher depths compared to surface waters;74 (iii) vertical 
segregation between sea bottom in hydrothermal and cold seeps 
to water column, as Δ199Hg values of methylmercury in the upper 
oceans are positive and decrease with depth and δ202Hg values of 
methylmercury are mainly positive, while those of inorganic Hg 
are predominantly negative in the upper oceans, there is little to no 
upper marine methylmercury in the chemosynthetic food webs of the 
deep sea;79 (iv) differences in source contamination when comparing 
isotopic compositions of total Hg and of methylmercury between 
different components of the food web, indicating distinct sources of 
Hg for sediments than for seston, invertebrates and fishes.60

ANALYSIS OF SPECIFIC COMPONENTS - AMINO ACIDS 
AND FATTY ACIDS

A significant technological evolution has expanded the possible 
applications of multiple tracers to investigate the structure of food 
webs and the quantification of specific compounds is likely the area 
with greatest potential for future development.7,21,23 The determination 
of the isotopic composition of specific amino acids (AAs) is a 
relatively new method carried out through isotopic analysis of 
nitrogen (δ15N), so called amino acid compound specific nitrogen 
isotope analysis (AA-CSIA). It is used to generate more precise 
estimates of the trophic position of organisms and to trace the baseline 
resources of a given food web in situations of uncertainties associated 
with traditional isotopic analysis.80,81

The technique is based on contrasting isotopic fractionation 
between two AA groups during metabolism. The first group is 
called “trophic” AA, represented by glutamic acid, aspartic acid, 
alanine, leucine, isoleucine, proline, and valine. The group’s main 
representative is glutamic acid, which generally has greater trophic 
fractionation and is more easily identified by gas chromatography. The 
second group is “source” AA, represented by methionine, tyrosine, 
and phenylalanine. Among these, phenylalanine is most often used 
as a marker due to its lower variation of δ15N values during trophic 
transfer.82,83

During the metabolism of AAs, glutamic acid undergoes 
a deamination and transamination process, causing significant 
enrichment of δ15N at each trophic level (average fractionation 
of 8.0‰). On the other hand, phenylalanine maintains its amine 
group during metabolism, since it cannot be synthesized by the 
organism itself. Therefore, the trophic enrichment of phenylalanine 
is substantially lower (average of 0.4‰).21,82 As a result, the isotopic 
analysis of the “source” AAs in consumers provides information 
about the baseline resources of the food web assimilated in their 
tissues, due to the small fractionation value between trophic levels. 
On the other hand, the isotopic analysis of the “trophic” AAs reveals 
the trophic positioning of organisms within the food web due to the 

consistent and relatively large increase of the isotope values during 
trophic transfer.80,84

Compared with traditional SIA, the application of AA-CSIA can 
be a good alternative when limits exist regarding precise estimates of 
the baseline resource of a given food chain, mainly in aquatic systems 
or when the potential sources have very similar isotope values. The 
main analytic advantage of AA-CSIA is that analysis of a single 
consumer can provide information on the isotopic composition at the 
base of the chain and the number of trophic transfers.21,82,85 In some 
cases, this also eliminates the need to analyze primary producers, 
meaning that fewer samples are necessary to characterize consumers 
at higher levels of the food chain. Nevertheless, the cost of AA-CSIA 
is generally higher than that of traditional analysis.

Another tool that can be applied to trophic ecology investigations 
is the analysis of fatty acids, which are carboxylic acids formed by 
long hydrocarbon chains that compose the lipids necessary for a 
range of metabolic functions. When consumed, they can be used 
as an energy source or be assimilated in the adipose tissue of the 
consumer (mainly in the form of triglycerol). This permits the fatty 
acid profiles from preys to be stored in the tissues of consumers in 
a predictable way.86,87 In this sense, the joint approach with isotopic 
analyzes provides complementary information in trophic studies and 
has been especially applied in marine ecosystems22,23,86 and estuaries.88

Some studies have combined analysis of stable isotopes, Hg, 
and essential fatty acids to characterize food webs in marine habitats 
and to improve the selection of trophic tracers to future studies.23,89 
Three fatty acids are recognized as being essential to consumers 
and can be applied in trophic studies: docosahexaenoic acid (DHA), 
eicosatetraenoic acid (EPA) and arachidonic acid (ARA). The first 
two compose the group known as Omega-3 and the last is Omega-6. 
While ARA is most often found in coastal benthic areas, DHA is 
preserved throughout the food web, increasing its contents with 
trophic position. Various authors have reported65,66 correlation with 
δ15N values,23,90 with results indicating δ15N values can be properly 
applied to determine the structure of food webs. 

