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Objective: The aim was to evaluate the effectiveness of the experimental synergists 
muscle ablation model to promote muscle hypertrophy, determine the period 
of greatest hypertrophy and its influence on muscle fiber types and determine 
differences in bilateral and unilateral removal to reduce the number of animals 
used in this model. 
Method: Following the application of the eligibility criteria for the mechanical 
overload of the plantar muscle in rats, nineteen papers were included in the review. 
Results: The results reveal a greatest hypertrophy occurring between days 12 
and 15, and based on the findings, synergist muscle ablation is an efficient model 
for achieving rapid hypertrophy and the contralateral limb can be used as there 
was no difference between unilateral and bilateral surgery, which reduces the 
number of animals used in this model. 
Conclusion: This model differs from other overload models (exercise and training) 
regarding the characteristics involved in the hypertrophy process (acute) and 
result in a chronic muscle adaptation with selective regulation and modification 
of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for 
compensatory hypertrophy.

Keywords: ablation of synergists, compensatory hypertrophy, experimental 
models, muscle mass, skeletal muscle cross-sectional area.

Introduction
Skeletal muscle is highly adaptive and has a self-regulat-
ing capacity.1-3 Hypertrophy is an example of this plastic-
ity and refers to the increase in muscle mass necessary to 
enable the muscle to optimize its response to the demands 
of sustaining and generating force.1,2,4-6

Skeletal muscle mass is regulated by a variety of stim-
uli, the best known of which is mechanical overload. The 
muscle adaptation process can be induced by stretching/
immobilization,44,46 compensatory mechanisms (chron-
ic).1,2-6,8,9,12,14,18-20,61-65 and exercise/training.33,46 Evidence of 
this is derived from a large number of studies demonstrat-
ing that overload leads to an increase in muscle mass and 
cross-sectional area of the muscle fibers and induces 
chronic changes in the balance between the synthesis and 
degradation of proteins.2,7-9 Compensatory hypertrophy 

through the ablation of synergists of plantar flexion is 
one of the ways to produce chronic overload experimen-
tally.3,7,12,13,20,59 The ablation of synergists for compensa-
tory hypertrophy consists of the surgical removal of all 
or part of synergistic muscles, which can be either unilat-
eral or bilateral, to generate chronic functional overload 
that causes hypertrophy.3,7,12,13,20,59 According to Parvaresh 
et al.,1 complete muscle removal can compromise the 
neurovascular supply, which increases edema and the 
recovery of the animal in the postoperative period. Thus, 
the removal of only the distal portion of synergist muscle 
is recommended (Figure 1). 

The synergist muscle ablation model induces muscle 
hypertrophy in only a few days, thereby facilitating the 
study of adaptive responses.2,3,7,10-20 The most studied 
muscles are plantar flexors in the rear paw of rats. As 
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skeletal muscle has different types of fibers (type I [slow-
-twitch] and type II [fast-twitch – IIa, IIb, IIx/IId]),21 a 
number of authors justify the choice of the plantaris 
muscle due to its diversity of fiber types (type I: 8 ± 2%; 
type IIA: 19 ± 3%; type IIB/D: 74 ± 4%) and its different 
adaptation possibilities.9 Compensatory hypertrophy 
induced by the functional elimination of synergistic 
muscles results in an increase in muscle fiber diameter 
and muscle mass as well as the regulation of protein syn-
thesis in different types of muscle fibers.

The present systematic review of the literature dis-
cusses the results found in studies using this experimen-
tal model to cause overload in the plantar muscle of rats, 
comparing the findings with regard to the percentage 
increase in the mass of the plantar muscle, the period of 
greatest muscle mass gain and differences between uni-
lateral and bilateral surgery. The aim of this review was 
to evaluate the effectiveness of the experimental synergist 
muscle ablation model to promote muscle hypertrophy 
in different overload models, to determine the period of 
greatest hypertrophy and its influence on muscle fiber 
types, and to determine differences in bilateral and uni-
lateral removal to reduce the number of animals used in 

this model, thereby facilitating its reproduction and its 
choice among different chronic hypertrophy models.

