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Microglia role as the regulator of cognitive function
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INTRODUCTION
Microglial cells are classified as the resident immune cells 
of the central nervous system (CNS), and they have been 
pointed out as key players in the development of neurode-
generative diseases1. These cells were discovered in the late 
eighties and early nineties, through studying the mouse brain, 
and showing that microglia are mononuclear cells distrib-
uted throughout the brain and spinal cord, accounting for 
over 20% of the glial cell population in the brain paren-
chyma2. The microglial cells are the only immune defense 
in the brain parenchyma.

These immune vigilants of infections contribute and reg-
ulate innate and adaptive responses, being involved in many 
different roles, such as the formation of synapses and connec-
tions, neuronal proliferation and differentiation, and the main-
tenance of brain homeostasis in health and disease3. Usually, 
microglia will protect the brain under inflammatory conditions 
by activating a strong immune response and supporting tissue 
repair and remodeling4.

Microglial cells respond effectively to pathogens and brain 
trauma by promoting morphological changes. They respond 
to pathogens and injury by migrating to the site where the 
infection or injury occurred, changing its morphology, and 
destroying the pathogens to remove damaged cells and debris5,6. 
These glial cells secrete cytokines, chemokines, reactive oxygen 
species, and prostaglandins as part of the immune response7,8. 
On the contrary, microglia can regulate and increase the dam-
age to the CNS when overstimulated, which generates a condi-
tion named by many authors as a reactive gliosis9,10. Therefore, 
microglia responses have been studied in many diverse types 
of infections, brain traumas, neurodegenerative diseases, and 
several other conditions11-14.

However, the terms “reactive gliosis,” “activated microg-
lia,” or “overactivated microglia” may not be the best choices 
to represent a range of several morphological, physiological, 

and sex-specific differences related to the multiple states of 
microglia, which vary not only from one condition or disease 
to another, but also from one specific brain region to another. 
Therefore, microglia have a key role in the defense and mainte-
nance of CNS. Microglia have a remarkable therapeutic poten-
tial as a target in neurological disorders and brain injury. Here, 
we review what makes microglia so interesting to be studied as 
a possible therapeutic target in different conditions by starting 
to analyze its origins, passing through a few different condi-
tions/diseases, and then discussing the potential future direc-
tions in research and clinic.

ORIGINS OF MICROGLIA
Virchow was the first to describe the neuroglia in 1856, which 
would be related to astrocytes and oligodendrocytes, while 
the first description of microglial cells came from Franz Nissl 
in the late 19th century by describing them as reactive glial 
elements with migratory potential, phagocytic activity, and 
the capacity of proliferating, which were named rod cells15. 
Santiago Ramon y Cajal defined these cells as the third ele-
ment because they were neither neurons nor part of the neu-
roglia, which comprises astrocytes and oligodendrocytes, and 
Pio Del Rio-Hortega introduced the term microglial cell to 
differentiate them from the other glial cells and neurons15. 
Many hypotheses were tested until the establishment of the 
nature of microglia.

There is a growing body of evidence that suggests microg-
lial cells are originated hematopoietically and able to reach 
the CNS through the bloodstream16,17. Initially, the evidence 
for a yolk sac microglial origin was mixed until Takahashi 
and Naito described the development of immature macro-
phages of the yolk sac at embryonic day 9 in mouse and rat 
tissues18,19. Thus, microglia are derived from yolk sac progen-
itors showing expression of the transcription factor RUNX1 
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and CD117, a tyrosine kinase receptor, but these cells do 
not express CD45, a leukocyte marker protein20. Microglia 
emerge from the fetal yolk sac macrophages, whereas other 
tissue macrophages emerge from precursors produced later 
in development21.

Migration and colonization of the brain by the microg-
lial progenitors occur during fetal development before the 
blood-brain barrier (BBB) is completely formed, and microg-
lia have the ability to self-renew throughout life when occurs 
the brain maturation and its confinement by the fully devel-
oped BBB22. However, human microglial cells appear near 
the mesenchymal tissue capillaries before their appearance 
in neural tissue in the fourth gestational week, and are pres-
ent in the neural tissue around the fifth gestational week23. 
Nevertheless, it is important to mention that after bone mar-
row transplantation, and under other pro-inflammatory con-
ditions, there might occur the recruitment of monocytes or 
other bone marrow-derived progenitors, which may supple-
ment microglia to some extent3.