It should be noted that although using multiple tracers (isotopes, 
Hg and fatty acids) is informative, the cost-benefit ratio of the analyzes 
should be considered. The strategy of grouping data previously 
collected for other purposes, such as nutritional studies (fatty acids) 
and investigations on contamination (Hg), can be more advantageous. 
Moreover, the tools have a strong potential for application at the 
individual level, such as in studies of populations of specific migratory 
species.23,89

MIXING AND ISOTOPIC NICHE MODELS

Mixing models have been developed as more precise tools to 
investigate the relative contribution of food items to consumers91-93 
and significant progress in their capabilities and sophistication 
has been achieved.25,94 Initial linear mass balance mixing models 
were restricted to systems involving a single consumer (or the 
average of multiple consumers). In addition, the number of sources 
permitted was limited by the number of isotopes utilized plus 1, 
which generally restricted the number of sources of the model to 3 
(e.g., δ13C and δ15N + 1 = 3).7,95 Another limiting aspect is that these 
initial linear models did not provide measurements of errors or 
confidence intervals, which restricted the results to a range of possible 
contribution values of each source. One first improvement was the 
development of calculations of error propagation of each system 
through the IsoError model by Phillips and Gregg,92 which establishes 
confidence intervals around the estimates based on the variances of 
the consumer and the isotopic values of the sources.

Later, the IsoSource model emerged as a linear solution to 
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deal with many sources.92 The results are exhibited as frequency 
histograms, depicting all the viable contributions and descriptive 
statistics of the distributions of each food source. The model was 
further improved and simplified by Phillips et al.93 suggesting two 
ways to group sources that are isotopically and ecologically similar. 
However, the model continues to have limitations regarding the 
variability of the parameters and the investigation of ecological 
questions. Other models were developed shortly after the IsoSource, 
using different algorithms, but have been applied less often.7,25

Another question involving mixing models is that they do not 
consider the differences in the elemental concentrations of the 
resources eaten, instead assuming they are equal.91 Although this 
assumption is valid for some herbivores and carnivores, it often does 
not apply to omnivorous and generalist animals, since they feed on 
a wide variety of resources with different trophic levels. For this 
reason, the IsoConc model was developed to perform “concentration-
dependent” calculations, including data on the elemental composition 
of sources, also considering digestibility.91 This was a significant 
advance, increasing the precision of estimates on the organisms’ 
diet. However, its practical application to generalist animals is not 
that simple, and unlike IsoError, it does not allow including the errors 
associated with the process.7,25

In response to these limitations of standard linear models, 
Bayesian statistics have been incorporated in mixing models, 
generating significant advances in trophic approaches.25 The first 
model developed in this respect was MixSIR,96 which was soon 
followed by the SIAR26 and MixSIAR97 models. Although some 
characteristics have been improved (e.g., algorithms, graphical 
outputs), the essence of these models is similar. Both integrate 
the probability calculations regarding the relative contributions 
in systems with various sources, providing credibility intervals. 
These calculations perform corrections by including the isotopic 
fractionation, along with the associated standard deviation. Besides 
these models, Hopkins and Ferguson98 created the IsotopeR model, 
which integrates all the resources of the models previously described 
using entirely Bayesian calculations, including measurement of errors 
associated with isotopic analyzes, concentration dependence, isotopic 
correlation, and estimates at the individual level. 

Among the models mentioned, the SIAR has often been applied 
to investigate food assimilation of the organisms of interest.25,99 
Figure 3 shows a graphical example of the SIAR used to examine the 
assimilation of prey items in the diet of two fish species. Despite all 
the advances from incorporating Bayesian statistics in trophic models, 
there are still challenges to their practical application. Phillips et al.25 
made some recommendations for more effective use of mixing models 
in trophic ecology studies. First, these studies should involve clear 
questions, gather information about the functioning of the ecosystem, 
and have an experimental design that effectively encompasses the 
isotopic variability of consumers and their sources on appropriate 
temporal and spatial scales (considering, for instance, the turnover rate). 
In addition, researchers need to adequately choose the models applied 
according to the questions to be answered, recognizing their premises 
and limitations. The authors further stressed that the decisions about 
grouping or not grouping similar sources or including the dependence 
of concentration in the calculations could influence the results. 