Method
The methods were based on PRISMA guidelines. Search-
es were performed in the PubMed, ScienceDirect, MED-
LINE and CAPES Portal databases for articles published 
between January 1999 and July 2013 using the keywords 

“compensatory hypertrophy” AND “mechanical overload” 
OR “ablation of synergists” AND “compensatory hyper-
trophy” AND “experimental models” OR “skeletal muscle 
cross-sectional area.” The following criteria were used for 
the selection of papers: (1) the use of a rat model; (2) the 
use of synergist ablation to overload the plantaris muscle; 
(3) bilateral or unilateral muscle removal; and (4) deter-
mination of the cross-sectional area of muscle fibers or 
muscle mass. Review articles were excluded, as well as 
other experimental models and in vitro studies. Articles 
that used overload in another muscle and did not report 
on their studies the cross-sectional area (CSA) or muscle 
mass were also excluded. 

A total of 63 articles were retrieved using combinations 
of the keywords. Twenty-four papers were review articles;7,9,21-42 

FIGURE 1  Synergist ablation surgery of plantaris muscle. A. Shaving the back of the hind leg. B. Incision of 2 cm. C. Tendon of gastrocnemius 

muscle. D. Partial removal of the lateral gastrocnemius muscle. E. Soleus muscle – total removal. F. Partial removal of the medial gastrocnemius 

muscle. G. The plantaris muscle is isolated. H. Suture with seven points.

Plantaris muscle

A B C D

HGFE
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eight studies used a model other than the ablation of syner-
gists to cause hypertrophy;43-50 and six were in vitro studies.51-56 
All these studies were excluded. Among the remaining 25 
studies, seven did not compare the cross-sectional area of 
the muscle and/or muscle mass to a control group and were 
excluded.3,13,15,48,57,59,60 Thus, 19 studies met the inclusion 
criteria and were selected for the present review (Figure 2).

Statistical analysis
The data from graphs were grouped based on collection 
time and percentage of increase in mass of the plantaris 
muscle with error propagation. A scatter plot was created 
to show the distribution of muscle mass gain in function 
of the number of days following the ablation procedure. 
Two regressions were employed: one for less than 15 days 
of data and another for more than 15 days of data. A slope 
of the regression line coefficient of 0.042 ± 0.002% and 
linear coefficient of 0.095 ± 0.021% was used for this cal-
culation (slope of the regression line coefficient + x linear 

coefficient, in which x is the number of days). R2 values 
demonstrate how the data approaches the progression 
and form a straight line (R2 = 0.52 in the first 15 days 
following the ablation of synergist muscles and R2 = 0.06, 
15 days after surgery). Values greater than 50% demonstrate 
that the linear fit is adequate. Chebyshev’s inequality test 
was used to compare muscle mass following unilateral or 
bilateral removal. This test makes no assumptions regard-
ing the normality of the data distribution and only re-
quires the means and standard errors as inputs. Only 
periods of 14 and 28 days were compared, which were the 
periods used by most authors. The results were p=0.2996 
for 14 days and p=0.2584 for 28 days. 

Results
Table 1 summarizes the findings of the 19 articles ana-
lyzed in the present systematic review. Considerable 
variation was found in the analysis period following the 
ablation of synergists. Increases in muscle mass (g) and 

FIGURE 2  Flowchart of the selection process of literature according to the PRISMA guidelines.

Search of three electronic databases including 
PubMed – Public/Publisher MEDLINE, 

ScienceDirect and CAPES portal database

Studies with adequate design 
for study (n=19)

Studies excluded with reason (n=19)
Another muscle (not plantaris muscle) n=8

Systematic review n=24
In vitro studies n=6

Excluded based on results n=6

Studies excluded with reason (n=714)
Not skeletal muscle n=438
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Excluded by abstract (another 
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fiber cross-sectional area (μm2) of the plantar muscle 
were reported in all studies evaluated, demonstrating 
compensatory hypertrophy.