REACTIVE GLIOSIS: 
A TERM TO BE REVIEWED
Reactive gliosis is classified as a change that occurs in the 
glial cells’ morphology and activity due to damage in CNS, 
and seems to be the most important pro-inflammatory mech-
anism in the development of many neurodegenerative dis-
eases, such as Alzheimer’s disease and others24,25. Even during 
infectious conditions caused by virus like Zika, a higher 
phagocytic activity that contributes to changes in behavior 
can be seen in microglial cells26. Microglial activation is the 
expansion of microglia during microgliosis, the first step in 
the reactive gliosis, and results mainly from the existing res-
ident microglia expansion, which might be harmful to neu-
rons and will contribute to the development of a pro- and 
harmful inflammatory state22.

A reactive gliosis consists of different stages where the pri-
mary response is the migration of macrophages and microglia 
to the specific site of the injury, followed by the recruitment of 
oligodendrocytes, which should contribute to remyelination, 
and, finally, there would be the enhancement of astrocyte expres-
sion, which leads to the formation of glial scars, completing, 
then, all steps of a reactive gliosis9. Thus, microglia act primar-
ily as a neuroprotective mechanism, and when overactivated, 
according to the classic concepts mentioned above, they can 
be harmful to the CNS.

Besides being extensively used in research and review 
papers27,28, the term reactive gliosis starts facing a new concept 

about microglial morphology, and the fact is that this term may 
disappear soon. The reason for this is that recent and impec-
cable studies have shown that microglia cannot be classified as 
simple as “resting” or “activated” microglia due to the fact that 
these cells can present multiple different states, morphology, 
and physiological function, and assume different characteris-
tics that might change according to the brain area, sex, species, 
and several other factors29,30.

A recently published article analyzed microglial cells in 
multiple periods (p7, p15, p22, and adult), diverse brain 
regions (cerebellum, primary somatosensory cortex, substantia 
nigra, cochlear nucleus, dentate gyrus, and frontal cortex), 
and in several conditions (healthy, Alzheimer’s disease, and 
ovactomerized) in mice29. The authors have shown that dif-
ferent brain regions present a well-differentiated microglial 
morphology in adult mice; besides microglial developmental 
trajectories are similar between brain regions, in neonates 
(p7) and weaning (p22), they present higher similarities to 
adult morphology; frontal cortex and dentate gyrus of the 
hippocampus are definitely the brain regions where we can 
identify the biggest changes in microglia; and that there 
is not only a specificity regarding the morphology accord-
ing to the brain region, but there is a sexual dysmorphism, 
which affects the production of estrogen during puberty 
with consequences in adult life. All these results together 
shed light on reviewing the term reactive gliosis and re-eval-
uating microglial mechanisms according to this vast pool of 
possible phenotypes (Figure 1).

A simplistic view such as microglia is “resting” or “activated” 
is no longer the best way of referring to the multiple pheno-
types seen in microglia morphology and function in different 
brain regions, across several different conditions, and when 
looking at sex-specific differences too.

MICROGLIA IN ALZHEIMER’S  
DISEASE AND RELATED CONDITIONS
A more specific and sensitive discussion about microglia bio-
markers in Alzheimer’s disease has emerged31. It is known that 
Alzheimer’s disease is the most common neurodegenerative 
disease and type of dementia, being determined clinically and 
in research by the excessive aggregation of extracellular amy-
loid-beta (Aβ) peptide and by the presence of neurofibrillary 
tangles, which are formed due to the hyperphosphorylation of 
the Tau protein, and these two main features would contrib-
ute to a progressive cognitive decline with the development 
of memory loss in more advanced stages of the disease32,33. 
Genetic causes of Alzheimer’s disease correspond to 5% of 
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the total cases, while the vast majority of the cases are related 
to the sporadic form of it. However, there is a common fea-
ture present in all types of dementia, that is, the presence of 
inflammation mediated by excessive activation of microglia 
and astrocytes34.

This cognitive decline and memory loss mediated by brain 
inflammation is seen not only in Alzheimer’s disease, but also 
in Alzheimer’s-like pathologies, such as when there is exces-
sive contact with air pollution35, in type 2 diabetes mellitus36, 
obesity37,38, or even in the offspring born from gestational 
diabetes39,40, among others. The fact is that a pro-inflamma-
tory brain state is always present in cognitive impairment, 
with memory loss being the only common thing between all 
types of dementia and Alzheimer’s-related pathologies. Thus, 
investigating the potential therapeutics of microglial inter-
ventions is essential. 

CONCLUSION
Microglia are crucial for modulating cognition, memory, 
behavior, gene expression, oxidative stress, and inflammation. 
The vast pool of phenotypes exhibited by microglia brings new 
insights in finding specific pools of microglia that could be tar-
geted into specific neurodegenerative diseases. 
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Figure 1. Representative pool of microglial phenotypes. Microglial cells present a vast pool of phenotypes that might change according to the 
species, brain region, condition, and sex.
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