In 2018, Healy et al.100 developed the SIDER Bayesian model 
to facilitate TEF coupled with mixing models. It consists of a 
phylogenetic regression model based on a dataset compiled to 
impute a TEF of a given consumer. The regression model is fitted 
by Bayesian inference and returns a posterior distribution describing 
the estimated TEF, which, in turn, can be used to calculate the mean 
value and its uncertainty (variance or standard deviation). These 
distributions are also compatible with all main Bayesian stable 

isotope mixing models, including MixSIAR;97 IsotopeR;98 SIAR;26 
and MixSIR.96 As an advantage, SIDER allows estimating the TEF 
for species not yet included in the database, based on phylogenetically 
close species. However, the disadvantage, so far, is that SIDER has 
only terrestrial and marine birds and mammals in the database. It is 
noteworthy that SIDER was developed as an alternative solution when 
researchers have no TEF for its target species but phylogenetically 
close species to estimate it. However, experimental measurement 
with controlled feeding trials is the most efficient way to assess TEF 
for organisms.100,101

The isotopic niche and delta space of species or groups of species 
partly represents their ecological niches in the broad sense.102,103 
Based on this, the concept of “isotopic niche” emerged, enabling 
its application for various purposes and areas of ecology.7,31,32,104 
Many advances have also been achieved based on exploring the 
space formed by the dispersion of the set of isotopic data, enabling 
inferences about the isotopic niche and various aspects of trophic 
ecology. Traditionally, estimates of the niche amplitude were carried 
out by analyzing the stomach content and applying measures of 
richness and uniformity to groups of individuals. However, because 
of some limitations of these approaches, the use of isotope metrics 
has become a robust complement in the investigation of trophic 
niches.34,40,105,106 In this sense, Layman et al.24 formulated quantitative 
metrics generated from the dispersion of the isotope values to supply 
information about the niche amplitude and food web structure. In 
simplified form, the metrics reflect the trophic diversity according 
to the distribution of δ15N and δ13C values in a bi-dimensional space, 
indicating how individuals of a species are closely related within 
their respective niches. Estimates are generated on the variety of 
food items exploited, the trophic diversity, amplitude, redundancy 
(similarity), and uniformity of the distribution of individuals in the 
isotopic niche space. 

An important point to be considered is that the metrics are based 
on the total area of the polygon to estimate the trophic niche, covering 
all the dispersed values in the space of δ15N and δ13C values, including 
outliers. Nevertheless, when comparing niches with different sample 
sizes, this approach may not be the best suitable, since the area 
of the polygon tends to increase with the number of samples. In 
response, Jackson et al.28 suggested an adaptation of the metrics of 
Layman et al.,24 creating a proposal based on Bayesian inference 

Figure 3. Example of the SIAR mixing model results on the contribution (%) 
of different prey items in the feeding habits of two fish species (Bagre bagre 
and Genidens barbus) (extracted and modified from Di Beneditto et al.32 
and reprinted with Criative Commons permission CC-BY 4.0). X. kroyeri:  
Xiphopenaeus kroyeri (omnivore crustacean), I. parvipinnis: Isopisthus 
parvipinnis (carnivore fish), P. brasiliensis: Paralonchurus brasiliensis 
(benthic feeder fish), P. porosissimus: Porichthys porosissimus (carnivore 
fish), S. brasiliensis: Stellifer brasiliensis (benthic feeder fish), S. plagusia: 

Symphurus plagusia (benthic feeder fish), T. lepturus: Trichiurus lepturus 
(voracious predator fish)
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called SIBER (“Stable Isotope Bayesian Ellipses in R”).
The SIBER model uses the isotopic area of a standard ellipse 