The data were grouped based on collection time and 
percentage of increase in mass of the plantar muscle 
with error propagation. The trend line revealed linear 
progression up to 15 days, with stabilization of the data 
after this period. The method of least squares was used, 
including the error of the data reported by the authors. 
For studies that did not provide such information, the 
mean error was used. The trend line in Figure 3 shows 
the percentage (± error) of increase in muscle mass ac-
cording to days after surgery as follows: 13.6 ± 2.1% one 
day after ablation, 38.7 ± 2.6% seven days after ablation 
and 68.0 ± 3.6% 14 days after ablation. 

Only periods of 14 and 28 days were compared, which 
were the periods used by most authors. Both groups 
presented a large effect size (1.15 and 1.39 for 14 and 28 
days, respectively) but since the authors made no assump-
tions regarding the data’s distribution, the p-values were 
higher than the significance level (p=0.2996 for 14 days 
and p=0.2584 for 28 days), thus no significant differ-
ences were found between unilateral and bilateral surgery 
in the two periods. At 28 days, there is an overlap between 
both 95% confidence intervals ([68%, 85%] and [45%, 61%] 
for unilateral and bilateral, respectively) but no overlap 
was found at 14 days ([38%, 55%] and [45%, 61%] for uni-
lateral and bilateral, respectively). By not assuming the 
normality of the data’s distribution, the authors guar-
antee the probability of the type I error at α = 0.05 at the 
expenses of an increased probability of the type II error. 
Therefore, despite the lack of statistical significance, the 
power of the test was low due to the limited data in the 
literature on unilateral synergist ablation reporting the 
percentage gain in plantaris muscle mass. 

All data were grouped based on the period after the 
ablation of synergists (Figure 4). Greatest hypertrophy 
occurred between 12 and 15 days postoperatively. The 
increase in the cross-sectional area of the muscle and mus-
cle fibers was studied using histological techniques.1,7-9,60 
The mean increase in cross-sectional area in comparison 
to the control was 66 ± 4% at day 14, demonstrating that 
compensatory hypertrophy is an effective model for increas-
ing muscle mass.​

Discussion
Compensatory hypertrophy occurs in response to a sus-
tained increase in the mechanical load of skeletal muscle. 
Although the mechanisms involved in compensatory 
hypertrophy are not yet fully understood, this is an intense 

topic of research, which includes the definition, measur-
ing, loading stimulus parameters, acute responses, hyper-
plasia, experimental models, adaptations of muscle fiber 
types, the involvement of satellite cells and endocrinol-
ogy. The purpose of the present systematic review was to 
gather results reported by researchers who have used the 
standard ablation of synergists (gastrocnemius and so-
leus muscles) model to determine the induction of hy-
pertrophy in the plantar muscle of rats, comparing the 
percentage of muscle gain to facilitate and standardize 
the use of this model for the study of muscle plasticity 
following functional overload. Increasing interest in the 
molecular and cellular mechanisms responsible for hy-
pertrophy in recent years1,6-9 underscores the need for a 
reliable and easily reproducible model. Rats are often used 
due to their considerable activity and their larger size in 
comparison to mice. The mean weight of the animals 
used in the studies analyzed was 220 ± 12 g.1-5,7,14-16,18

Among the models described in the literature for 
changes in muscle demand, different protocols of me-
chanical loading have been used: resistance training (RT) 
and compensatory hypertrophy after ablation and te-
notomy.2,3,5-7,13,18,65 Current theories suggest differences 
between mechanisms that induce hypertrophy through 
exercise and compensatory hypertrophy. Both methods 
cause changes in the muscle, but the molecular signaling 
pathways seem to be different.26,49 Compensatory hyper-
trophy due to the ablation of synergists and tenotomy 
differ in terms of phases. The former has two distinct 
phases: an inflammatory phase, followed by the response 
of the muscle to the demand for a functional increase. 
Tenotomy has the disadvantage of the rapid reconnection 
of the cut tendon, which limits functionality.65

Most commonly studied muscles
Compensatory hypertrophy by the ablation of synergists is 
an efficient model for studies on muscle hypertrophy,2,3,7,10-20 
as the fast increase in muscle mass reduces the duration of 
the experiment. In recent years, changes have occurred in 
the standard of surgery (bilateral or unilateral) and the re-
lationship between the number of days and increase in 
muscle mass, which justifies this systematic review. 