(SEA, standard ellipse area). The standard ellipse is based on the 
variance and covariance of the isotope values, covering 40% of the 
data, representing the core of the isotopic niche. Hence, when these 
ellipses overlap, the compared groups share the same isotopic space 
and consequently can be used as a measure of the niche overlap.28,107 
For this, the authors recommend a sample number of around 30. 
However, when working with smaller values, a correction factor can 
be applied in the calculation to adjust the SEA, which is called the 
corrected standard ellipse area (SEAc).28 

By considering the variability existing in the process, this metric 
is better for comparison between spatial and temporal gradients, since 
the extreme values no longer have a significant effect on the measure. 
Besides this, the metrics are not affected by the errors associated 
with the sample number, allowing the comparison of groups with 
different sizes. Therefore, the approach identifies general patterns 
between other systems and sampling periods.28,108 For example, this 
permits comparing species within the same community (Figure 4A), 
in different communities (Figures 4B and 4C) and different sampling 
periods or seasons (Figure 4C).

The metrics generated by the Bayesian approach enable robust 
comparisons between communities, which is one of the strong 
points of this technique. Nevertheless, some caveats about its 

application should be considered. For example, when applied to 
entire communities using averages of small samples, the uncertainty 
increases. Therefore, even when using corrected SEA, authors 
recommend a minimum of 10 samples per group to be analyzed to 
mitigate these effects.28 It also should be stressed that the isotopic 
niche estimates should not be considered a direct measure of species’ 
ecological niche. It should be interpreted as a marker that permits 
inferences about fundamental aspects of the ecological niche of 
species or communities.7,25,28

Table 1 summarizes the main models and approaches described 
and utilized in trophic studies, highlighting their advances, strong 
points, and limitations. Besides these models, two other Bayesian 
models can be mentioned, although their application in trophic studies 
has not been widely explored in the literature, namely the IsoWeb111 
and FRUITS.112

Finally, the rapid and extensive growth of stable isotope data 
across diverse scientific fields, such as plant and animal physiology, 
paleobiology, evolution, biomedicine, climatology, and community 
and ecosystem ecology has prompted researchers from around the 
world to establish centralized databases to manage isotopic data.118 
Recently, three such databases that cover aquatic habitats have 
been created: IsoBank,118 MarTurtSI,119 and SIA-BRA.120 IsoBank 
and MarTurtSI are international databases with isotopic data from 
various environmental and biological matrices and marine turtles, 

Figure 4. Graphical examples of studies using SIBER to investigate the isotopic niche in different situations. (A): Different catfish species within a community 
(modified from Gatts et al.);109 (B): comparing species of shrimps in different areas (modified from Ferreira et al.);110 and (C): comparing fish species between 
different areas and seasonal periods (modified from Abrantes et al.)108
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Table 1. Main advances in stable isotopes mixing models applied in food web studies, highlighting their strengths and limitations

Models Description Strong points Limitations Original references

Geometric models

Uses Euclidean distances between 
the isotopic composition of 
consumers and sources in a 

bivariate distribution space of δ13C 
and δ15N values; 

Estimates the proportional 
contribution of each source

Simple calculations that only 
require the isotope values of the 
consumers and their prey items

Cannot precisely identify specific 
contributions, due to the possibility 

of multiple combinations of 
sources; 

Tends to overestimate the rare 
prey species and underestimate the 

common prey species

113 
114

Linear mixing models

Uses linear mass balance equations 
to determine the proportion of the 
contribution of (n + 1) potential 
sources, (n = number of isotopes 

in the system)

Can provide an exact 
contribution of the sources for 

the consumers; 
Requires a relatively small 

number of input parameters in 
the model

Only determines the contribution 
to (n + 1) potential food sources; 

Cannot deal with complex systems

116 
117

IsoError
Permits incorporating the errors 
and isotopic correlation of the 

sources in the model

Establishes confidence intervals 
around the estimates of the 

variances between consumers 
and prey items

Does not include any premises. 
Does not apply to complex systems 

with multiple sources
92 

IsoSource

Calculates the distribution of the 
frequencies and the contribution 
of the sources in systems where 

the sources exceed (n + 1), 
(n = number of isotopes)

Examines all possible 
combinations that can result in 
the observed isotopic value and 
determines the range of possible 

contributions

Provides a probabilistic solution 
instead of the exact proportion 
of the contributions. Does not 

incorporate variability in the model

92 
93

IsoConc

Performs calculations depending 
on concentrations; 