In rats, the most commonly studied muscles are the 
tibial anterior, digitorum longus, soleus and plantar 
muscles.1-5,7,14-16,18 In the 1980s and 1990s, the model most 
often employed was the entire removal of the tibialis 
anterior to generate overload of the digitorum longus.15 
Currently, the most used muscles in such models are the 
soleus and plantar muscle and compensatory hypertrophy 
commonly involves the removal of the distal portion of 
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TABLE 1  Studies selected for review using the synergist ablation model for compensatory hypertrophy.

Article Ablation of synergists Study design Data collection Outcomes
(compared to control)

Adams et al.4 Unilateral Plantar mass 

Rat body mass

6, 12, 24 and 48 h

3, 7 and 12 days

12 d Body mass (g)

(226 ± 5 to 257 ± 6)

Muscle mass (mg/g)

(1.07 ± 0.02 to 1.73 ± 0.18)

Dunn et al.64 Bilateral Cross-sectional area of 

muscle

7, 14 and 28 days 28 d Cross-sectional area increased 75% 

compared to control

Bodine et al5 Bilateral Muscle mass 7, 14 and 30 days 7 d Muscle mass increased by 25%

14 d Muscle mass increased by 38%

Adams et al.65 Bilateral Cross-sectional area 6 and 24 h

3, 7, 15 and 90 days

90 d 46% increase in cross-sectional area 

of muscle fibers

Lee et al.62 Bilateral Muscle mass 1, 3, 7 and 21 days 1 d Increased by 10%

3 d Increased by 31%

21 d Increased by 21%

Yamaguchi et al.12 Unilateral Cross-sectional area 3 and 14 days 14 d Increased by 43.3 ± 3.8%

Sakuma et al.63 Unilateral Muscle mass 1, 2, 3, 4, 6, 8, 10, 14 

and 28 days

1 d Increased by 56%

3 d Increased by 40,9%

6 d Increased by 31.3 %

10 d Increased by 44.8 %

14 d Increased by 46.8%

28 d Increased by 76.2%

Pehme et al.14 Bilateral Muscle mass 14 days 14 d Increased by 40%

DiPasquale et al.1 Bilateral Cross-sectional area 1, 3, 5 and 14 days 3 d Increase in peak edema

No statistical difference in cross-sectional 

area of muscle in 3 days

Marino et al.6 Bilateral Cross-sectional area

Peak edema

3, 7 and 14 days 3 d Statistical difference in cross-sectional 

area of muscle 

Retention of 90% water

7 d 5% Increase in cross-sectional area 

of muscle 

Retention of 70% water

14 d 21% increase in cross-sectional area 

of muscle 

Retention of 45% water

Novack et al.18 Bilateral Plantar mass

Peak edema

1, 3, 5 and 14 days 14 d 80% increase in muscle mass

Peak edema in 5 days

Huey et al.19 Bilateral Relative and absolute 

plantaris muscle

12 h, 1, 2, 3 and 7 days 7 d Relative mass increased by 15%

Absolute mass increased by 21%

Pavaresh et al.2 Bilateral Absolute and relative mass 3 and 7 days 3 d Absolute mass increased by 10%

Relative mass increased by 18%

7 d Absolute mass increased by 21%

Relative mass increased by 20%

Goodman et al.7 Bilateral Cross-sectional area 7 and 14 days 14 d Increased by 30% 

Schuenke et al.9 Bilateral Cross-sectional area 28 days 28 d Increased by 35% in young rats

Increased by 21% in older rats

Goodman et al.8 Bilateral Cross-sectional area 10 days 10 d 1,000 ± 60 vs.  

2,000 ± 200 (µm2)

Gordon et al.20 Bilateral Muscle mass 1 and 3 days 1 d Increased by 48 ± 9% (m±SD)

3 d Increased by 73 ± 17% (m±SD)

Bentzinger et al.61 Unilateral Muscle mass 7 and 28 days 7 d Increased by 90%

28 d Increased by 120%
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FIGURE 3  Distribution of plantaris muscle hypertrophy according to number of days after ablation of synergists. Dark gray dots represent 

data collected in less than 15 days after ablation. Light gray dots represent data collected 15 days after ablation of synergists. The trend line 

demonstrates linear progression up to 15 days, with stabilization thereafter.

FIGURE 4  Mean gain in muscle mass according to time after the ablation of synergists based on the literature.
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the gastrocnemius. Despite displaying anatomical prox-
imity in rats, these muscles are distinct in their architec-
ture and biochemistry.6,9,16,19,58

Considering the different types of muscle fiber (slow-
-twitch [type I] and fast-twitch [type IIa, IIb, IIx and IId]),21 
a number of authors justify the choice of the plantar 
muscle for studies on adaptation due to its composition 
of different fiber types. The plantar muscle is predomi-
nantly composed of fibers IId and therefore has a smaller 
amount of mitochondria as such fibers use the glyco-
lytic pathway for a faster response during gait. Authors 
attribute this adaptation feature of the plantar muscle 
to its constant activation during the stance phase and 
weight bearing in quadrupeds, which use this muscle to 
resume ambulation.9

Unilateral vs. bilateral surgery
Based on the data analyzed, both unilateral and bilateral 
synergist ablation lead to an increase in muscle mass, with 
no statistically significant difference between the two types 
of surgery. Researchers working with unilateral surgery 
report a mean increase in muscle mass of 46.8 ± 2.6% 14 
days following synergist ablation,4,12,61,63 whereas those 
working with bilateral surgery report an increase of 52.3 ± 
3.1% in the same period.4,12,61,63 Although the number of 
studies involving unilateral ablation (n=4) was smaller than 
the number involving bilateral ablation (n=14), the similar 
increase in muscle mass demonstrates the benefits of uni-
lateral surgery, which reduces the number of animals used 
in experiments and is in line with the goals of the Interna-
tional Council for Laboratory Animal Sciences.

Expected time for hypertrophy
The data collection period varied considerably among the 
studies analyzed. Moreover, it is important to determine 
how the data are distributed for adequate visualization 
of the period of greatest hypertrophy. The synergist abla-
tion model led to an increase in muscle mass in the first 
three days due to inflammation and edema caused by the 
surgical procedure.1,2,6,20,62,63 This disadvantage in the com-
pensatory hypertrophy model by synergist ablation is due 
to the inflammation process that occurs after surgery. 
However, Novack et al.18 demonstrated that components 
of the acute inflammatory response are required in the 
muscle repair and remodeling process and the intensity 
of the inflammatory response is related to the magnitude 
of hypertrophy. With synergist ablation, the increase in 
prostaglandin-endoperoxide synthase 2 (COX-2) seems 
to be related to the considerable increase in muscle mass 
that occurs in this model and the inflammatory response 

enables and facilitates the activity of extracellular prote-
ases, the accumulation of macrophages and cell prolif-
eration, including the activation and proliferation of 
satellite cells, which seems to exert an influence on the 
greater hypertrophy achieved with this model in com-
parison to exercise-induced hypertrophy. 

According to Marino et al.,6 no statistically significant 
difference in the cross-sectional area of the muscle fibers 
was found in the first three days following ablation. At 3 
to 5 days, the edema is reduced, followed by an increase in 
the cross-sectional area of the muscle fibers as well as en-
zyme activity and protein synthesis, which constitute hy-
pertrophy as an adaptation to the new condition of chron-
ic overload.1,6,18,61,63 The period of 12 to 15 days was 
identified as that with the greatest percentage increase in 
muscle mass in comparison to the control (Figure 3), dem-
onstrating a linear progression (i.e., a progressive gain in 
muscle mass over the first 15 days after ablation). At 28 
days, the authors found no further increase in gene expres-
sion related to increased muscle mass,9,64,65 as demonstrat-
ed by the cessation of linear progression and stabilization 
of the data (Figure 2). Thus, peak hypertrophy (greatest 
increase in muscle mass and cross-sectional area of the 
muscle fibers) occurs between the second and third week 
following synergist ablation. Concentrating studies on this 
period is fundamental to determining the impact of novel 
therapies and interventions designed either to diminish or 
potentiate the effects of compensatory muscle hypertrophy.