Includes the elemental 
concentration of the sources 

(e.g., C and N) and digestibility 
in the model

Assumes that the contribution 
of the source is proportional to 
its biomass multiplied by the 

elemental contribution

Hard to apply in practice for 
generalist organisms. Does not 
permit including the inherent 

errors in the model

91

MixSIR, SIAR and 
MixSIAR 

Bayesian Mixing 
Models

Examines the probability distribu-
tions of source contributions, with 

associated uncertainties; 
Incorporates variability in the 

parameters and provides a 
credibility interval

Encompasses complex systems 
with multiple possible sources. 
Allows including the standard 
deviation in the corrections by 
the trophic enrichment factor; 

Enables including optional 
information (e.g., elemental 

concentrations)

The interpretation of the data is 
sensitive to the variations of the 

trophic enrichment factor and the 
presence of highly similar sources

96 
26 
97

IsotopeR 
Bayesian mixing 

model

The hierarchical structure of the 
model permits making statistical 
inferences at the individual level 

in the population

Incorporates the resources of 
the other models, including 

measurement errors, dependence 
on concentration and isotopic 

correlation

The interpretation of the data is 
sensitive to the variations of the 

trophic enrichment factor and the 
presence of highly similar sources

98

SIBER 
Bayesian model

Utilizes quantitative metrics of 
the isotopic dispersion to make 
inferences about the structure of 

the community; 
Includes uncertainties associated 

with the sampling, generating 
robust measures of the breadth 
of the isotopic niche occupied 

by the species

The metrics calculated generate 
impartial ellipses in relation to 

the sample size; 
Permits comparing groups with 
different sample sizes and iso-
topic niches between different 

systems and communities; 
Enables performing meta-

analysis studies

Recommends a minimum sample 
number of 10 per member group of 

the community
28

SIDER 
Bayesian model

Uses a phylogenetic regression 
model based on a compiled dataset 

to impute (estimate) a TEF of a 
consumer;  

Uses all the information in the data, 
i.e. phylogenetic information, tissue 

type, repeated measures of the 
same species, diet and environment 
type, weighted accordingly by the 

estimated correlation structures

Provide a TEF estimate (mean 
and standard deviation) specific 

to the species of interest; 
Compatible with all the major 

Bayesian stable isotope 
mixing models including 

MixSIAR, IsotopeR, SIAR, 
and MixSIR

The species may be one present 
in the provided dataset, or it may 

be a new species, but it must 
be recognized as present in the 

phylogeny (terrestrial and marine 
birds and mammals)

100

TEF: Trophic enrichment factor.
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respectively, while SIA-BRA is a database developed by Brazilian 
scientists that includes data from terrestrial and aquatic animals found 
in Brazilian biomes and coastal marine areas. SIA-BRA contains 
approximately 44% of the data from coastal marine systems (oceanic 
plus estuarine). These databases are essential for advancing isotopic 
ecology, enabling studies on a range of topics such as diet tracing, 
foraging ecology, habitat use, food webs, effects of phylogeny on 
dietary ecology, and physiological studies.120 For aquatic food webs, 
isotopic databases are particularly important since they provide data to 
researchers who may not be able to sample or access all components 
of the food web.

FINAL CONSIDERATIONS

In this literature review, we have presented the main approaches 
applied in the analysis of trophic ecology using stable isotopes, which 
can generate precise information to shed light on the dynamics of 
ecological communities. Application of the techniques summarized 
here can enable: (i) tracing the sources of organic matter in trophic 
chains; (ii) determining the contribution of each food source in the 
diet of organisms; (iii) investigating the vertical structure of food 
chains; (iv) making inferences about the use of resources and habitats 
of the species studied, generating estimates of niche amplitude; 
and (v) making robust estimates and comparisons through current 
statistical models. 

Researchers should bear in mind that all tools have premises, 
advantages, and drawbacks, which should be well understood for 
effective interpretation of the results. The application of multiple 
methods and understanding the life history of the target organisms 
and interactions among species will provide a better understanding 
of food webs. Besides this, the information generated by these tools 
is often complementary, so the application of multiple models can 
be a more appropriate alternative to overcome the limitations of each 
model and expand knowledge of aquatic food webs.
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