Cross-sectional area and types of muscle fiber
The increase in the cross-sectional area of the muscle and 
muscle fibers was studied using histological tech-
niques.1,7-9,61 The mean increase in cross-sectional area in 
comparison to the control was 18.66% in 14 days, dem-
onstrating that compensatory hypertrophy is an effective 
model for increasing muscle mass. The trend line in Fig-
ure 2 shows the percentage increase in muscle mass ac-
cording to days following surgery: approximately 10% 
one day after ablation, 38% seven days after ablation and 
68% 14 days after ablation. 

The increase in the cross-sectional area of muscle is 
related to protein synthesis of the muscle fibers and the 
activation of satellite cells. Studies suggest that satellite 
cells are responsible for both the growth of muscle fibers 
and the regulation of the muscle fiber phenotype.8,14,19,20,37,46 
At the onset of compensatory hypertrophy, the muscle 
fiber alters its response. The relationship among the cross-
-sectional area, hypertrophy and fiber type37 indicates that 
chronic overload induces changes in the expression of 
heavy chain myosin.
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Goodman et al.8 demonstrated a significant increase 
in protein synthesis in four types of muscle fiber (slow-

-twitch [type I] and fast-twitch [type IIa, IIb and IIx]) in 
the plantaris muscle in rats submitted to synergist abla-
tion. Type IIb fibers exhibited the least amount of protein 
synthesis, whereas IIa fibers exhibited the most amount 
of protein synthesis, which did not differ significantly 
from that found in type I fibers. In the cross-sectional 
area, type IIb fibers were shorter than IIa fibers, which 
also exceeded the area found in type I fibers. These find-
ings suggest that this model results in the selective 
regulation and modification of fast-twitch fibers in 
skeletal muscle.

Conclusion
Based on the findings of the present systematic review, 
the following conclusions may be drawn: 1. the synergist 
ablation model differs from other overload models regard-
ing the characteristics involved in the hypertrophy process; 
2. 12 to 15 days following ablation is the period of great-
est muscle hypertrophy; 3. the lack of a significant differ-
ence in the gain in muscle mass between unilateral and 
bilateral ablation demonstrates that contralateral limb 
can be used as the control, which reduces the number of 
animals used in this model; and 4. synergist muscle abla-
tion is an efficient reproducible model for achieving 
rapid hypertrophy and results in the selective regulation 
and modification of fast-twitch fibers in skeletal muscle.
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Resumo

Revisão sistemática do modelo de ablação dos músculos 
sinérgicos na hipertrofia compensatória

Objetivo: Avaliar a eficácia do modelo experimental de 
ablação dos sinergistas para promover a hipertrofia mus-
cular, determinar o período de maior hipertrofia, sua 
influência sobre os tipos de fibras musculares e determi-
nar diferenças na remoção unilateral ou bilateral para 
reduzir o número de animais utilizados nesse modelo. 
Método: Após a aplicação dos critérios de elegibilidade 
para sobrecarga mecânica do músculo plantar em ratos, 
19 artigos foram incluídos na revisão. 

Resultados: Ocorre maior hipertrofia entre os dias 12 e 
15, o que torna o modelo eficiente para alcançar a hiper-
trofia rapidamente. O membro contralateral também 
pode ser usado, pois não houve diferença entre a cirurgia 
unilateral e bilateral, o que reduz o número de animais 
usados no experimento. 
Conclusão: O modelo difere de outros modelos de so-
brecarga (exercício e treinamento) em razão das caracte-
rísticas envolvidas no processo de sobrecarga imposta 
(aguda), resultando em uma adaptação crônica muscular 
com modificação de fibras de contração rápida do mús-
culo esquelético. É um modelo rápido e eficiente para se 
estudar hipertrofia compensatória.

Palavras-chave: ablação dos sinergistas, hipertrofia com-
pensatória, modelos experimentais, massa muscular, área 
de secção transversa do músculo esquelético.
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